| //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file defines the ImutAVLTree and ImmutableSet classes. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_IMMUTABLESET_H |
| #define LLVM_ADT_IMMUTABLESET_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/IntrusiveRefCntPtr.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <new> |
| #include <vector> |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable AVL-Tree Definition. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ImutInfo> class ImutAVLFactory; |
| template <typename ImutInfo> class ImutIntervalAVLFactory; |
| template <typename ImutInfo> class ImutAVLTreeInOrderIterator; |
| template <typename ImutInfo> class ImutAVLTreeGenericIterator; |
| |
| template <typename ImutInfo > |
| class ImutAVLTree { |
| public: |
| using key_type_ref = typename ImutInfo::key_type_ref; |
| using value_type = typename ImutInfo::value_type; |
| using value_type_ref = typename ImutInfo::value_type_ref; |
| using Factory = ImutAVLFactory<ImutInfo>; |
| using iterator = ImutAVLTreeInOrderIterator<ImutInfo>; |
| |
| friend class ImutAVLFactory<ImutInfo>; |
| friend class ImutIntervalAVLFactory<ImutInfo>; |
| friend class ImutAVLTreeGenericIterator<ImutInfo>; |
| |
| //===----------------------------------------------------===// |
| // Public Interface. |
| //===----------------------------------------------------===// |
| |
| /// Return a pointer to the left subtree. This value |
| /// is NULL if there is no left subtree. |
| ImutAVLTree *getLeft() const { return left; } |
| |
| /// Return a pointer to the right subtree. This value is |
| /// NULL if there is no right subtree. |
| ImutAVLTree *getRight() const { return right; } |
| |
| /// getHeight - Returns the height of the tree. A tree with no subtrees |
| /// has a height of 1. |
| unsigned getHeight() const { return height; } |
| |
| /// getValue - Returns the data value associated with the tree node. |
| const value_type& getValue() const { return value; } |
| |
| /// find - Finds the subtree associated with the specified key value. |
| /// This method returns NULL if no matching subtree is found. |
| ImutAVLTree* find(key_type_ref K) { |
| ImutAVLTree *T = this; |
| while (T) { |
| key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); |
| if (ImutInfo::isEqual(K,CurrentKey)) |
| return T; |
| else if (ImutInfo::isLess(K,CurrentKey)) |
| T = T->getLeft(); |
| else |
| T = T->getRight(); |
| } |
| return nullptr; |
| } |
| |
| /// getMaxElement - Find the subtree associated with the highest ranged |
| /// key value. |
| ImutAVLTree* getMaxElement() { |
| ImutAVLTree *T = this; |
| ImutAVLTree *Right = T->getRight(); |
| while (Right) { T = Right; Right = T->getRight(); } |
| return T; |
| } |
| |
| /// size - Returns the number of nodes in the tree, which includes |
| /// both leaves and non-leaf nodes. |
| unsigned size() const { |
| unsigned n = 1; |
| if (const ImutAVLTree* L = getLeft()) |
| n += L->size(); |
| if (const ImutAVLTree* R = getRight()) |
| n += R->size(); |
| return n; |
| } |
| |
| /// begin - Returns an iterator that iterates over the nodes of the tree |
| /// in an inorder traversal. The returned iterator thus refers to the |
| /// the tree node with the minimum data element. |
| iterator begin() const { return iterator(this); } |
| |
| /// end - Returns an iterator for the tree that denotes the end of an |
| /// inorder traversal. |
| iterator end() const { return iterator(); } |
| |
| bool isElementEqual(value_type_ref V) const { |
| // Compare the keys. |
| if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), |
| ImutInfo::KeyOfValue(V))) |
| return false; |
| |
| // Also compare the data values. |
| if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), |
| ImutInfo::DataOfValue(V))) |
| return false; |
| |
| return true; |
| } |
| |
| bool isElementEqual(const ImutAVLTree* RHS) const { |
| return isElementEqual(RHS->getValue()); |
| } |
| |
| /// isEqual - Compares two trees for structural equality and returns true |
| /// if they are equal. This worst case performance of this operation is |
| // linear in the sizes of the trees. |
| bool isEqual(const ImutAVLTree& RHS) const { |
| if (&RHS == this) |
| return true; |
| |
| iterator LItr = begin(), LEnd = end(); |
| iterator RItr = RHS.begin(), REnd = RHS.end(); |
| |
| while (LItr != LEnd && RItr != REnd) { |
| if (&*LItr == &*RItr) { |
| LItr.skipSubTree(); |
| RItr.skipSubTree(); |
| continue; |
| } |
| |
| if (!LItr->isElementEqual(&*RItr)) |
| return false; |
| |
| ++LItr; |
| ++RItr; |
| } |
| |
| return LItr == LEnd && RItr == REnd; |
| } |
| |
| /// isNotEqual - Compares two trees for structural inequality. Performance |
| /// is the same is isEqual. |
| bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } |
| |
| /// contains - Returns true if this tree contains a subtree (node) that |
| /// has an data element that matches the specified key. Complexity |
| /// is logarithmic in the size of the tree. |
| bool contains(key_type_ref K) { return (bool) find(K); } |
| |
| /// validateTree - A utility method that checks that the balancing and |
| /// ordering invariants of the tree are satisfied. It is a recursive |
| /// method that returns the height of the tree, which is then consumed |
| /// by the enclosing validateTree call. External callers should ignore the |
| /// return value. An invalid tree will cause an assertion to fire in |
| /// a debug build. |
| unsigned validateTree() const { |
| unsigned HL = getLeft() ? getLeft()->validateTree() : 0; |
| unsigned HR = getRight() ? getRight()->validateTree() : 0; |
| (void) HL; |
| (void) HR; |
| |
| assert(getHeight() == ( HL > HR ? HL : HR ) + 1 |
| && "Height calculation wrong"); |
| |
| assert((HL > HR ? HL-HR : HR-HL) <= 2 |
| && "Balancing invariant violated"); |
| |
| assert((!getLeft() || |
| ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), |
| ImutInfo::KeyOfValue(getValue()))) && |
| "Value in left child is not less that current value"); |
| |
| assert((!getRight() || |
| ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), |
| ImutInfo::KeyOfValue(getRight()->getValue()))) && |
| "Current value is not less that value of right child"); |
| |
| return getHeight(); |
| } |
| |
| //===----------------------------------------------------===// |
| // Internal values. |
| //===----------------------------------------------------===// |
| |
| private: |
| Factory *factory; |
| ImutAVLTree *left; |
| ImutAVLTree *right; |
| ImutAVLTree *prev = nullptr; |
| ImutAVLTree *next = nullptr; |
| |
| unsigned height : 28; |
| bool IsMutable : 1; |
| bool IsDigestCached : 1; |
| bool IsCanonicalized : 1; |
| |
| value_type value; |
| uint32_t digest = 0; |
| uint32_t refCount = 0; |
| |
| //===----------------------------------------------------===// |
| // Internal methods (node manipulation; used by Factory). |
| //===----------------------------------------------------===// |
| |
| private: |
| /// ImutAVLTree - Internal constructor that is only called by |
| /// ImutAVLFactory. |
| ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, |
| unsigned height) |
| : factory(f), left(l), right(r), height(height), IsMutable(true), |
| IsDigestCached(false), IsCanonicalized(false), value(v) |
| { |
| if (left) left->retain(); |
| if (right) right->retain(); |
| } |
| |
| /// isMutable - Returns true if the left and right subtree references |
| /// (as well as height) can be changed. If this method returns false, |
| /// the tree is truly immutable. Trees returned from an ImutAVLFactory |
| /// object should always have this method return true. Further, if this |
| /// method returns false for an instance of ImutAVLTree, all subtrees |
| /// will also have this method return false. The converse is not true. |
| bool isMutable() const { return IsMutable; } |
| |
| /// hasCachedDigest - Returns true if the digest for this tree is cached. |
| /// This can only be true if the tree is immutable. |
| bool hasCachedDigest() const { return IsDigestCached; } |
| |
| //===----------------------------------------------------===// |
| // Mutating operations. A tree root can be manipulated as |
| // long as its reference has not "escaped" from internal |
| // methods of a factory object (see below). When a tree |
| // pointer is externally viewable by client code, the |
| // internal "mutable bit" is cleared to mark the tree |
| // immutable. Note that a tree that still has its mutable |
| // bit set may have children (subtrees) that are themselves |
| // immutable. |
| //===----------------------------------------------------===// |
| |
| /// markImmutable - Clears the mutable flag for a tree. After this happens, |
| /// it is an error to call setLeft(), setRight(), and setHeight(). |
| void markImmutable() { |
| assert(isMutable() && "Mutable flag already removed."); |
| IsMutable = false; |
| } |
| |
| /// markedCachedDigest - Clears the NoCachedDigest flag for a tree. |
| void markedCachedDigest() { |
| assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); |
| IsDigestCached = true; |
| } |
| |
| /// setHeight - Changes the height of the tree. Used internally by |
| /// ImutAVLFactory. |
| void setHeight(unsigned h) { |
| assert(isMutable() && "Only a mutable tree can have its height changed."); |
| height = h; |
| } |
| |
| static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R, |
| value_type_ref V) { |
| uint32_t digest = 0; |
| |
| if (L) |
| digest += L->computeDigest(); |
| |
| // Compute digest of stored data. |
| FoldingSetNodeID ID; |
| ImutInfo::Profile(ID,V); |
| digest += ID.ComputeHash(); |
| |
| if (R) |
| digest += R->computeDigest(); |
| |
| return digest; |
| } |
| |
| uint32_t computeDigest() { |
| // Check the lowest bit to determine if digest has actually been |
| // pre-computed. |
| if (hasCachedDigest()) |
| return digest; |
| |
| uint32_t X = computeDigest(getLeft(), getRight(), getValue()); |
| digest = X; |
| markedCachedDigest(); |
| return X; |
| } |
| |
| //===----------------------------------------------------===// |
| // Reference count operations. |
| //===----------------------------------------------------===// |
| |
| public: |
| void retain() { ++refCount; } |
| |
| void release() { |
| assert(refCount > 0); |
| if (--refCount == 0) |
| destroy(); |
| } |
| |
| void destroy() { |
| if (left) |
| left->release(); |
| if (right) |
| right->release(); |
| if (IsCanonicalized) { |
| if (next) |
| next->prev = prev; |
| |
| if (prev) |
| prev->next = next; |
| else |
| factory->Cache[factory->maskCacheIndex(computeDigest())] = next; |
| } |
| |
| // We need to clear the mutability bit in case we are |
| // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). |
| IsMutable = false; |
| factory->freeNodes.push_back(this); |
| } |
| }; |
| |
| template <typename ImutInfo> |
| struct IntrusiveRefCntPtrInfo<ImutAVLTree<ImutInfo>> { |
| static void retain(ImutAVLTree<ImutInfo> *Tree) { Tree->retain(); } |
| static void release(ImutAVLTree<ImutInfo> *Tree) { Tree->release(); } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable AVL-Tree Factory class. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ImutInfo > |
| class ImutAVLFactory { |
| friend class ImutAVLTree<ImutInfo>; |
| |
| using TreeTy = ImutAVLTree<ImutInfo>; |
| using value_type_ref = typename TreeTy::value_type_ref; |
| using key_type_ref = typename TreeTy::key_type_ref; |
| using CacheTy = DenseMap<unsigned, TreeTy*>; |
| |
| CacheTy Cache; |
| uintptr_t Allocator; |
| std::vector<TreeTy*> createdNodes; |
| std::vector<TreeTy*> freeNodes; |
| |
| bool ownsAllocator() const { |
| return (Allocator & 0x1) == 0; |
| } |
| |
| BumpPtrAllocator& getAllocator() const { |
| return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); |
| } |
| |
| //===--------------------------------------------------===// |
| // Public interface. |
| //===--------------------------------------------------===// |
| |
| public: |
| ImutAVLFactory() |
| : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} |
| |
| ImutAVLFactory(BumpPtrAllocator& Alloc) |
| : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} |
| |
| ~ImutAVLFactory() { |
| if (ownsAllocator()) delete &getAllocator(); |
| } |
| |
| TreeTy* add(TreeTy* T, value_type_ref V) { |
| T = add_internal(V,T); |
| markImmutable(T); |
| recoverNodes(); |
| return T; |
| } |
| |
| TreeTy* remove(TreeTy* T, key_type_ref V) { |
| T = remove_internal(V,T); |
| markImmutable(T); |
| recoverNodes(); |
| return T; |
| } |
| |
| TreeTy* getEmptyTree() const { return nullptr; } |
| |
| protected: |
| //===--------------------------------------------------===// |
| // A bunch of quick helper functions used for reasoning |
| // about the properties of trees and their children. |
| // These have succinct names so that the balancing code |
| // is as terse (and readable) as possible. |
| //===--------------------------------------------------===// |
| |
| bool isEmpty(TreeTy* T) const { return !T; } |
| unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } |
| TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } |
| TreeTy* getRight(TreeTy* T) const { return T->getRight(); } |
| value_type_ref getValue(TreeTy* T) const { return T->value; } |
| |
| // Make sure the index is not the Tombstone or Entry key of the DenseMap. |
| static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); } |
| |
| unsigned incrementHeight(TreeTy* L, TreeTy* R) const { |
| unsigned hl = getHeight(L); |
| unsigned hr = getHeight(R); |
| return (hl > hr ? hl : hr) + 1; |
| } |
| |
| static bool compareTreeWithSection(TreeTy* T, |
| typename TreeTy::iterator& TI, |
| typename TreeTy::iterator& TE) { |
| typename TreeTy::iterator I = T->begin(), E = T->end(); |
| for ( ; I!=E ; ++I, ++TI) { |
| if (TI == TE || !I->isElementEqual(&*TI)) |
| return false; |
| } |
| return true; |
| } |
| |
| //===--------------------------------------------------===// |
| // "createNode" is used to generate new tree roots that link |
| // to other trees. The function may also simply move links |
| // in an existing root if that root is still marked mutable. |
| // This is necessary because otherwise our balancing code |
| // would leak memory as it would create nodes that are |
| // then discarded later before the finished tree is |
| // returned to the caller. |
| //===--------------------------------------------------===// |
| |
| TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { |
| BumpPtrAllocator& A = getAllocator(); |
| TreeTy* T; |
| if (!freeNodes.empty()) { |
| T = freeNodes.back(); |
| freeNodes.pop_back(); |
| assert(T != L); |
| assert(T != R); |
| } else { |
| T = (TreeTy*) A.Allocate<TreeTy>(); |
| } |
| new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); |
| createdNodes.push_back(T); |
| return T; |
| } |
| |
| TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { |
| return createNode(newLeft, getValue(oldTree), newRight); |
| } |
| |
| void recoverNodes() { |
| for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { |
| TreeTy *N = createdNodes[i]; |
| if (N->isMutable() && N->refCount == 0) |
| N->destroy(); |
| } |
| createdNodes.clear(); |
| } |
| |
| /// balanceTree - Used by add_internal and remove_internal to |
| /// balance a newly created tree. |
| TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { |
| unsigned hl = getHeight(L); |
| unsigned hr = getHeight(R); |
| |
| if (hl > hr + 2) { |
| assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2"); |
| |
| TreeTy *LL = getLeft(L); |
| TreeTy *LR = getRight(L); |
| |
| if (getHeight(LL) >= getHeight(LR)) |
| return createNode(LL, L, createNode(LR,V,R)); |
| |
| assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1"); |
| |
| TreeTy *LRL = getLeft(LR); |
| TreeTy *LRR = getRight(LR); |
| |
| return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); |
| } |
| |
| if (hr > hl + 2) { |
| assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2"); |
| |
| TreeTy *RL = getLeft(R); |
| TreeTy *RR = getRight(R); |
| |
| if (getHeight(RR) >= getHeight(RL)) |
| return createNode(createNode(L,V,RL), R, RR); |
| |
| assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1"); |
| |
| TreeTy *RLL = getLeft(RL); |
| TreeTy *RLR = getRight(RL); |
| |
| return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); |
| } |
| |
| return createNode(L,V,R); |
| } |
| |
| /// add_internal - Creates a new tree that includes the specified |
| /// data and the data from the original tree. If the original tree |
| /// already contained the data item, the original tree is returned. |
| TreeTy* add_internal(value_type_ref V, TreeTy* T) { |
| if (isEmpty(T)) |
| return createNode(T, V, T); |
| assert(!T->isMutable()); |
| |
| key_type_ref K = ImutInfo::KeyOfValue(V); |
| key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); |
| |
| if (ImutInfo::isEqual(K,KCurrent)) |
| return createNode(getLeft(T), V, getRight(T)); |
| else if (ImutInfo::isLess(K,KCurrent)) |
| return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); |
| else |
| return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); |
| } |
| |
| /// remove_internal - Creates a new tree that includes all the data |
| /// from the original tree except the specified data. If the |
| /// specified data did not exist in the original tree, the original |
| /// tree is returned. |
| TreeTy* remove_internal(key_type_ref K, TreeTy* T) { |
| if (isEmpty(T)) |
| return T; |
| |
| assert(!T->isMutable()); |
| |
| key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); |
| |
| if (ImutInfo::isEqual(K,KCurrent)) { |
| return combineTrees(getLeft(T), getRight(T)); |
| } else if (ImutInfo::isLess(K,KCurrent)) { |
| return balanceTree(remove_internal(K, getLeft(T)), |
| getValue(T), getRight(T)); |
| } else { |
| return balanceTree(getLeft(T), getValue(T), |
| remove_internal(K, getRight(T))); |
| } |
| } |
| |
| TreeTy* combineTrees(TreeTy* L, TreeTy* R) { |
| if (isEmpty(L)) |
| return R; |
| if (isEmpty(R)) |
| return L; |
| TreeTy* OldNode; |
| TreeTy* newRight = removeMinBinding(R,OldNode); |
| return balanceTree(L, getValue(OldNode), newRight); |
| } |
| |
| TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { |
| assert(!isEmpty(T)); |
| if (isEmpty(getLeft(T))) { |
| Noderemoved = T; |
| return getRight(T); |
| } |
| return balanceTree(removeMinBinding(getLeft(T), Noderemoved), |
| getValue(T), getRight(T)); |
| } |
| |
| /// markImmutable - Clears the mutable bits of a root and all of its |
| /// descendants. |
| void markImmutable(TreeTy* T) { |
| if (!T || !T->isMutable()) |
| return; |
| T->markImmutable(); |
| markImmutable(getLeft(T)); |
| markImmutable(getRight(T)); |
| } |
| |
| public: |
| TreeTy *getCanonicalTree(TreeTy *TNew) { |
| if (!TNew) |
| return nullptr; |
| |
| if (TNew->IsCanonicalized) |
| return TNew; |
| |
| // Search the hashtable for another tree with the same digest, and |
| // if find a collision compare those trees by their contents. |
| unsigned digest = TNew->computeDigest(); |
| TreeTy *&entry = Cache[maskCacheIndex(digest)]; |
| do { |
| if (!entry) |
| break; |
| for (TreeTy *T = entry ; T != nullptr; T = T->next) { |
| // Compare the Contents('T') with Contents('TNew') |
| typename TreeTy::iterator TI = T->begin(), TE = T->end(); |
| if (!compareTreeWithSection(TNew, TI, TE)) |
| continue; |
| if (TI != TE) |
| continue; // T has more contents than TNew. |
| // Trees did match! Return 'T'. |
| if (TNew->refCount == 0) |
| TNew->destroy(); |
| return T; |
| } |
| entry->prev = TNew; |
| TNew->next = entry; |
| } |
| while (false); |
| |
| entry = TNew; |
| TNew->IsCanonicalized = true; |
| return TNew; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable AVL-Tree Iterators. |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ImutInfo> class ImutAVLTreeGenericIterator { |
| SmallVector<uintptr_t,20> stack; |
| |
| public: |
| using iterator_category = std::bidirectional_iterator_tag; |
| using value_type = ImutAVLTree<ImutInfo>; |
| using difference_type = std::ptrdiff_t; |
| using pointer = value_type *; |
| using reference = value_type &; |
| |
| enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, |
| Flags=0x3 }; |
| |
| using TreeTy = ImutAVLTree<ImutInfo>; |
| |
| ImutAVLTreeGenericIterator() = default; |
| ImutAVLTreeGenericIterator(const TreeTy *Root) { |
| if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); |
| } |
| |
| TreeTy &operator*() const { |
| assert(!stack.empty()); |
| return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags); |
| } |
| TreeTy *operator->() const { return &*this; } |
| |
| uintptr_t getVisitState() const { |
| assert(!stack.empty()); |
| return stack.back() & Flags; |
| } |
| |
| bool atEnd() const { return stack.empty(); } |
| |
| bool atBeginning() const { |
| return stack.size() == 1 && getVisitState() == VisitedNone; |
| } |
| |
| void skipToParent() { |
| assert(!stack.empty()); |
| stack.pop_back(); |
| if (stack.empty()) |
| return; |
| switch (getVisitState()) { |
| case VisitedNone: |
| stack.back() |= VisitedLeft; |
| break; |
| case VisitedLeft: |
| stack.back() |= VisitedRight; |
| break; |
| default: |
| llvm_unreachable("Unreachable."); |
| } |
| } |
| |
| bool operator==(const ImutAVLTreeGenericIterator &x) const { |
| return stack == x.stack; |
| } |
| |
| bool operator!=(const ImutAVLTreeGenericIterator &x) const { |
| return !(*this == x); |
| } |
| |
| ImutAVLTreeGenericIterator &operator++() { |
| assert(!stack.empty()); |
| TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| assert(Current); |
| switch (getVisitState()) { |
| case VisitedNone: |
| if (TreeTy* L = Current->getLeft()) |
| stack.push_back(reinterpret_cast<uintptr_t>(L)); |
| else |
| stack.back() |= VisitedLeft; |
| break; |
| case VisitedLeft: |
| if (TreeTy* R = Current->getRight()) |
| stack.push_back(reinterpret_cast<uintptr_t>(R)); |
| else |
| stack.back() |= VisitedRight; |
| break; |
| case VisitedRight: |
| skipToParent(); |
| break; |
| default: |
| llvm_unreachable("Unreachable."); |
| } |
| return *this; |
| } |
| |
| ImutAVLTreeGenericIterator &operator--() { |
| assert(!stack.empty()); |
| TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| assert(Current); |
| switch (getVisitState()) { |
| case VisitedNone: |
| stack.pop_back(); |
| break; |
| case VisitedLeft: |
| stack.back() &= ~Flags; // Set state to "VisitedNone." |
| if (TreeTy* L = Current->getLeft()) |
| stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); |
| break; |
| case VisitedRight: |
| stack.back() &= ~Flags; |
| stack.back() |= VisitedLeft; |
| if (TreeTy* R = Current->getRight()) |
| stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); |
| break; |
| default: |
| llvm_unreachable("Unreachable."); |
| } |
| return *this; |
| } |
| }; |
| |
| template <typename ImutInfo> class ImutAVLTreeInOrderIterator { |
| using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>; |
| |
| InternalIteratorTy InternalItr; |
| |
| public: |
| using iterator_category = std::bidirectional_iterator_tag; |
| using value_type = ImutAVLTree<ImutInfo>; |
| using difference_type = std::ptrdiff_t; |
| using pointer = value_type *; |
| using reference = value_type &; |
| |
| using TreeTy = ImutAVLTree<ImutInfo>; |
| |
| ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { |
| if (Root) |
| ++*this; // Advance to first element. |
| } |
| |
| ImutAVLTreeInOrderIterator() : InternalItr() {} |
| |
| bool operator==(const ImutAVLTreeInOrderIterator &x) const { |
| return InternalItr == x.InternalItr; |
| } |
| |
| bool operator!=(const ImutAVLTreeInOrderIterator &x) const { |
| return !(*this == x); |
| } |
| |
| TreeTy &operator*() const { return *InternalItr; } |
| TreeTy *operator->() const { return &*InternalItr; } |
| |
| ImutAVLTreeInOrderIterator &operator++() { |
| do ++InternalItr; |
| while (!InternalItr.atEnd() && |
| InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); |
| |
| return *this; |
| } |
| |
| ImutAVLTreeInOrderIterator &operator--() { |
| do --InternalItr; |
| while (!InternalItr.atBeginning() && |
| InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); |
| |
| return *this; |
| } |
| |
| void skipSubTree() { |
| InternalItr.skipToParent(); |
| |
| while (!InternalItr.atEnd() && |
| InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) |
| ++InternalItr; |
| } |
| }; |
| |
| /// Generic iterator that wraps a T::TreeTy::iterator and exposes |
| /// iterator::getValue() on dereference. |
| template <typename T> |
| struct ImutAVLValueIterator |
| : iterator_adaptor_base< |
| ImutAVLValueIterator<T>, typename T::TreeTy::iterator, |
| typename std::iterator_traits< |
| typename T::TreeTy::iterator>::iterator_category, |
| const typename T::value_type> { |
| ImutAVLValueIterator() = default; |
| explicit ImutAVLValueIterator(typename T::TreeTy *Tree) |
| : ImutAVLValueIterator::iterator_adaptor_base(Tree) {} |
| |
| typename ImutAVLValueIterator::reference operator*() const { |
| return this->I->getValue(); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Trait classes for Profile information. |
| //===----------------------------------------------------------------------===// |
| |
| /// Generic profile template. The default behavior is to invoke the |
| /// profile method of an object. Specializations for primitive integers |
| /// and generic handling of pointers is done below. |
| template <typename T> |
| struct ImutProfileInfo { |
| using value_type = const T; |
| using value_type_ref = const T&; |
| |
| static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| FoldingSetTrait<T>::Profile(X,ID); |
| } |
| }; |
| |
| /// Profile traits for integers. |
| template <typename T> |
| struct ImutProfileInteger { |
| using value_type = const T; |
| using value_type_ref = const T&; |
| |
| static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| ID.AddInteger(X); |
| } |
| }; |
| |
| #define PROFILE_INTEGER_INFO(X)\ |
| template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {}; |
| |
| PROFILE_INTEGER_INFO(char) |
| PROFILE_INTEGER_INFO(unsigned char) |
| PROFILE_INTEGER_INFO(short) |
| PROFILE_INTEGER_INFO(unsigned short) |
| PROFILE_INTEGER_INFO(unsigned) |
| PROFILE_INTEGER_INFO(signed) |
| PROFILE_INTEGER_INFO(long) |
| PROFILE_INTEGER_INFO(unsigned long) |
| PROFILE_INTEGER_INFO(long long) |
| PROFILE_INTEGER_INFO(unsigned long long) |
| |
| #undef PROFILE_INTEGER_INFO |
| |
| /// Profile traits for booleans. |
| template <> |
| struct ImutProfileInfo<bool> { |
| using value_type = const bool; |
| using value_type_ref = const bool&; |
| |
| static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| ID.AddBoolean(X); |
| } |
| }; |
| |
| /// Generic profile trait for pointer types. We treat pointers as |
| /// references to unique objects. |
| template <typename T> |
| struct ImutProfileInfo<T*> { |
| using value_type = const T*; |
| using value_type_ref = value_type; |
| |
| static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| ID.AddPointer(X); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Trait classes that contain element comparison operators and type |
| // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These |
| // inherit from the profile traits (ImutProfileInfo) to include operations |
| // for element profiling. |
| //===----------------------------------------------------------------------===// |
| |
| /// ImutContainerInfo - Generic definition of comparison operations for |
| /// elements of immutable containers that defaults to using |
| /// std::equal_to<> and std::less<> to perform comparison of elements. |
| template <typename T> |
| struct ImutContainerInfo : public ImutProfileInfo<T> { |
| using value_type = typename ImutProfileInfo<T>::value_type; |
| using value_type_ref = typename ImutProfileInfo<T>::value_type_ref; |
| using key_type = value_type; |
| using key_type_ref = value_type_ref; |
| using data_type = bool; |
| using data_type_ref = bool; |
| |
| static key_type_ref KeyOfValue(value_type_ref D) { return D; } |
| static data_type_ref DataOfValue(value_type_ref) { return true; } |
| |
| static bool isEqual(key_type_ref LHS, key_type_ref RHS) { |
| return std::equal_to<key_type>()(LHS,RHS); |
| } |
| |
| static bool isLess(key_type_ref LHS, key_type_ref RHS) { |
| return std::less<key_type>()(LHS,RHS); |
| } |
| |
| static bool isDataEqual(data_type_ref, data_type_ref) { return true; } |
| }; |
| |
| /// ImutContainerInfo - Specialization for pointer values to treat pointers |
| /// as references to unique objects. Pointers are thus compared by |
| /// their addresses. |
| template <typename T> |
| struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { |
| using value_type = typename ImutProfileInfo<T*>::value_type; |
| using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref; |
| using key_type = value_type; |
| using key_type_ref = value_type_ref; |
| using data_type = bool; |
| using data_type_ref = bool; |
| |
| static key_type_ref KeyOfValue(value_type_ref D) { return D; } |
| static data_type_ref DataOfValue(value_type_ref) { return true; } |
| |
| static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } |
| |
| static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } |
| |
| static bool isDataEqual(data_type_ref, data_type_ref) { return true; } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Immutable Set |
| //===----------------------------------------------------------------------===// |
| |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> |
| class ImmutableSet { |
| public: |
| using value_type = typename ValInfo::value_type; |
| using value_type_ref = typename ValInfo::value_type_ref; |
| using TreeTy = ImutAVLTree<ValInfo>; |
| |
| private: |
| IntrusiveRefCntPtr<TreeTy> Root; |
| |
| public: |
| /// Constructs a set from a pointer to a tree root. In general one |
| /// should use a Factory object to create sets instead of directly |
| /// invoking the constructor, but there are cases where make this |
| /// constructor public is useful. |
| explicit ImmutableSet(TreeTy *R) : Root(R) {} |
| |
| class Factory { |
| typename TreeTy::Factory F; |
| const bool Canonicalize; |
| |
| public: |
| Factory(bool canonicalize = true) |
| : Canonicalize(canonicalize) {} |
| |
| Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) |
| : F(Alloc), Canonicalize(canonicalize) {} |
| |
| Factory(const Factory& RHS) = delete; |
| void operator=(const Factory& RHS) = delete; |
| |
| /// getEmptySet - Returns an immutable set that contains no elements. |
| ImmutableSet getEmptySet() { |
| return ImmutableSet(F.getEmptyTree()); |
| } |
| |
| /// add - Creates a new immutable set that contains all of the values |
| /// of the original set with the addition of the specified value. If |
| /// the original set already included the value, then the original set is |
| /// returned and no memory is allocated. The time and space complexity |
| /// of this operation is logarithmic in the size of the original set. |
| /// The memory allocated to represent the set is released when the |
| /// factory object that created the set is destroyed. |
| [[nodiscard]] ImmutableSet add(ImmutableSet Old, value_type_ref V) { |
| TreeTy *NewT = F.add(Old.Root.get(), V); |
| return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); |
| } |
| |
| /// remove - Creates a new immutable set that contains all of the values |
| /// of the original set with the exception of the specified value. If |
| /// the original set did not contain the value, the original set is |
| /// returned and no memory is allocated. The time and space complexity |
| /// of this operation is logarithmic in the size of the original set. |
| /// The memory allocated to represent the set is released when the |
| /// factory object that created the set is destroyed. |
| [[nodiscard]] ImmutableSet remove(ImmutableSet Old, value_type_ref V) { |
| TreeTy *NewT = F.remove(Old.Root.get(), V); |
| return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); |
| } |
| |
| BumpPtrAllocator& getAllocator() { return F.getAllocator(); } |
| |
| typename TreeTy::Factory *getTreeFactory() const { |
| return const_cast<typename TreeTy::Factory *>(&F); |
| } |
| }; |
| |
| friend class Factory; |
| |
| /// Returns true if the set contains the specified value. |
| bool contains(value_type_ref V) const { |
| return Root ? Root->contains(V) : false; |
| } |
| |
| bool operator==(const ImmutableSet &RHS) const { |
| return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; |
| } |
| |
| bool operator!=(const ImmutableSet &RHS) const { |
| return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) |
| : Root != RHS.Root; |
| } |
| |
| TreeTy *getRoot() { |
| if (Root) { Root->retain(); } |
| return Root.get(); |
| } |
| |
| TreeTy *getRootWithoutRetain() const { return Root.get(); } |
| |
| /// isEmpty - Return true if the set contains no elements. |
| bool isEmpty() const { return !Root; } |
| |
| /// isSingleton - Return true if the set contains exactly one element. |
| /// This method runs in constant time. |
| bool isSingleton() const { return getHeight() == 1; } |
| |
| //===--------------------------------------------------===// |
| // Iterators. |
| //===--------------------------------------------------===// |
| |
| using iterator = ImutAVLValueIterator<ImmutableSet>; |
| |
| iterator begin() const { return iterator(Root.get()); } |
| iterator end() const { return iterator(); } |
| |
| //===--------------------------------------------------===// |
| // Utility methods. |
| //===--------------------------------------------------===// |
| |
| unsigned getHeight() const { return Root ? Root->getHeight() : 0; } |
| |
| static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) { |
| ID.AddPointer(S.Root.get()); |
| } |
| |
| void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } |
| |
| //===--------------------------------------------------===// |
| // For testing. |
| //===--------------------------------------------------===// |
| |
| void validateTree() const { if (Root) Root->validateTree(); } |
| }; |
| |
| // NOTE: This may some day replace the current ImmutableSet. |
| template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> |
| class ImmutableSetRef { |
| public: |
| using value_type = typename ValInfo::value_type; |
| using value_type_ref = typename ValInfo::value_type_ref; |
| using TreeTy = ImutAVLTree<ValInfo>; |
| using FactoryTy = typename TreeTy::Factory; |
| |
| private: |
| IntrusiveRefCntPtr<TreeTy> Root; |
| FactoryTy *Factory; |
| |
| public: |
| /// Constructs a set from a pointer to a tree root. In general one |
| /// should use a Factory object to create sets instead of directly |
| /// invoking the constructor, but there are cases where make this |
| /// constructor public is useful. |
| ImmutableSetRef(TreeTy *R, FactoryTy *F) : Root(R), Factory(F) {} |
| |
| static ImmutableSetRef getEmptySet(FactoryTy *F) { |
| return ImmutableSetRef(0, F); |
| } |
| |
| ImmutableSetRef add(value_type_ref V) { |
| return ImmutableSetRef(Factory->add(Root.get(), V), Factory); |
| } |
| |
| ImmutableSetRef remove(value_type_ref V) { |
| return ImmutableSetRef(Factory->remove(Root.get(), V), Factory); |
| } |
| |
| /// Returns true if the set contains the specified value. |
| bool contains(value_type_ref V) const { |
| return Root ? Root->contains(V) : false; |
| } |
| |
| ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const { |
| return ImmutableSet<ValT>( |
| canonicalize ? Factory->getCanonicalTree(Root.get()) : Root.get()); |
| } |
| |
| TreeTy *getRootWithoutRetain() const { return Root.get(); } |
| |
| bool operator==(const ImmutableSetRef &RHS) const { |
| return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; |
| } |
| |
| bool operator!=(const ImmutableSetRef &RHS) const { |
| return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) |
| : Root != RHS.Root; |
| } |
| |
| /// isEmpty - Return true if the set contains no elements. |
| bool isEmpty() const { return !Root; } |
| |
| /// isSingleton - Return true if the set contains exactly one element. |
| /// This method runs in constant time. |
| bool isSingleton() const { return getHeight() == 1; } |
| |
| //===--------------------------------------------------===// |
| // Iterators. |
| //===--------------------------------------------------===// |
| |
| using iterator = ImutAVLValueIterator<ImmutableSetRef>; |
| |
| iterator begin() const { return iterator(Root.get()); } |
| iterator end() const { return iterator(); } |
| |
| //===--------------------------------------------------===// |
| // Utility methods. |
| //===--------------------------------------------------===// |
| |
| unsigned getHeight() const { return Root ? Root->getHeight() : 0; } |
| |
| static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) { |
| ID.AddPointer(S.Root.get()); |
| } |
| |
| void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } |
| |
| //===--------------------------------------------------===// |
| // For testing. |
| //===--------------------------------------------------===// |
| |
| void validateTree() const { if (Root) Root->validateTree(); } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_IMMUTABLESET_H |