| //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly |
| /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS |
| /// algorithm. |
| /// |
| /// The SCC iterator has the important property that if a node in SCC S1 has an |
| /// edge to a node in SCC S2, then it visits S1 *after* S2. |
| /// |
| /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: |
| /// This requires some simple wrappers and is not supported yet.) |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_SCCITERATOR_H |
| #define LLVM_ADT_SCCITERATOR_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/iterator.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <iterator> |
| #include <queue> |
| #include <set> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <vector> |
| |
| namespace llvm { |
| |
| /// Enumerate the SCCs of a directed graph in reverse topological order |
| /// of the SCC DAG. |
| /// |
| /// This is implemented using Tarjan's DFS algorithm using an internal stack to |
| /// build up a vector of nodes in a particular SCC. Note that it is a forward |
| /// iterator and thus you cannot backtrack or re-visit nodes. |
| template <class GraphT, class GT = GraphTraits<GraphT>> |
| class scc_iterator : public iterator_facade_base< |
| scc_iterator<GraphT, GT>, std::forward_iterator_tag, |
| const std::vector<typename GT::NodeRef>, ptrdiff_t> { |
| using NodeRef = typename GT::NodeRef; |
| using ChildItTy = typename GT::ChildIteratorType; |
| using SccTy = std::vector<NodeRef>; |
| using reference = typename scc_iterator::reference; |
| |
| /// Element of VisitStack during DFS. |
| struct StackElement { |
| NodeRef Node; ///< The current node pointer. |
| ChildItTy NextChild; ///< The next child, modified inplace during DFS. |
| unsigned MinVisited; ///< Minimum uplink value of all children of Node. |
| |
| StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min) |
| : Node(Node), NextChild(Child), MinVisited(Min) {} |
| |
| bool operator==(const StackElement &Other) const { |
| return Node == Other.Node && |
| NextChild == Other.NextChild && |
| MinVisited == Other.MinVisited; |
| } |
| }; |
| |
| /// The visit counters used to detect when a complete SCC is on the stack. |
| /// visitNum is the global counter. |
| /// |
| /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags. |
| unsigned visitNum; |
| DenseMap<NodeRef, unsigned> nodeVisitNumbers; |
| |
| /// Stack holding nodes of the SCC. |
| std::vector<NodeRef> SCCNodeStack; |
| |
| /// The current SCC, retrieved using operator*(). |
| SccTy CurrentSCC; |
| |
| /// DFS stack, Used to maintain the ordering. The top contains the current |
| /// node, the next child to visit, and the minimum uplink value of all child |
| std::vector<StackElement> VisitStack; |
| |
| /// A single "visit" within the non-recursive DFS traversal. |
| void DFSVisitOne(NodeRef N); |
| |
| /// The stack-based DFS traversal; defined below. |
| void DFSVisitChildren(); |
| |
| /// Compute the next SCC using the DFS traversal. |
| void GetNextSCC(); |
| |
| scc_iterator(NodeRef entryN) : visitNum(0) { |
| DFSVisitOne(entryN); |
| GetNextSCC(); |
| } |
| |
| /// End is when the DFS stack is empty. |
| scc_iterator() = default; |
| |
| public: |
| static scc_iterator begin(const GraphT &G) { |
| return scc_iterator(GT::getEntryNode(G)); |
| } |
| static scc_iterator end(const GraphT &) { return scc_iterator(); } |
| |
| /// Direct loop termination test which is more efficient than |
| /// comparison with \c end(). |
| bool isAtEnd() const { |
| assert(!CurrentSCC.empty() || VisitStack.empty()); |
| return CurrentSCC.empty(); |
| } |
| |
| bool operator==(const scc_iterator &x) const { |
| return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; |
| } |
| |
| scc_iterator &operator++() { |
| GetNextSCC(); |
| return *this; |
| } |
| |
| reference operator*() const { |
| assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
| return CurrentSCC; |
| } |
| |
| /// Test if the current SCC has a cycle. |
| /// |
| /// If the SCC has more than one node, this is trivially true. If not, it may |
| /// still contain a cycle if the node has an edge back to itself. |
| bool hasCycle() const; |
| |
| /// This informs the \c scc_iterator that the specified \c Old node |
| /// has been deleted, and \c New is to be used in its place. |
| void ReplaceNode(NodeRef Old, NodeRef New) { |
| assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); |
| // Do the assignment in two steps, in case 'New' is not yet in the map, and |
| // inserting it causes the map to grow. |
| auto tempVal = nodeVisitNumbers[Old]; |
| nodeVisitNumbers[New] = tempVal; |
| nodeVisitNumbers.erase(Old); |
| } |
| }; |
| |
| template <class GraphT, class GT> |
| void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) { |
| ++visitNum; |
| nodeVisitNumbers[N] = visitNum; |
| SCCNodeStack.push_back(N); |
| VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum)); |
| #if 0 // Enable if needed when debugging. |
| dbgs() << "TarjanSCC: Node " << N << |
| " : visitNum = " << visitNum << "\n"; |
| #endif |
| } |
| |
| template <class GraphT, class GT> |
| void scc_iterator<GraphT, GT>::DFSVisitChildren() { |
| assert(!VisitStack.empty()); |
| while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) { |
| // TOS has at least one more child so continue DFS |
| NodeRef childN = *VisitStack.back().NextChild++; |
| typename DenseMap<NodeRef, unsigned>::iterator Visited = |
| nodeVisitNumbers.find(childN); |
| if (Visited == nodeVisitNumbers.end()) { |
| // this node has never been seen. |
| DFSVisitOne(childN); |
| continue; |
| } |
| |
| unsigned childNum = Visited->second; |
| if (VisitStack.back().MinVisited > childNum) |
| VisitStack.back().MinVisited = childNum; |
| } |
| } |
| |
| template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() { |
| CurrentSCC.clear(); // Prepare to compute the next SCC |
| while (!VisitStack.empty()) { |
| DFSVisitChildren(); |
| |
| // Pop the leaf on top of the VisitStack. |
| NodeRef visitingN = VisitStack.back().Node; |
| unsigned minVisitNum = VisitStack.back().MinVisited; |
| assert(VisitStack.back().NextChild == GT::child_end(visitingN)); |
| VisitStack.pop_back(); |
| |
| // Propagate MinVisitNum to parent so we can detect the SCC starting node. |
| if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum) |
| VisitStack.back().MinVisited = minVisitNum; |
| |
| #if 0 // Enable if needed when debugging. |
| dbgs() << "TarjanSCC: Popped node " << visitingN << |
| " : minVisitNum = " << minVisitNum << "; Node visit num = " << |
| nodeVisitNumbers[visitingN] << "\n"; |
| #endif |
| |
| if (minVisitNum != nodeVisitNumbers[visitingN]) |
| continue; |
| |
| // A full SCC is on the SCCNodeStack! It includes all nodes below |
| // visitingN on the stack. Copy those nodes to CurrentSCC, |
| // reset their minVisit values, and return (this suspends |
| // the DFS traversal till the next ++). |
| do { |
| CurrentSCC.push_back(SCCNodeStack.back()); |
| SCCNodeStack.pop_back(); |
| nodeVisitNumbers[CurrentSCC.back()] = ~0U; |
| } while (CurrentSCC.back() != visitingN); |
| return; |
| } |
| } |
| |
| template <class GraphT, class GT> |
| bool scc_iterator<GraphT, GT>::hasCycle() const { |
| assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
| if (CurrentSCC.size() > 1) |
| return true; |
| NodeRef N = CurrentSCC.front(); |
| for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE; |
| ++CI) |
| if (*CI == N) |
| return true; |
| return false; |
| } |
| |
| /// Construct the begin iterator for a deduced graph type T. |
| template <class T> scc_iterator<T> scc_begin(const T &G) { |
| return scc_iterator<T>::begin(G); |
| } |
| |
| /// Construct the end iterator for a deduced graph type T. |
| template <class T> scc_iterator<T> scc_end(const T &G) { |
| return scc_iterator<T>::end(G); |
| } |
| |
| /// Sort the nodes of a directed SCC in the decreasing order of the edge |
| /// weights. The instantiating GraphT type should have weighted edge type |
| /// declared in its graph traits in order to use this iterator. |
| /// |
| /// This is implemented using Kruskal's minimal spanning tree algorithm followed |
| /// by Kahn's algorithm to compute a topological order on the MST. First a |
| /// maximum spanning tree (forest) is built based on all edges within the SCC |
| /// collection. Then a topological walk is initiated on tree nodes that do not |
| /// have a predecessor and then applied to all nodes of the SCC. Such order |
| /// ensures that high-weighted edges are visited first during the traversal. |
| template <class GraphT, class GT = GraphTraits<GraphT>> |
| class scc_member_iterator { |
| using NodeType = typename GT::NodeType; |
| using EdgeType = typename GT::EdgeType; |
| using NodesType = std::vector<NodeType *>; |
| |
| // Auxilary node information used during the MST calculation. |
| struct NodeInfo { |
| NodeInfo *Group = this; |
| uint32_t Rank = 0; |
| bool Visited = false; |
| DenseSet<const EdgeType *> IncomingMSTEdges; |
| }; |
| |
| // Find the root group of the node and compress the path from node to the |
| // root. |
| NodeInfo *find(NodeInfo *Node) { |
| if (Node->Group != Node) |
| Node->Group = find(Node->Group); |
| return Node->Group; |
| } |
| |
| // Union the source and target node into the same group and return true. |
| // Returns false if they are already in the same group. |
| bool unionGroups(const EdgeType *Edge) { |
| NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]); |
| NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]); |
| |
| // If the edge forms a cycle, do not add it to MST |
| if (G1 == G2) |
| return false; |
| |
| // Make the smaller rank tree a direct child or the root of high rank tree. |
| if (G1->Rank < G1->Rank) |
| G1->Group = G2; |
| else { |
| G2->Group = G1; |
| // If the ranks are the same, increment root of one tree by one. |
| if (G1->Rank == G2->Rank) |
| G2->Rank++; |
| } |
| return true; |
| } |
| |
| std::unordered_map<NodeType *, NodeInfo> NodeInfoMap; |
| NodesType Nodes; |
| |
| public: |
| scc_member_iterator(const NodesType &InputNodes); |
| |
| NodesType &operator*() { return Nodes; } |
| }; |
| |
| template <class GraphT, class GT> |
| scc_member_iterator<GraphT, GT>::scc_member_iterator( |
| const NodesType &InputNodes) { |
| if (InputNodes.size() <= 1) { |
| Nodes = InputNodes; |
| return; |
| } |
| |
| // Initialize auxilary node information. |
| NodeInfoMap.clear(); |
| for (auto *Node : InputNodes) { |
| // This is specifically used to construct a `NodeInfo` object in place. An |
| // insert operation will involve a copy construction which invalidate the |
| // initial value of the `Group` field which should be `this`. |
| (void)NodeInfoMap[Node].Group; |
| } |
| |
| // Sort edges by weights. |
| struct EdgeComparer { |
| bool operator()(const EdgeType *L, const EdgeType *R) const { |
| return L->Weight > R->Weight; |
| } |
| }; |
| |
| std::multiset<const EdgeType *, EdgeComparer> SortedEdges; |
| for (auto *Node : InputNodes) { |
| for (auto &Edge : Node->Edges) { |
| if (NodeInfoMap.count(Edge.Target)) |
| SortedEdges.insert(&Edge); |
| } |
| } |
| |
| // Traverse all the edges and compute the Maximum Weight Spanning Tree |
| // using Kruskal's algorithm. |
| std::unordered_set<const EdgeType *> MSTEdges; |
| for (auto *Edge : SortedEdges) { |
| if (unionGroups(Edge)) |
| MSTEdges.insert(Edge); |
| } |
| |
| // Run Kahn's algorithm on MST to compute a topological traversal order. |
| // The algorithm starts from nodes that have no incoming edge. These nodes are |
| // "roots" of the MST forest. This ensures that nodes are visited before their |
| // descendants are, thus ensures hot edges are processed before cold edges, |
| // based on how MST is computed. |
| std::queue<NodeType *> Queue; |
| for (const auto *Edge : MSTEdges) |
| NodeInfoMap[Edge->Target].IncomingMSTEdges.insert(Edge); |
| |
| // Walk through SortedEdges to initialize the queue, instead of using NodeInfoMap |
| // to ensure an ordered deterministic push. |
| for (auto *Edge : SortedEdges) { |
| if (!NodeInfoMap[Edge->Source].Visited && |
| NodeInfoMap[Edge->Source].IncomingMSTEdges.empty()) { |
| Queue.push(Edge->Source); |
| NodeInfoMap[Edge->Source].Visited = true; |
| } |
| } |
| |
| while (!Queue.empty()) { |
| auto *Node = Queue.front(); |
| Queue.pop(); |
| Nodes.push_back(Node); |
| for (auto &Edge : Node->Edges) { |
| NodeInfoMap[Edge.Target].IncomingMSTEdges.erase(&Edge); |
| if (MSTEdges.count(&Edge) && |
| NodeInfoMap[Edge.Target].IncomingMSTEdges.empty()) { |
| Queue.push(Edge.Target); |
| } |
| } |
| } |
| |
| assert(InputNodes.size() == Nodes.size() && "missing nodes in MST"); |
| std::reverse(Nodes.begin(), Nodes.end()); |
| } |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_SCCITERATOR_H |