| //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// Generic implementation of equivalence classes through the use Tarjan's |
| /// efficient union-find algorithm. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_EQUIVALENCECLASSES_H |
| #define LLVM_ADT_EQUIVALENCECLASSES_H |
| |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <set> |
| |
| namespace llvm { |
| |
| /// EquivalenceClasses - This represents a collection of equivalence classes and |
| /// supports three efficient operations: insert an element into a class of its |
| /// own, union two classes, and find the class for a given element. In |
| /// addition to these modification methods, it is possible to iterate over all |
| /// of the equivalence classes and all of the elements in a class. |
| /// |
| /// This implementation is an efficient implementation that only stores one copy |
| /// of the element being indexed per entry in the set, and allows any arbitrary |
| /// type to be indexed (as long as it can be ordered with operator< or a |
| /// comparator is provided). |
| /// |
| /// Here is a simple example using integers: |
| /// |
| /// \code |
| /// EquivalenceClasses<int> EC; |
| /// EC.unionSets(1, 2); // insert 1, 2 into the same set |
| /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets |
| /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. |
| /// |
| /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); |
| /// I != E; ++I) { // Iterate over all of the equivalence sets. |
| /// if (!I->isLeader()) continue; // Ignore non-leader sets. |
| /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); |
| /// MI != EC.member_end(); ++MI) // Loop over members in this set. |
| /// cerr << *MI << " "; // Print member. |
| /// cerr << "\n"; // Finish set. |
| /// } |
| /// \endcode |
| /// |
| /// This example prints: |
| /// 4 |
| /// 5 1 2 |
| /// |
| template <class ElemTy, class Compare = std::less<ElemTy>> |
| class EquivalenceClasses { |
| /// ECValue - The EquivalenceClasses data structure is just a set of these. |
| /// Each of these represents a relation for a value. First it stores the |
| /// value itself, which provides the ordering that the set queries. Next, it |
| /// provides a "next pointer", which is used to enumerate all of the elements |
| /// in the unioned set. Finally, it defines either a "end of list pointer" or |
| /// "leader pointer" depending on whether the value itself is a leader. A |
| /// "leader pointer" points to the node that is the leader for this element, |
| /// if the node is not a leader. A "end of list pointer" points to the last |
| /// node in the list of members of this list. Whether or not a node is a |
| /// leader is determined by a bit stolen from one of the pointers. |
| class ECValue { |
| friend class EquivalenceClasses; |
| |
| mutable const ECValue *Leader, *Next; |
| ElemTy Data; |
| |
| // ECValue ctor - Start out with EndOfList pointing to this node, Next is |
| // Null, isLeader = true. |
| ECValue(const ElemTy &Elt) |
| : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} |
| |
| const ECValue *getLeader() const { |
| if (isLeader()) return this; |
| if (Leader->isLeader()) return Leader; |
| // Path compression. |
| return Leader = Leader->getLeader(); |
| } |
| |
| const ECValue *getEndOfList() const { |
| assert(isLeader() && "Cannot get the end of a list for a non-leader!"); |
| return Leader; |
| } |
| |
| void setNext(const ECValue *NewNext) const { |
| assert(getNext() == nullptr && "Already has a next pointer!"); |
| Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); |
| } |
| |
| public: |
| ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), |
| Data(RHS.Data) { |
| // Only support copying of singleton nodes. |
| assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!"); |
| } |
| |
| bool isLeader() const { return (intptr_t)Next & 1; } |
| const ElemTy &getData() const { return Data; } |
| |
| const ECValue *getNext() const { |
| return (ECValue*)((intptr_t)Next & ~(intptr_t)1); |
| } |
| }; |
| |
| /// A wrapper of the comparator, to be passed to the set. |
| struct ECValueComparator { |
| using is_transparent = void; |
| |
| ECValueComparator() : compare(Compare()) {} |
| |
| bool operator()(const ECValue &lhs, const ECValue &rhs) const { |
| return compare(lhs.Data, rhs.Data); |
| } |
| |
| template <typename T> |
| bool operator()(const T &lhs, const ECValue &rhs) const { |
| return compare(lhs, rhs.Data); |
| } |
| |
| template <typename T> |
| bool operator()(const ECValue &lhs, const T &rhs) const { |
| return compare(lhs.Data, rhs); |
| } |
| |
| const Compare compare; |
| }; |
| |
| /// TheMapping - This implicitly provides a mapping from ElemTy values to the |
| /// ECValues, it just keeps the key as part of the value. |
| std::set<ECValue, ECValueComparator> TheMapping; |
| |
| public: |
| EquivalenceClasses() = default; |
| EquivalenceClasses(const EquivalenceClasses &RHS) { |
| operator=(RHS); |
| } |
| |
| const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { |
| TheMapping.clear(); |
| for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) |
| if (I->isLeader()) { |
| member_iterator MI = RHS.member_begin(I); |
| member_iterator LeaderIt = member_begin(insert(*MI)); |
| for (++MI; MI != member_end(); ++MI) |
| unionSets(LeaderIt, member_begin(insert(*MI))); |
| } |
| return *this; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Inspection methods |
| // |
| |
| /// iterator* - Provides a way to iterate over all values in the set. |
| using iterator = |
| typename std::set<ECValue, ECValueComparator>::const_iterator; |
| |
| iterator begin() const { return TheMapping.begin(); } |
| iterator end() const { return TheMapping.end(); } |
| |
| bool empty() const { return TheMapping.empty(); } |
| |
| /// member_* Iterate over the members of an equivalence class. |
| class member_iterator; |
| member_iterator member_begin(iterator I) const { |
| // Only leaders provide anything to iterate over. |
| return member_iterator(I->isLeader() ? &*I : nullptr); |
| } |
| member_iterator member_end() const { |
| return member_iterator(nullptr); |
| } |
| |
| /// findValue - Return an iterator to the specified value. If it does not |
| /// exist, end() is returned. |
| iterator findValue(const ElemTy &V) const { |
| return TheMapping.find(V); |
| } |
| |
| /// getLeaderValue - Return the leader for the specified value that is in the |
| /// set. It is an error to call this method for a value that is not yet in |
| /// the set. For that, call getOrInsertLeaderValue(V). |
| const ElemTy &getLeaderValue(const ElemTy &V) const { |
| member_iterator MI = findLeader(V); |
| assert(MI != member_end() && "Value is not in the set!"); |
| return *MI; |
| } |
| |
| /// getOrInsertLeaderValue - Return the leader for the specified value that is |
| /// in the set. If the member is not in the set, it is inserted, then |
| /// returned. |
| const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { |
| member_iterator MI = findLeader(insert(V)); |
| assert(MI != member_end() && "Value is not in the set!"); |
| return *MI; |
| } |
| |
| /// getNumClasses - Return the number of equivalence classes in this set. |
| /// Note that this is a linear time operation. |
| unsigned getNumClasses() const { |
| unsigned NC = 0; |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| if (I->isLeader()) ++NC; |
| return NC; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Mutation methods |
| |
| /// insert - Insert a new value into the union/find set, ignoring the request |
| /// if the value already exists. |
| iterator insert(const ElemTy &Data) { |
| return TheMapping.insert(ECValue(Data)).first; |
| } |
| |
| /// findLeader - Given a value in the set, return a member iterator for the |
| /// equivalence class it is in. This does the path-compression part that |
| /// makes union-find "union findy". This returns an end iterator if the value |
| /// is not in the equivalence class. |
| member_iterator findLeader(iterator I) const { |
| if (I == TheMapping.end()) return member_end(); |
| return member_iterator(I->getLeader()); |
| } |
| member_iterator findLeader(const ElemTy &V) const { |
| return findLeader(TheMapping.find(V)); |
| } |
| |
| /// union - Merge the two equivalence sets for the specified values, inserting |
| /// them if they do not already exist in the equivalence set. |
| member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { |
| iterator V1I = insert(V1), V2I = insert(V2); |
| return unionSets(findLeader(V1I), findLeader(V2I)); |
| } |
| member_iterator unionSets(member_iterator L1, member_iterator L2) { |
| assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!"); |
| if (L1 == L2) return L1; // Unifying the same two sets, noop. |
| |
| // Otherwise, this is a real union operation. Set the end of the L1 list to |
| // point to the L2 leader node. |
| const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; |
| L1LV.getEndOfList()->setNext(&L2LV); |
| |
| // Update L1LV's end of list pointer. |
| L1LV.Leader = L2LV.getEndOfList(); |
| |
| // Clear L2's leader flag: |
| L2LV.Next = L2LV.getNext(); |
| |
| // L2's leader is now L1. |
| L2LV.Leader = &L1LV; |
| return L1; |
| } |
| |
| // isEquivalent - Return true if V1 is equivalent to V2. This can happen if |
| // V1 is equal to V2 or if they belong to one equivalence class. |
| bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const { |
| // Fast path: any element is equivalent to itself. |
| if (V1 == V2) |
| return true; |
| auto It = findLeader(V1); |
| return It != member_end() && It == findLeader(V2); |
| } |
| |
| class member_iterator { |
| friend class EquivalenceClasses; |
| |
| const ECValue *Node; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = const ElemTy; |
| using size_type = std::size_t; |
| using difference_type = std::ptrdiff_t; |
| using pointer = value_type *; |
| using reference = value_type &; |
| |
| explicit member_iterator() = default; |
| explicit member_iterator(const ECValue *N) : Node(N) {} |
| |
| reference operator*() const { |
| assert(Node != nullptr && "Dereferencing end()!"); |
| return Node->getData(); |
| } |
| pointer operator->() const { return &operator*(); } |
| |
| member_iterator &operator++() { |
| assert(Node != nullptr && "++'d off the end of the list!"); |
| Node = Node->getNext(); |
| return *this; |
| } |
| |
| member_iterator operator++(int) { // postincrement operators. |
| member_iterator tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| |
| bool operator==(const member_iterator &RHS) const { |
| return Node == RHS.Node; |
| } |
| bool operator!=(const member_iterator &RHS) const { |
| return Node != RHS.Node; |
| } |
| }; |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_EQUIVALENCECLASSES_H |