| //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements methods to test, set and extract typed bits from packed |
| /// unsigned integers. |
| /// |
| /// Why not C++ bitfields? |
| /// ---------------------- |
| /// C++ bitfields do not offer control over the bit layout nor consistent |
| /// behavior when it comes to out of range values. |
| /// For instance, the layout is implementation defined and adjacent bits may be |
| /// packed together but are not required to. This is problematic when storage is |
| /// sparse and data must be stored in a particular integer type. |
| /// |
| /// The methods provided in this file ensure precise control over the |
| /// layout/storage as well as protection against out of range values. |
| /// |
| /// Usage example |
| /// ------------- |
| /// \code{.cpp} |
| /// uint8_t Storage = 0; |
| /// |
| /// // Store and retrieve a single bit as bool. |
| /// using Bool = Bitfield::Element<bool, 0, 1>; |
| /// Bitfield::set<Bool>(Storage, true); |
| /// EXPECT_EQ(Storage, 0b00000001); |
| /// // ^ |
| /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
| /// |
| /// // Store and retrieve a 2 bit typed enum. |
| /// // Note: enum underlying type must be unsigned. |
| /// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES }; |
| /// // Note: enum maximum value needs to be passed in as last parameter. |
| /// using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>; |
| /// Bitfield::set<Suit>(Storage, SuitEnum::HEARTS); |
| /// EXPECT_EQ(Storage, 0b00000101); |
| /// // ^^ |
| /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS); |
| /// |
| /// // Store and retrieve a 5 bit value as unsigned. |
| /// using Value = Bitfield::Element<unsigned, 3, 5>; |
| /// Bitfield::set<Value>(Storage, 10); |
| /// EXPECT_EQ(Storage, 0b01010101); |
| /// // ^^^^^ |
| /// EXPECT_EQ(Bitfield::get<Value>(Storage), 10U); |
| /// |
| /// // Interpret the same 5 bit value as signed. |
| /// using SignedValue = Bitfield::Element<int, 3, 5>; |
| /// Bitfield::set<SignedValue>(Storage, -2); |
| /// EXPECT_EQ(Storage, 0b11110101); |
| /// // ^^^^^ |
| /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2); |
| /// |
| /// // Ability to efficiently test if a field is non zero. |
| /// EXPECT_TRUE(Bitfield::test<Value>(Storage)); |
| /// |
| /// // Alter Storage changes value. |
| /// Storage = 0; |
| /// EXPECT_EQ(Bitfield::get<Bool>(Storage), false); |
| /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS); |
| /// EXPECT_EQ(Bitfield::get<Value>(Storage), 0U); |
| /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0); |
| /// |
| /// Storage = 255; |
| /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
| /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES); |
| /// EXPECT_EQ(Bitfield::get<Value>(Storage), 31U); |
| /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1); |
| /// \endcode |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_BITFIELDS_H |
| #define LLVM_ADT_BITFIELDS_H |
| |
| #include <cassert> |
| #include <climits> // CHAR_BIT |
| #include <cstddef> // size_t |
| #include <cstdint> // uintXX_t |
| #include <limits> // numeric_limits |
| #include <type_traits> |
| |
| namespace llvm { |
| |
| namespace bitfields_details { |
| |
| /// A struct defining useful bit patterns for n-bits integer types. |
| template <typename T, unsigned Bits> struct BitPatterns { |
| /// Bit patterns are forged using the equivalent `Unsigned` type because of |
| /// undefined operations over signed types (e.g. Bitwise shift operators). |
| /// Moreover same size casting from unsigned to signed is well defined but not |
| /// the other way around. |
| using Unsigned = std::make_unsigned_t<T>; |
| static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size"); |
| |
| static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT; |
| static_assert(TypeBits >= Bits, "n-bit must fit in T"); |
| |
| /// e.g. with TypeBits == 8 and Bits == 6. |
| static constexpr Unsigned AllZeros = Unsigned(0); // 00000000 |
| static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111 |
| static constexpr Unsigned Umin = AllZeros; // 00000000 |
| static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111 |
| static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000 |
| static constexpr Unsigned Smax = Umax >> 1U; // 00011111 |
| static constexpr Unsigned Smin = ~Smax; // 11100000 |
| static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000 |
| }; |
| |
| /// `Compressor` is used to manipulate the bits of a (possibly signed) integer |
| /// type so it can be packed and unpacked into a `bits` sized integer, |
| /// `Compressor` is specialized on signed-ness so no runtime cost is incurred. |
| /// The `pack` method also checks that the passed in `UserValue` is valid. |
| template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value> |
| struct Compressor { |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
| using BP = BitPatterns<T, Bits>; |
| |
| static T pack(T UserValue, T UserMaxValue) { |
| assert(UserValue <= UserMaxValue && "value is too big"); |
| assert(UserValue <= BP::Umax && "value is too big"); |
| return UserValue; |
| } |
| |
| static T unpack(T StorageValue) { return StorageValue; } |
| }; |
| |
| template <typename T, unsigned Bits> struct Compressor<T, Bits, false> { |
| static_assert(std::is_signed<T>::value, "T must be signed"); |
| using BP = BitPatterns<T, Bits>; |
| |
| static T pack(T UserValue, T UserMaxValue) { |
| assert(UserValue <= UserMaxValue && "value is too big"); |
| assert(UserValue <= T(BP::Smax) && "value is too big"); |
| assert(UserValue >= T(BP::Smin) && "value is too small"); |
| if (UserValue < 0) |
| UserValue &= ~BP::SignExtend; |
| return UserValue; |
| } |
| |
| static T unpack(T StorageValue) { |
| if (StorageValue >= T(BP::SignBitMask)) |
| StorageValue |= BP::SignExtend; |
| return StorageValue; |
| } |
| }; |
| |
| /// Impl is where Bifield description and Storage are put together to interact |
| /// with values. |
| template <typename Bitfield, typename StorageType> struct Impl { |
| static_assert(std::is_unsigned<StorageType>::value, |
| "Storage must be unsigned"); |
| using IntegerType = typename Bitfield::IntegerType; |
| using C = Compressor<IntegerType, Bitfield::Bits>; |
| using BP = BitPatterns<StorageType, Bitfield::Bits>; |
| |
| static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT; |
| static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask"); |
| static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask"); |
| static constexpr StorageType Mask = BP::Umax << Bitfield::Shift; |
| |
| /// Checks `UserValue` is within bounds and packs it between `FirstBit` and |
| /// `LastBit` of `Packed` leaving the rest unchanged. |
| static void update(StorageType &Packed, IntegerType UserValue) { |
| const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue); |
| Packed &= ~Mask; |
| Packed |= StorageValue << Bitfield::Shift; |
| } |
| |
| /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
| /// an`IntegerType`. |
| static IntegerType extract(StorageType Packed) { |
| const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift; |
| return C::unpack(StorageValue); |
| } |
| |
| /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
| /// an`IntegerType`. |
| static StorageType test(StorageType Packed) { return Packed & Mask; } |
| }; |
| |
| /// `Bitfield` deals with the following type: |
| /// - unsigned enums |
| /// - signed and unsigned integer |
| /// - `bool` |
| /// Internally though we only manipulate integer with well defined and |
| /// consistent semantics, this excludes typed enums and `bool` that are replaced |
| /// with their unsigned counterparts. The correct type is restored in the public |
| /// API. |
| template <typename T, bool = std::is_enum<T>::value> |
| struct ResolveUnderlyingType { |
| using type = std::underlying_type_t<T>; |
| }; |
| template <typename T> struct ResolveUnderlyingType<T, false> { |
| using type = T; |
| }; |
| template <> struct ResolveUnderlyingType<bool, false> { |
| /// In case sizeof(bool) != 1, replace `void` by an additionnal |
| /// std::conditional. |
| using type = std::conditional_t<sizeof(bool) == 1, uint8_t, void>; |
| }; |
| |
| } // namespace bitfields_details |
| |
| /// Holds functions to get, set or test bitfields. |
| struct Bitfield { |
| /// Describes an element of a Bitfield. This type is then used with the |
| /// Bitfield static member functions. |
| /// \tparam T The type of the field once in unpacked form. |
| /// \tparam Offset The position of the first bit. |
| /// \tparam Size The size of the field. |
| /// \tparam MaxValue For enums the maximum enum allowed. |
| template <typename T, unsigned Offset, unsigned Size, |
| T MaxValue = std::is_enum<T>::value |
| ? T(0) // coupled with static_assert below |
| : std::numeric_limits<T>::max()> |
| struct Element { |
| using Type = T; |
| using IntegerType = |
| typename bitfields_details::ResolveUnderlyingType<T>::type; |
| static constexpr unsigned Shift = Offset; |
| static constexpr unsigned Bits = Size; |
| static constexpr unsigned FirstBit = Offset; |
| static constexpr unsigned LastBit = Shift + Bits - 1; |
| static constexpr unsigned NextBit = Shift + Bits; |
| |
| private: |
| template <typename, typename> friend struct bitfields_details::Impl; |
| |
| static_assert(Bits > 0, "Bits must be non zero"); |
| static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT; |
| static_assert(Bits <= TypeBits, "Bits may not be greater than T size"); |
| static_assert(!std::is_enum<T>::value || MaxValue != T(0), |
| "Enum Bitfields must provide a MaxValue"); |
| static_assert(!std::is_enum<T>::value || |
| std::is_unsigned<IntegerType>::value, |
| "Enum must be unsigned"); |
| static_assert(std::is_integral<IntegerType>::value && |
| std::numeric_limits<IntegerType>::is_integer, |
| "IntegerType must be an integer type"); |
| |
| static constexpr IntegerType UserMaxValue = |
| static_cast<IntegerType>(MaxValue); |
| }; |
| |
| /// Unpacks the field from the `Packed` value. |
| template <typename Bitfield, typename StorageType> |
| static typename Bitfield::Type get(StorageType Packed) { |
| using I = bitfields_details::Impl<Bitfield, StorageType>; |
| return static_cast<typename Bitfield::Type>(I::extract(Packed)); |
| } |
| |
| /// Return a non-zero value if the field is non-zero. |
| /// It is more efficient than `getField`. |
| template <typename Bitfield, typename StorageType> |
| static StorageType test(StorageType Packed) { |
| using I = bitfields_details::Impl<Bitfield, StorageType>; |
| return I::test(Packed); |
| } |
| |
| /// Sets the typed value in the provided `Packed` value. |
| /// The method will asserts if the provided value is too big to fit in. |
| template <typename Bitfield, typename StorageType> |
| static void set(StorageType &Packed, typename Bitfield::Type Value) { |
| using I = bitfields_details::Impl<Bitfield, StorageType>; |
| I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value)); |
| } |
| |
| /// Returns whether the two bitfields share common bits. |
| template <typename A, typename B> static constexpr bool isOverlapping() { |
| return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit; |
| } |
| |
| template <typename A> static constexpr bool areContiguous() { return true; } |
| template <typename A, typename B, typename... Others> |
| static constexpr bool areContiguous() { |
| return A::NextBit == B::FirstBit && areContiguous<B, Others...>(); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| #endif // LLVM_ADT_BITFIELDS_H |