| //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements a class to represent arbitrary precision |
| /// integral constant values and operations on them. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_APINT_H |
| #define LLVM_ADT_APINT_H |
| |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <climits> |
| #include <cstring> |
| #include <optional> |
| #include <utility> |
| |
| namespace llvm { |
| class FoldingSetNodeID; |
| class StringRef; |
| class hash_code; |
| class raw_ostream; |
| |
| template <typename T> class SmallVectorImpl; |
| template <typename T> class ArrayRef; |
| template <typename T, typename Enable> struct DenseMapInfo; |
| |
| class APInt; |
| |
| inline APInt operator-(APInt); |
| |
| //===----------------------------------------------------------------------===// |
| // APInt Class |
| //===----------------------------------------------------------------------===// |
| |
| /// Class for arbitrary precision integers. |
| /// |
| /// APInt is a functional replacement for common case unsigned integer type like |
| /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
| /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
| /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
| /// and methods to manipulate integer values of any bit-width. It supports both |
| /// the typical integer arithmetic and comparison operations as well as bitwise |
| /// manipulation. |
| /// |
| /// The class has several invariants worth noting: |
| /// * All bit, byte, and word positions are zero-based. |
| /// * Once the bit width is set, it doesn't change except by the Truncate, |
| /// SignExtend, or ZeroExtend operations. |
| /// * All binary operators must be on APInt instances of the same bit width. |
| /// Attempting to use these operators on instances with different bit |
| /// widths will yield an assertion. |
| /// * The value is stored canonically as an unsigned value. For operations |
| /// where it makes a difference, there are both signed and unsigned variants |
| /// of the operation. For example, sdiv and udiv. However, because the bit |
| /// widths must be the same, operations such as Mul and Add produce the same |
| /// results regardless of whether the values are interpreted as signed or |
| /// not. |
| /// * In general, the class tries to follow the style of computation that LLVM |
| /// uses in its IR. This simplifies its use for LLVM. |
| /// * APInt supports zero-bit-width values, but operations that require bits |
| /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit |
| /// integer). This means that operations like zero extension and logical |
| /// shifts are defined, but sign extension and ashr is not. Zero bit values |
| /// compare and hash equal to themselves, and countLeadingZeros returns 0. |
| /// |
| class [[nodiscard]] APInt { |
| public: |
| typedef uint64_t WordType; |
| |
| /// This enum is used to hold the constants we needed for APInt. |
| enum : unsigned { |
| /// Byte size of a word. |
| APINT_WORD_SIZE = sizeof(WordType), |
| /// Bits in a word. |
| APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT |
| }; |
| |
| enum class Rounding { |
| DOWN, |
| TOWARD_ZERO, |
| UP, |
| }; |
| |
| static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
| |
| /// \name Constructors |
| /// @{ |
| |
| /// Create a new APInt of numBits width, initialized as val. |
| /// |
| /// If isSigned is true then val is treated as if it were a signed value |
| /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
| /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
| /// the range of val are zero filled). |
| /// |
| /// \param numBits the bit width of the constructed APInt |
| /// \param val the initial value of the APInt |
| /// \param isSigned how to treat signedness of val |
| APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
| : BitWidth(numBits) { |
| if (isSingleWord()) { |
| U.VAL = val; |
| clearUnusedBits(); |
| } else { |
| initSlowCase(val, isSigned); |
| } |
| } |
| |
| /// Construct an APInt of numBits width, initialized as bigVal[]. |
| /// |
| /// Note that bigVal.size() can be smaller or larger than the corresponding |
| /// bit width but any extraneous bits will be dropped. |
| /// |
| /// \param numBits the bit width of the constructed APInt |
| /// \param bigVal a sequence of words to form the initial value of the APInt |
| APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
| |
| /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
| /// deprecated because this constructor is prone to ambiguity with the |
| /// APInt(unsigned, uint64_t, bool) constructor. |
| /// |
| /// If this overload is ever deleted, care should be taken to prevent calls |
| /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
| /// constructor. |
| APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
| |
| /// Construct an APInt from a string representation. |
| /// |
| /// This constructor interprets the string \p str in the given radix. The |
| /// interpretation stops when the first character that is not suitable for the |
| /// radix is encountered, or the end of the string. Acceptable radix values |
| /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
| /// string to require more bits than numBits. |
| /// |
| /// \param numBits the bit width of the constructed APInt |
| /// \param str the string to be interpreted |
| /// \param radix the radix to use for the conversion |
| APInt(unsigned numBits, StringRef str, uint8_t radix); |
| |
| /// Default constructor that creates an APInt with a 1-bit zero value. |
| explicit APInt() { U.VAL = 0; } |
| |
| /// Copy Constructor. |
| APInt(const APInt &that) : BitWidth(that.BitWidth) { |
| if (isSingleWord()) |
| U.VAL = that.U.VAL; |
| else |
| initSlowCase(that); |
| } |
| |
| /// Move Constructor. |
| APInt(APInt &&that) : BitWidth(that.BitWidth) { |
| memcpy(&U, &that.U, sizeof(U)); |
| that.BitWidth = 0; |
| } |
| |
| /// Destructor. |
| ~APInt() { |
| if (needsCleanup()) |
| delete[] U.pVal; |
| } |
| |
| /// @} |
| /// \name Value Generators |
| /// @{ |
| |
| /// Get the '0' value for the specified bit-width. |
| static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } |
| |
| LLVM_DEPRECATED("use getZero instead", "getZero") |
| static APInt getNullValue(unsigned numBits) { return getZero(numBits); } |
| |
| /// Return an APInt zero bits wide. |
| static APInt getZeroWidth() { return getZero(0); } |
| |
| /// Gets maximum unsigned value of APInt for specific bit width. |
| static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } |
| |
| /// Gets maximum signed value of APInt for a specific bit width. |
| static APInt getSignedMaxValue(unsigned numBits) { |
| APInt API = getAllOnes(numBits); |
| API.clearBit(numBits - 1); |
| return API; |
| } |
| |
| /// Gets minimum unsigned value of APInt for a specific bit width. |
| static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
| |
| /// Gets minimum signed value of APInt for a specific bit width. |
| static APInt getSignedMinValue(unsigned numBits) { |
| APInt API(numBits, 0); |
| API.setBit(numBits - 1); |
| return API; |
| } |
| |
| /// Get the SignMask for a specific bit width. |
| /// |
| /// This is just a wrapper function of getSignedMinValue(), and it helps code |
| /// readability when we want to get a SignMask. |
| static APInt getSignMask(unsigned BitWidth) { |
| return getSignedMinValue(BitWidth); |
| } |
| |
| /// Return an APInt of a specified width with all bits set. |
| static APInt getAllOnes(unsigned numBits) { |
| return APInt(numBits, WORDTYPE_MAX, true); |
| } |
| |
| LLVM_DEPRECATED("use getAllOnes instead", "getAllOnes") |
| static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); } |
| |
| /// Return an APInt with exactly one bit set in the result. |
| static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
| APInt Res(numBits, 0); |
| Res.setBit(BitNo); |
| return Res; |
| } |
| |
| /// Get a value with a block of bits set. |
| /// |
| /// Constructs an APInt value that has a contiguous range of bits set. The |
| /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
| /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
| /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
| /// \p hiBit. |
| /// |
| /// \param numBits the intended bit width of the result |
| /// \param loBit the index of the lowest bit set. |
| /// \param hiBit the index of the highest bit set. |
| /// |
| /// \returns An APInt value with the requested bits set. |
| static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
| APInt Res(numBits, 0); |
| Res.setBits(loBit, hiBit); |
| return Res; |
| } |
| |
| /// Wrap version of getBitsSet. |
| /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
| /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
| /// with parameters (32, 28, 4), you would get 0xF000000F. |
| /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
| /// set. |
| static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
| unsigned hiBit) { |
| APInt Res(numBits, 0); |
| Res.setBitsWithWrap(loBit, hiBit); |
| return Res; |
| } |
| |
| /// Constructs an APInt value that has a contiguous range of bits set. The |
| /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
| /// bits will be zero. For example, with parameters(32, 12) you would get |
| /// 0xFFFFF000. |
| /// |
| /// \param numBits the intended bit width of the result |
| /// \param loBit the index of the lowest bit to set. |
| /// |
| /// \returns An APInt value with the requested bits set. |
| static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
| APInt Res(numBits, 0); |
| Res.setBitsFrom(loBit); |
| return Res; |
| } |
| |
| /// Constructs an APInt value that has the top hiBitsSet bits set. |
| /// |
| /// \param numBits the bitwidth of the result |
| /// \param hiBitsSet the number of high-order bits set in the result. |
| static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
| APInt Res(numBits, 0); |
| Res.setHighBits(hiBitsSet); |
| return Res; |
| } |
| |
| /// Constructs an APInt value that has the bottom loBitsSet bits set. |
| /// |
| /// \param numBits the bitwidth of the result |
| /// \param loBitsSet the number of low-order bits set in the result. |
| static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
| APInt Res(numBits, 0); |
| Res.setLowBits(loBitsSet); |
| return Res; |
| } |
| |
| /// Return a value containing V broadcasted over NewLen bits. |
| static APInt getSplat(unsigned NewLen, const APInt &V); |
| |
| /// @} |
| /// \name Value Tests |
| /// @{ |
| |
| /// Determine if this APInt just has one word to store value. |
| /// |
| /// \returns true if the number of bits <= 64, false otherwise. |
| bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
| |
| /// Determine sign of this APInt. |
| /// |
| /// This tests the high bit of this APInt to determine if it is set. |
| /// |
| /// \returns true if this APInt is negative, false otherwise |
| bool isNegative() const { return (*this)[BitWidth - 1]; } |
| |
| /// Determine if this APInt Value is non-negative (>= 0) |
| /// |
| /// This tests the high bit of the APInt to determine if it is unset. |
| bool isNonNegative() const { return !isNegative(); } |
| |
| /// Determine if sign bit of this APInt is set. |
| /// |
| /// This tests the high bit of this APInt to determine if it is set. |
| /// |
| /// \returns true if this APInt has its sign bit set, false otherwise. |
| bool isSignBitSet() const { return (*this)[BitWidth - 1]; } |
| |
| /// Determine if sign bit of this APInt is clear. |
| /// |
| /// This tests the high bit of this APInt to determine if it is clear. |
| /// |
| /// \returns true if this APInt has its sign bit clear, false otherwise. |
| bool isSignBitClear() const { return !isSignBitSet(); } |
| |
| /// Determine if this APInt Value is positive. |
| /// |
| /// This tests if the value of this APInt is positive (> 0). Note |
| /// that 0 is not a positive value. |
| /// |
| /// \returns true if this APInt is positive. |
| bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } |
| |
| /// Determine if this APInt Value is non-positive (<= 0). |
| /// |
| /// \returns true if this APInt is non-positive. |
| bool isNonPositive() const { return !isStrictlyPositive(); } |
| |
| /// Determine if this APInt Value only has the specified bit set. |
| /// |
| /// \returns true if this APInt only has the specified bit set. |
| bool isOneBitSet(unsigned BitNo) const { |
| return (*this)[BitNo] && popcount() == 1; |
| } |
| |
| /// Determine if all bits are set. This is true for zero-width values. |
| bool isAllOnes() const { |
| if (BitWidth == 0) |
| return true; |
| if (isSingleWord()) |
| return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
| return countTrailingOnesSlowCase() == BitWidth; |
| } |
| |
| LLVM_DEPRECATED("use isAllOnes instead", "isAllOnes") |
| bool isAllOnesValue() const { return isAllOnes(); } |
| |
| /// Determine if this value is zero, i.e. all bits are clear. |
| bool isZero() const { |
| if (isSingleWord()) |
| return U.VAL == 0; |
| return countLeadingZerosSlowCase() == BitWidth; |
| } |
| |
| LLVM_DEPRECATED("use isZero instead", "isZero") |
| bool isNullValue() const { return isZero(); } |
| |
| /// Determine if this is a value of 1. |
| /// |
| /// This checks to see if the value of this APInt is one. |
| bool isOne() const { |
| if (isSingleWord()) |
| return U.VAL == 1; |
| return countLeadingZerosSlowCase() == BitWidth - 1; |
| } |
| |
| LLVM_DEPRECATED("use isOne instead", "isOne") |
| bool isOneValue() const { return isOne(); } |
| |
| /// Determine if this is the largest unsigned value. |
| /// |
| /// This checks to see if the value of this APInt is the maximum unsigned |
| /// value for the APInt's bit width. |
| bool isMaxValue() const { return isAllOnes(); } |
| |
| /// Determine if this is the largest signed value. |
| /// |
| /// This checks to see if the value of this APInt is the maximum signed |
| /// value for the APInt's bit width. |
| bool isMaxSignedValue() const { |
| if (isSingleWord()) { |
| assert(BitWidth && "zero width values not allowed"); |
| return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
| } |
| return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
| } |
| |
| /// Determine if this is the smallest unsigned value. |
| /// |
| /// This checks to see if the value of this APInt is the minimum unsigned |
| /// value for the APInt's bit width. |
| bool isMinValue() const { return isZero(); } |
| |
| /// Determine if this is the smallest signed value. |
| /// |
| /// This checks to see if the value of this APInt is the minimum signed |
| /// value for the APInt's bit width. |
| bool isMinSignedValue() const { |
| if (isSingleWord()) { |
| assert(BitWidth && "zero width values not allowed"); |
| return U.VAL == (WordType(1) << (BitWidth - 1)); |
| } |
| return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
| } |
| |
| /// Check if this APInt has an N-bits unsigned integer value. |
| bool isIntN(unsigned N) const { return getActiveBits() <= N; } |
| |
| /// Check if this APInt has an N-bits signed integer value. |
| bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; } |
| |
| /// Check if this APInt's value is a power of two greater than zero. |
| /// |
| /// \returns true if the argument APInt value is a power of two > 0. |
| bool isPowerOf2() const { |
| if (isSingleWord()) { |
| assert(BitWidth && "zero width values not allowed"); |
| return isPowerOf2_64(U.VAL); |
| } |
| return countPopulationSlowCase() == 1; |
| } |
| |
| /// Check if this APInt's negated value is a power of two greater than zero. |
| bool isNegatedPowerOf2() const { |
| assert(BitWidth && "zero width values not allowed"); |
| if (isNonNegative()) |
| return false; |
| // NegatedPowerOf2 - shifted mask in the top bits. |
| unsigned LO = countl_one(); |
| unsigned TZ = countr_zero(); |
| return (LO + TZ) == BitWidth; |
| } |
| |
| /// Check if the APInt's value is returned by getSignMask. |
| /// |
| /// \returns true if this is the value returned by getSignMask. |
| bool isSignMask() const { return isMinSignedValue(); } |
| |
| /// Convert APInt to a boolean value. |
| /// |
| /// This converts the APInt to a boolean value as a test against zero. |
| bool getBoolValue() const { return !isZero(); } |
| |
| /// If this value is smaller than the specified limit, return it, otherwise |
| /// return the limit value. This causes the value to saturate to the limit. |
| uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
| return ugt(Limit) ? Limit : getZExtValue(); |
| } |
| |
| /// Check if the APInt consists of a repeated bit pattern. |
| /// |
| /// e.g. 0x01010101 satisfies isSplat(8). |
| /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
| /// width without remainder. |
| bool isSplat(unsigned SplatSizeInBits) const; |
| |
| /// \returns true if this APInt value is a sequence of \param numBits ones |
| /// starting at the least significant bit with the remainder zero. |
| bool isMask(unsigned numBits) const { |
| assert(numBits != 0 && "numBits must be non-zero"); |
| assert(numBits <= BitWidth && "numBits out of range"); |
| if (isSingleWord()) |
| return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
| unsigned Ones = countTrailingOnesSlowCase(); |
| return (numBits == Ones) && |
| ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
| } |
| |
| /// \returns true if this APInt is a non-empty sequence of ones starting at |
| /// the least significant bit with the remainder zero. |
| /// Ex. isMask(0x0000FFFFU) == true. |
| bool isMask() const { |
| if (isSingleWord()) |
| return isMask_64(U.VAL); |
| unsigned Ones = countTrailingOnesSlowCase(); |
| return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
| } |
| |
| /// Return true if this APInt value contains a non-empty sequence of ones with |
| /// the remainder zero. |
| bool isShiftedMask() const { |
| if (isSingleWord()) |
| return isShiftedMask_64(U.VAL); |
| unsigned Ones = countPopulationSlowCase(); |
| unsigned LeadZ = countLeadingZerosSlowCase(); |
| return (Ones + LeadZ + countr_zero()) == BitWidth; |
| } |
| |
| /// Return true if this APInt value contains a non-empty sequence of ones with |
| /// the remainder zero. If true, \p MaskIdx will specify the index of the |
| /// lowest set bit and \p MaskLen is updated to specify the length of the |
| /// mask, else neither are updated. |
| bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const { |
| if (isSingleWord()) |
| return isShiftedMask_64(U.VAL, MaskIdx, MaskLen); |
| unsigned Ones = countPopulationSlowCase(); |
| unsigned LeadZ = countLeadingZerosSlowCase(); |
| unsigned TrailZ = countTrailingZerosSlowCase(); |
| if ((Ones + LeadZ + TrailZ) != BitWidth) |
| return false; |
| MaskLen = Ones; |
| MaskIdx = TrailZ; |
| return true; |
| } |
| |
| /// Compute an APInt containing numBits highbits from this APInt. |
| /// |
| /// Get an APInt with the same BitWidth as this APInt, just zero mask the low |
| /// bits and right shift to the least significant bit. |
| /// |
| /// \returns the high "numBits" bits of this APInt. |
| APInt getHiBits(unsigned numBits) const; |
| |
| /// Compute an APInt containing numBits lowbits from this APInt. |
| /// |
| /// Get an APInt with the same BitWidth as this APInt, just zero mask the high |
| /// bits. |
| /// |
| /// \returns the low "numBits" bits of this APInt. |
| APInt getLoBits(unsigned numBits) const; |
| |
| /// Determine if two APInts have the same value, after zero-extending |
| /// one of them (if needed!) to ensure that the bit-widths match. |
| static bool isSameValue(const APInt &I1, const APInt &I2) { |
| if (I1.getBitWidth() == I2.getBitWidth()) |
| return I1 == I2; |
| |
| if (I1.getBitWidth() > I2.getBitWidth()) |
| return I1 == I2.zext(I1.getBitWidth()); |
| |
| return I1.zext(I2.getBitWidth()) == I2; |
| } |
| |
| /// Overload to compute a hash_code for an APInt value. |
| friend hash_code hash_value(const APInt &Arg); |
| |
| /// This function returns a pointer to the internal storage of the APInt. |
| /// This is useful for writing out the APInt in binary form without any |
| /// conversions. |
| const uint64_t *getRawData() const { |
| if (isSingleWord()) |
| return &U.VAL; |
| return &U.pVal[0]; |
| } |
| |
| /// @} |
| /// \name Unary Operators |
| /// @{ |
| |
| /// Postfix increment operator. Increment *this by 1. |
| /// |
| /// \returns a new APInt value representing the original value of *this. |
| APInt operator++(int) { |
| APInt API(*this); |
| ++(*this); |
| return API; |
| } |
| |
| /// Prefix increment operator. |
| /// |
| /// \returns *this incremented by one |
| APInt &operator++(); |
| |
| /// Postfix decrement operator. Decrement *this by 1. |
| /// |
| /// \returns a new APInt value representing the original value of *this. |
| APInt operator--(int) { |
| APInt API(*this); |
| --(*this); |
| return API; |
| } |
| |
| /// Prefix decrement operator. |
| /// |
| /// \returns *this decremented by one. |
| APInt &operator--(); |
| |
| /// Logical negation operation on this APInt returns true if zero, like normal |
| /// integers. |
| bool operator!() const { return isZero(); } |
| |
| /// @} |
| /// \name Assignment Operators |
| /// @{ |
| |
| /// Copy assignment operator. |
| /// |
| /// \returns *this after assignment of RHS. |
| APInt &operator=(const APInt &RHS) { |
| // The common case (both source or dest being inline) doesn't require |
| // allocation or deallocation. |
| if (isSingleWord() && RHS.isSingleWord()) { |
| U.VAL = RHS.U.VAL; |
| BitWidth = RHS.BitWidth; |
| return *this; |
| } |
| |
| assignSlowCase(RHS); |
| return *this; |
| } |
| |
| /// Move assignment operator. |
| APInt &operator=(APInt &&that) { |
| #ifdef EXPENSIVE_CHECKS |
| // Some std::shuffle implementations still do self-assignment. |
| if (this == &that) |
| return *this; |
| #endif |
| assert(this != &that && "Self-move not supported"); |
| if (!isSingleWord()) |
| delete[] U.pVal; |
| |
| // Use memcpy so that type based alias analysis sees both VAL and pVal |
| // as modified. |
| memcpy(&U, &that.U, sizeof(U)); |
| |
| BitWidth = that.BitWidth; |
| that.BitWidth = 0; |
| return *this; |
| } |
| |
| /// Assignment operator. |
| /// |
| /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
| /// the bit width, the excess bits are truncated. If the bit width is larger |
| /// than 64, the value is zero filled in the unspecified high order bits. |
| /// |
| /// \returns *this after assignment of RHS value. |
| APInt &operator=(uint64_t RHS) { |
| if (isSingleWord()) { |
| U.VAL = RHS; |
| return clearUnusedBits(); |
| } |
| U.pVal[0] = RHS; |
| memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| return *this; |
| } |
| |
| /// Bitwise AND assignment operator. |
| /// |
| /// Performs a bitwise AND operation on this APInt and RHS. The result is |
| /// assigned to *this. |
| /// |
| /// \returns *this after ANDing with RHS. |
| APInt &operator&=(const APInt &RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| U.VAL &= RHS.U.VAL; |
| else |
| andAssignSlowCase(RHS); |
| return *this; |
| } |
| |
| /// Bitwise AND assignment operator. |
| /// |
| /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
| /// logically zero-extended or truncated to match the bit-width of |
| /// the LHS. |
| APInt &operator&=(uint64_t RHS) { |
| if (isSingleWord()) { |
| U.VAL &= RHS; |
| return *this; |
| } |
| U.pVal[0] &= RHS; |
| memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| return *this; |
| } |
| |
| /// Bitwise OR assignment operator. |
| /// |
| /// Performs a bitwise OR operation on this APInt and RHS. The result is |
| /// assigned *this; |
| /// |
| /// \returns *this after ORing with RHS. |
| APInt &operator|=(const APInt &RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| U.VAL |= RHS.U.VAL; |
| else |
| orAssignSlowCase(RHS); |
| return *this; |
| } |
| |
| /// Bitwise OR assignment operator. |
| /// |
| /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
| /// logically zero-extended or truncated to match the bit-width of |
| /// the LHS. |
| APInt &operator|=(uint64_t RHS) { |
| if (isSingleWord()) { |
| U.VAL |= RHS; |
| return clearUnusedBits(); |
| } |
| U.pVal[0] |= RHS; |
| return *this; |
| } |
| |
| /// Bitwise XOR assignment operator. |
| /// |
| /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
| /// assigned to *this. |
| /// |
| /// \returns *this after XORing with RHS. |
| APInt &operator^=(const APInt &RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| U.VAL ^= RHS.U.VAL; |
| else |
| xorAssignSlowCase(RHS); |
| return *this; |
| } |
| |
| /// Bitwise XOR assignment operator. |
| /// |
| /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
| /// logically zero-extended or truncated to match the bit-width of |
| /// the LHS. |
| APInt &operator^=(uint64_t RHS) { |
| if (isSingleWord()) { |
| U.VAL ^= RHS; |
| return clearUnusedBits(); |
| } |
| U.pVal[0] ^= RHS; |
| return *this; |
| } |
| |
| /// Multiplication assignment operator. |
| /// |
| /// Multiplies this APInt by RHS and assigns the result to *this. |
| /// |
| /// \returns *this |
| APInt &operator*=(const APInt &RHS); |
| APInt &operator*=(uint64_t RHS); |
| |
| /// Addition assignment operator. |
| /// |
| /// Adds RHS to *this and assigns the result to *this. |
| /// |
| /// \returns *this |
| APInt &operator+=(const APInt &RHS); |
| APInt &operator+=(uint64_t RHS); |
| |
| /// Subtraction assignment operator. |
| /// |
| /// Subtracts RHS from *this and assigns the result to *this. |
| /// |
| /// \returns *this |
| APInt &operator-=(const APInt &RHS); |
| APInt &operator-=(uint64_t RHS); |
| |
| /// Left-shift assignment function. |
| /// |
| /// Shifts *this left by shiftAmt and assigns the result to *this. |
| /// |
| /// \returns *this after shifting left by ShiftAmt |
| APInt &operator<<=(unsigned ShiftAmt) { |
| assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
| if (isSingleWord()) { |
| if (ShiftAmt == BitWidth) |
| U.VAL = 0; |
| else |
| U.VAL <<= ShiftAmt; |
| return clearUnusedBits(); |
| } |
| shlSlowCase(ShiftAmt); |
| return *this; |
| } |
| |
| /// Left-shift assignment function. |
| /// |
| /// Shifts *this left by shiftAmt and assigns the result to *this. |
| /// |
| /// \returns *this after shifting left by ShiftAmt |
| APInt &operator<<=(const APInt &ShiftAmt); |
| |
| /// @} |
| /// \name Binary Operators |
| /// @{ |
| |
| /// Multiplication operator. |
| /// |
| /// Multiplies this APInt by RHS and returns the result. |
| APInt operator*(const APInt &RHS) const; |
| |
| /// Left logical shift operator. |
| /// |
| /// Shifts this APInt left by \p Bits and returns the result. |
| APInt operator<<(unsigned Bits) const { return shl(Bits); } |
| |
| /// Left logical shift operator. |
| /// |
| /// Shifts this APInt left by \p Bits and returns the result. |
| APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
| |
| /// Arithmetic right-shift function. |
| /// |
| /// Arithmetic right-shift this APInt by shiftAmt. |
| APInt ashr(unsigned ShiftAmt) const { |
| APInt R(*this); |
| R.ashrInPlace(ShiftAmt); |
| return R; |
| } |
| |
| /// Arithmetic right-shift this APInt by ShiftAmt in place. |
| void ashrInPlace(unsigned ShiftAmt) { |
| assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
| if (isSingleWord()) { |
| int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
| if (ShiftAmt == BitWidth) |
| U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
| else |
| U.VAL = SExtVAL >> ShiftAmt; |
| clearUnusedBits(); |
| return; |
| } |
| ashrSlowCase(ShiftAmt); |
| } |
| |
| /// Logical right-shift function. |
| /// |
| /// Logical right-shift this APInt by shiftAmt. |
| APInt lshr(unsigned shiftAmt) const { |
| APInt R(*this); |
| R.lshrInPlace(shiftAmt); |
| return R; |
| } |
| |
| /// Logical right-shift this APInt by ShiftAmt in place. |
| void lshrInPlace(unsigned ShiftAmt) { |
| assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
| if (isSingleWord()) { |
| if (ShiftAmt == BitWidth) |
| U.VAL = 0; |
| else |
| U.VAL >>= ShiftAmt; |
| return; |
| } |
| lshrSlowCase(ShiftAmt); |
| } |
| |
| /// Left-shift function. |
| /// |
| /// Left-shift this APInt by shiftAmt. |
| APInt shl(unsigned shiftAmt) const { |
| APInt R(*this); |
| R <<= shiftAmt; |
| return R; |
| } |
| |
| /// relative logical shift right |
| APInt relativeLShr(int RelativeShift) const { |
| return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift); |
| } |
| |
| /// relative logical shift left |
| APInt relativeLShl(int RelativeShift) const { |
| return relativeLShr(-RelativeShift); |
| } |
| |
| /// relative arithmetic shift right |
| APInt relativeAShr(int RelativeShift) const { |
| return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift); |
| } |
| |
| /// relative arithmetic shift left |
| APInt relativeAShl(int RelativeShift) const { |
| return relativeAShr(-RelativeShift); |
| } |
| |
| /// Rotate left by rotateAmt. |
| APInt rotl(unsigned rotateAmt) const; |
| |
| /// Rotate right by rotateAmt. |
| APInt rotr(unsigned rotateAmt) const; |
| |
| /// Arithmetic right-shift function. |
| /// |
| /// Arithmetic right-shift this APInt by shiftAmt. |
| APInt ashr(const APInt &ShiftAmt) const { |
| APInt R(*this); |
| R.ashrInPlace(ShiftAmt); |
| return R; |
| } |
| |
| /// Arithmetic right-shift this APInt by shiftAmt in place. |
| void ashrInPlace(const APInt &shiftAmt); |
| |
| /// Logical right-shift function. |
| /// |
| /// Logical right-shift this APInt by shiftAmt. |
| APInt lshr(const APInt &ShiftAmt) const { |
| APInt R(*this); |
| R.lshrInPlace(ShiftAmt); |
| return R; |
| } |
| |
| /// Logical right-shift this APInt by ShiftAmt in place. |
| void lshrInPlace(const APInt &ShiftAmt); |
| |
| /// Left-shift function. |
| /// |
| /// Left-shift this APInt by shiftAmt. |
| APInt shl(const APInt &ShiftAmt) const { |
| APInt R(*this); |
| R <<= ShiftAmt; |
| return R; |
| } |
| |
| /// Rotate left by rotateAmt. |
| APInt rotl(const APInt &rotateAmt) const; |
| |
| /// Rotate right by rotateAmt. |
| APInt rotr(const APInt &rotateAmt) const; |
| |
| /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is |
| /// equivalent to: |
| /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) |
| APInt concat(const APInt &NewLSB) const { |
| /// If the result will be small, then both the merged values are small. |
| unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); |
| if (NewWidth <= APINT_BITS_PER_WORD) |
| return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); |
| return concatSlowCase(NewLSB); |
| } |
| |
| /// Unsigned division operation. |
| /// |
| /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
| /// RHS are treated as unsigned quantities for purposes of this division. |
| /// |
| /// \returns a new APInt value containing the division result, rounded towards |
| /// zero. |
| APInt udiv(const APInt &RHS) const; |
| APInt udiv(uint64_t RHS) const; |
| |
| /// Signed division function for APInt. |
| /// |
| /// Signed divide this APInt by APInt RHS. |
| /// |
| /// The result is rounded towards zero. |
| APInt sdiv(const APInt &RHS) const; |
| APInt sdiv(int64_t RHS) const; |
| |
| /// Unsigned remainder operation. |
| /// |
| /// Perform an unsigned remainder operation on this APInt with RHS being the |
| /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
| /// of this operation. |
| /// |
| /// \returns a new APInt value containing the remainder result |
| APInt urem(const APInt &RHS) const; |
| uint64_t urem(uint64_t RHS) const; |
| |
| /// Function for signed remainder operation. |
| /// |
| /// Signed remainder operation on APInt. |
| /// |
| /// Note that this is a true remainder operation and not a modulo operation |
| /// because the sign follows the sign of the dividend which is *this. |
| APInt srem(const APInt &RHS) const; |
| int64_t srem(int64_t RHS) const; |
| |
| /// Dual division/remainder interface. |
| /// |
| /// Sometimes it is convenient to divide two APInt values and obtain both the |
| /// quotient and remainder. This function does both operations in the same |
| /// computation making it a little more efficient. The pair of input arguments |
| /// may overlap with the pair of output arguments. It is safe to call |
| /// udivrem(X, Y, X, Y), for example. |
| static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| APInt &Remainder); |
| static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
| uint64_t &Remainder); |
| |
| static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| APInt &Remainder); |
| static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
| int64_t &Remainder); |
| |
| // Operations that return overflow indicators. |
| APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
| APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
| APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
| APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
| APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
| APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
| APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
| APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
| APInt sshl_ov(unsigned Amt, bool &Overflow) const; |
| APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
| APInt ushl_ov(unsigned Amt, bool &Overflow) const; |
| |
| // Operations that saturate |
| APInt sadd_sat(const APInt &RHS) const; |
| APInt uadd_sat(const APInt &RHS) const; |
| APInt ssub_sat(const APInt &RHS) const; |
| APInt usub_sat(const APInt &RHS) const; |
| APInt smul_sat(const APInt &RHS) const; |
| APInt umul_sat(const APInt &RHS) const; |
| APInt sshl_sat(const APInt &RHS) const; |
| APInt sshl_sat(unsigned RHS) const; |
| APInt ushl_sat(const APInt &RHS) const; |
| APInt ushl_sat(unsigned RHS) const; |
| |
| /// Array-indexing support. |
| /// |
| /// \returns the bit value at bitPosition |
| bool operator[](unsigned bitPosition) const { |
| assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); |
| return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
| } |
| |
| /// @} |
| /// \name Comparison Operators |
| /// @{ |
| |
| /// Equality operator. |
| /// |
| /// Compares this APInt with RHS for the validity of the equality |
| /// relationship. |
| bool operator==(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); |
| if (isSingleWord()) |
| return U.VAL == RHS.U.VAL; |
| return equalSlowCase(RHS); |
| } |
| |
| /// Equality operator. |
| /// |
| /// Compares this APInt with a uint64_t for the validity of the equality |
| /// relationship. |
| /// |
| /// \returns true if *this == Val |
| bool operator==(uint64_t Val) const { |
| return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
| } |
| |
| /// Equality comparison. |
| /// |
| /// Compares this APInt with RHS for the validity of the equality |
| /// relationship. |
| /// |
| /// \returns true if *this == Val |
| bool eq(const APInt &RHS) const { return (*this) == RHS; } |
| |
| /// Inequality operator. |
| /// |
| /// Compares this APInt with RHS for the validity of the inequality |
| /// relationship. |
| /// |
| /// \returns true if *this != Val |
| bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
| |
| /// Inequality operator. |
| /// |
| /// Compares this APInt with a uint64_t for the validity of the inequality |
| /// relationship. |
| /// |
| /// \returns true if *this != Val |
| bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
| |
| /// Inequality comparison |
| /// |
| /// Compares this APInt with RHS for the validity of the inequality |
| /// relationship. |
| /// |
| /// \returns true if *this != Val |
| bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
| |
| /// Unsigned less than comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// the validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when both are considered unsigned. |
| bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
| |
| /// Unsigned less than comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when considered unsigned. |
| bool ult(uint64_t RHS) const { |
| // Only need to check active bits if not a single word. |
| return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
| } |
| |
| /// Signed less than comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for |
| /// validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when both are considered signed. |
| bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
| |
| /// Signed less than comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for |
| /// the validity of the less-than relationship. |
| /// |
| /// \returns true if *this < RHS when considered signed. |
| bool slt(int64_t RHS) const { |
| return (!isSingleWord() && getSignificantBits() > 64) |
| ? isNegative() |
| : getSExtValue() < RHS; |
| } |
| |
| /// Unsigned less or equal comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when both are considered unsigned. |
| bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
| |
| /// Unsigned less or equal comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when considered unsigned. |
| bool ule(uint64_t RHS) const { return !ugt(RHS); } |
| |
| /// Signed less or equal comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for |
| /// validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when both are considered signed. |
| bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
| |
| /// Signed less or equal comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for the |
| /// validity of the less-or-equal relationship. |
| /// |
| /// \returns true if *this <= RHS when considered signed. |
| bool sle(uint64_t RHS) const { return !sgt(RHS); } |
| |
| /// Unsigned greater than comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// the validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when both are considered unsigned. |
| bool ugt(const APInt &RHS) const { return !ule(RHS); } |
| |
| /// Unsigned greater than comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when considered unsigned. |
| bool ugt(uint64_t RHS) const { |
| // Only need to check active bits if not a single word. |
| return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
| } |
| |
| /// Signed greater than comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for the |
| /// validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when both are considered signed. |
| bool sgt(const APInt &RHS) const { return !sle(RHS); } |
| |
| /// Signed greater than comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for |
| /// the validity of the greater-than relationship. |
| /// |
| /// \returns true if *this > RHS when considered signed. |
| bool sgt(int64_t RHS) const { |
| return (!isSingleWord() && getSignificantBits() > 64) |
| ? !isNegative() |
| : getSExtValue() > RHS; |
| } |
| |
| /// Unsigned greater or equal comparison |
| /// |
| /// Regards both *this and RHS as unsigned quantities and compares them for |
| /// validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when both are considered unsigned. |
| bool uge(const APInt &RHS) const { return !ult(RHS); } |
| |
| /// Unsigned greater or equal comparison |
| /// |
| /// Regards both *this as an unsigned quantity and compares it with RHS for |
| /// the validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when considered unsigned. |
| bool uge(uint64_t RHS) const { return !ult(RHS); } |
| |
| /// Signed greater or equal comparison |
| /// |
| /// Regards both *this and RHS as signed quantities and compares them for |
| /// validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when both are considered signed. |
| bool sge(const APInt &RHS) const { return !slt(RHS); } |
| |
| /// Signed greater or equal comparison |
| /// |
| /// Regards both *this as a signed quantity and compares it with RHS for |
| /// the validity of the greater-or-equal relationship. |
| /// |
| /// \returns true if *this >= RHS when considered signed. |
| bool sge(int64_t RHS) const { return !slt(RHS); } |
| |
| /// This operation tests if there are any pairs of corresponding bits |
| /// between this APInt and RHS that are both set. |
| bool intersects(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return (U.VAL & RHS.U.VAL) != 0; |
| return intersectsSlowCase(RHS); |
| } |
| |
| /// This operation checks that all bits set in this APInt are also set in RHS. |
| bool isSubsetOf(const APInt &RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return (U.VAL & ~RHS.U.VAL) == 0; |
| return isSubsetOfSlowCase(RHS); |
| } |
| |
| /// @} |
| /// \name Resizing Operators |
| /// @{ |
| |
| /// Truncate to new width. |
| /// |
| /// Truncate the APInt to a specified width. It is an error to specify a width |
| /// that is greater than the current width. |
| APInt trunc(unsigned width) const; |
| |
| /// Truncate to new width with unsigned saturation. |
| /// |
| /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
| /// the new bitwidth, then return truncated APInt. Else, return max value. |
| APInt truncUSat(unsigned width) const; |
| |
| /// Truncate to new width with signed saturation. |
| /// |
| /// If this APInt, treated as signed integer, can be losslessly truncated to |
| /// the new bitwidth, then return truncated APInt. Else, return either |
| /// signed min value if the APInt was negative, or signed max value. |
| APInt truncSSat(unsigned width) const; |
| |
| /// Sign extend to a new width. |
| /// |
| /// This operation sign extends the APInt to a new width. If the high order |
| /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
| /// It is an error to specify a width that is less than the |
| /// current width. |
| APInt sext(unsigned width) const; |
| |
| /// Zero extend to a new width. |
| /// |
| /// This operation zero extends the APInt to a new width. The high order bits |
| /// are filled with 0 bits. It is an error to specify a width that is less |
| /// than the current width. |
| APInt zext(unsigned width) const; |
| |
| /// Sign extend or truncate to width |
| /// |
| /// Make this APInt have the bit width given by \p width. The value is sign |
| /// extended, truncated, or left alone to make it that width. |
| APInt sextOrTrunc(unsigned width) const; |
| |
| /// Zero extend or truncate to width |
| /// |
| /// Make this APInt have the bit width given by \p width. The value is zero |
| /// extended, truncated, or left alone to make it that width. |
| APInt zextOrTrunc(unsigned width) const; |
| |
| /// @} |
| /// \name Bit Manipulation Operators |
| /// @{ |
| |
| /// Set every bit to 1. |
| void setAllBits() { |
| if (isSingleWord()) |
| U.VAL = WORDTYPE_MAX; |
| else |
| // Set all the bits in all the words. |
| memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
| // Clear the unused ones |
| clearUnusedBits(); |
| } |
| |
| /// Set the given bit to 1 whose position is given as "bitPosition". |
| void setBit(unsigned BitPosition) { |
| assert(BitPosition < BitWidth && "BitPosition out of range"); |
| WordType Mask = maskBit(BitPosition); |
| if (isSingleWord()) |
| U.VAL |= Mask; |
| else |
| U.pVal[whichWord(BitPosition)] |= Mask; |
| } |
| |
| /// Set the sign bit to 1. |
| void setSignBit() { setBit(BitWidth - 1); } |
| |
| /// Set a given bit to a given value. |
| void setBitVal(unsigned BitPosition, bool BitValue) { |
| if (BitValue) |
| setBit(BitPosition); |
| else |
| clearBit(BitPosition); |
| } |
| |
| /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
| /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
| /// setBits when \p loBit < \p hiBit. |
| /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
| void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
| assert(hiBit <= BitWidth && "hiBit out of range"); |
| assert(loBit <= BitWidth && "loBit out of range"); |
| if (loBit < hiBit) { |
| setBits(loBit, hiBit); |
| return; |
| } |
| setLowBits(hiBit); |
| setHighBits(BitWidth - loBit); |
| } |
| |
| /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
| /// This function handles case when \p loBit <= \p hiBit. |
| void setBits(unsigned loBit, unsigned hiBit) { |
| assert(hiBit <= BitWidth && "hiBit out of range"); |
| assert(loBit <= BitWidth && "loBit out of range"); |
| assert(loBit <= hiBit && "loBit greater than hiBit"); |
| if (loBit == hiBit) |
| return; |
| if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
| uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
| mask <<= loBit; |
| if (isSingleWord()) |
| U.VAL |= mask; |
| else |
| U.pVal[0] |= mask; |
| } else { |
| setBitsSlowCase(loBit, hiBit); |
| } |
| } |
| |
| /// Set the top bits starting from loBit. |
| void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); } |
| |
| /// Set the bottom loBits bits. |
| void setLowBits(unsigned loBits) { return setBits(0, loBits); } |
| |
| /// Set the top hiBits bits. |
| void setHighBits(unsigned hiBits) { |
| return setBits(BitWidth - hiBits, BitWidth); |
| } |
| |
| /// Set every bit to 0. |
| void clearAllBits() { |
| if (isSingleWord()) |
| U.VAL = 0; |
| else |
| memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
| } |
| |
| /// Set a given bit to 0. |
| /// |
| /// Set the given bit to 0 whose position is given as "bitPosition". |
| void clearBit(unsigned BitPosition) { |
| assert(BitPosition < BitWidth && "BitPosition out of range"); |
| WordType Mask = ~maskBit(BitPosition); |
| if (isSingleWord()) |
| U.VAL &= Mask; |
| else |
| U.pVal[whichWord(BitPosition)] &= Mask; |
| } |
| |
| /// Set bottom loBits bits to 0. |
| void clearLowBits(unsigned loBits) { |
| assert(loBits <= BitWidth && "More bits than bitwidth"); |
| APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); |
| *this &= Keep; |
| } |
| |
| /// Set the sign bit to 0. |
| void clearSignBit() { clearBit(BitWidth - 1); } |
| |
| /// Toggle every bit to its opposite value. |
| void flipAllBits() { |
| if (isSingleWord()) { |
| U.VAL ^= WORDTYPE_MAX; |
| clearUnusedBits(); |
| } else { |
| flipAllBitsSlowCase(); |
| } |
| } |
| |
| /// Toggles a given bit to its opposite value. |
| /// |
| /// Toggle a given bit to its opposite value whose position is given |
| /// as "bitPosition". |
| void flipBit(unsigned bitPosition); |
| |
| /// Negate this APInt in place. |
| void negate() { |
| flipAllBits(); |
| ++(*this); |
| } |
| |
| /// Insert the bits from a smaller APInt starting at bitPosition. |
| void insertBits(const APInt &SubBits, unsigned bitPosition); |
| void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
| |
| /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
| APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
| uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; |
| |
| /// @} |
| /// \name Value Characterization Functions |
| /// @{ |
| |
| /// Return the number of bits in the APInt. |
| unsigned getBitWidth() const { return BitWidth; } |
| |
| /// Get the number of words. |
| /// |
| /// Here one word's bitwidth equals to that of uint64_t. |
| /// |
| /// \returns the number of words to hold the integer value of this APInt. |
| unsigned getNumWords() const { return getNumWords(BitWidth); } |
| |
| /// Get the number of words. |
| /// |
| /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
| /// |
| /// \returns the number of words to hold the integer value with a given bit |
| /// width. |
| static unsigned getNumWords(unsigned BitWidth) { |
| return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
| } |
| |
| /// Compute the number of active bits in the value |
| /// |
| /// This function returns the number of active bits which is defined as the |
| /// bit width minus the number of leading zeros. This is used in several |
| /// computations to see how "wide" the value is. |
| unsigned getActiveBits() const { return BitWidth - countl_zero(); } |
| |
| /// Compute the number of active words in the value of this APInt. |
| /// |
| /// This is used in conjunction with getActiveData to extract the raw value of |
| /// the APInt. |
| unsigned getActiveWords() const { |
| unsigned numActiveBits = getActiveBits(); |
| return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
| } |
| |
| /// Get the minimum bit size for this signed APInt |
| /// |
| /// Computes the minimum bit width for this APInt while considering it to be a |
| /// signed (and probably negative) value. If the value is not negative, this |
| /// function returns the same value as getActiveBits()+1. Otherwise, it |
| /// returns the smallest bit width that will retain the negative value. For |
| /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
| /// for -1, this function will always return 1. |
| unsigned getSignificantBits() const { |
| return BitWidth - getNumSignBits() + 1; |
| } |
| |
| LLVM_DEPRECATED("use getSignificantBits instead", "getSignificantBits") |
| unsigned getMinSignedBits() const { return getSignificantBits(); } |
| |
| /// Get zero extended value |
| /// |
| /// This method attempts to return the value of this APInt as a zero extended |
| /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
| /// uint64_t. Otherwise an assertion will result. |
| uint64_t getZExtValue() const { |
| if (isSingleWord()) |
| return U.VAL; |
| assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); |
| return U.pVal[0]; |
| } |
| |
| /// Get zero extended value if possible |
| /// |
| /// This method attempts to return the value of this APInt as a zero extended |
| /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
| /// uint64_t. Otherwise no value is returned. |
| std::optional<uint64_t> tryZExtValue() const { |
| return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue()) |
| : std::nullopt; |
| }; |
| |
| /// Get sign extended value |
| /// |
| /// This method attempts to return the value of this APInt as a sign extended |
| /// int64_t. The bit width must be <= 64 or the value must fit within an |
| /// int64_t. Otherwise an assertion will result. |
| int64_t getSExtValue() const { |
| if (isSingleWord()) |
| return SignExtend64(U.VAL, BitWidth); |
| assert(getSignificantBits() <= 64 && "Too many bits for int64_t"); |
| return int64_t(U.pVal[0]); |
| } |
| |
| /// Get sign extended value if possible |
| /// |
| /// This method attempts to return the value of this APInt as a sign extended |
| /// int64_t. The bitwidth must be <= 64 or the value must fit within an |
| /// int64_t. Otherwise no value is returned. |
| std::optional<int64_t> trySExtValue() const { |
| return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue()) |
| : std::nullopt; |
| }; |
| |
| /// Get bits required for string value. |
| /// |
| /// This method determines how many bits are required to hold the APInt |
| /// equivalent of the string given by \p str. |
| static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
| |
| /// Get the bits that are sufficient to represent the string value. This may |
| /// over estimate the amount of bits required, but it does not require |
| /// parsing the value in the string. |
| static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix); |
| |
| /// The APInt version of std::countl_zero. |
| /// |
| /// It counts the number of zeros from the most significant bit to the first |
| /// one bit. |
| /// |
| /// \returns BitWidth if the value is zero, otherwise returns the number of |
| /// zeros from the most significant bit to the first one bits. |
| unsigned countl_zero() const { |
| if (isSingleWord()) { |
| unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
| return llvm::countl_zero(U.VAL) - unusedBits; |
| } |
| return countLeadingZerosSlowCase(); |
| } |
| |
| unsigned countLeadingZeros() const { return countl_zero(); } |
| |
| /// Count the number of leading one bits. |
| /// |
| /// This function is an APInt version of std::countl_one. It counts the number |
| /// of ones from the most significant bit to the first zero bit. |
| /// |
| /// \returns 0 if the high order bit is not set, otherwise returns the number |
| /// of 1 bits from the most significant to the least |
| unsigned countl_one() const { |
| if (isSingleWord()) { |
| if (LLVM_UNLIKELY(BitWidth == 0)) |
| return 0; |
| return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
| } |
| return countLeadingOnesSlowCase(); |
| } |
| |
| unsigned countLeadingOnes() const { return countl_one(); } |
| |
| /// Computes the number of leading bits of this APInt that are equal to its |
| /// sign bit. |
| unsigned getNumSignBits() const { |
| return isNegative() ? countl_one() : countl_zero(); |
| } |
| |
| /// Count the number of trailing zero bits. |
| /// |
| /// This function is an APInt version of std::countr_zero. It counts the number |
| /// of zeros from the least significant bit to the first set bit. |
| /// |
| /// \returns BitWidth if the value is zero, otherwise returns the number of |
| /// zeros from the least significant bit to the first one bit. |
| unsigned countr_zero() const { |
| if (isSingleWord()) { |
| unsigned TrailingZeros = llvm::countr_zero(U.VAL); |
| return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
| } |
| return countTrailingZerosSlowCase(); |
| } |
| |
| unsigned countTrailingZeros() const { return countr_zero(); } |
| |
| /// Count the number of trailing one bits. |
| /// |
| /// This function is an APInt version of std::countr_one. It counts the number |
| /// of ones from the least significant bit to the first zero bit. |
| /// |
| /// \returns BitWidth if the value is all ones, otherwise returns the number |
| /// of ones from the least significant bit to the first zero bit. |
| unsigned countr_one() const { |
| if (isSingleWord()) |
| return llvm::countr_one(U.VAL); |
| return countTrailingOnesSlowCase(); |
| } |
| |
| unsigned countTrailingOnes() const { return countr_one(); } |
| |
| /// Count the number of bits set. |
| /// |
| /// This function is an APInt version of std::popcount. It counts the number |
| /// of 1 bits in the APInt value. |
| /// |
| /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
| unsigned popcount() const { |
| if (isSingleWord()) |
| return llvm::popcount(U.VAL); |
| return countPopulationSlowCase(); |
| } |
| |
| LLVM_DEPRECATED("use popcount instead", "popcount") |
| unsigned countPopulation() const { return popcount(); } |
| |
| /// @} |
| /// \name Conversion Functions |
| /// @{ |
| void print(raw_ostream &OS, bool isSigned) const; |
| |
| /// Converts an APInt to a string and append it to Str. Str is commonly a |
| /// SmallString. If Radix > 10, UpperCase determine the case of letter |
| /// digits. |
| void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
| bool formatAsCLiteral = false, bool UpperCase = true) const; |
| |
| /// Considers the APInt to be unsigned and converts it into a string in the |
| /// radix given. The radix can be 2, 8, 10 16, or 36. |
| void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| toString(Str, Radix, false, false); |
| } |
| |
| /// Considers the APInt to be signed and converts it into a string in the |
| /// radix given. The radix can be 2, 8, 10, 16, or 36. |
| void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| toString(Str, Radix, true, false); |
| } |
| |
| /// \returns a byte-swapped representation of this APInt Value. |
| APInt byteSwap() const; |
| |
| /// \returns the value with the bit representation reversed of this APInt |
| /// Value. |
| APInt reverseBits() const; |
| |
| /// Converts this APInt to a double value. |
| double roundToDouble(bool isSigned) const; |
| |
| /// Converts this unsigned APInt to a double value. |
| double roundToDouble() const { return roundToDouble(false); } |
| |
| /// Converts this signed APInt to a double value. |
| double signedRoundToDouble() const { return roundToDouble(true); } |
| |
| /// Converts APInt bits to a double |
| /// |
| /// The conversion does not do a translation from integer to double, it just |
| /// re-interprets the bits as a double. Note that it is valid to do this on |
| /// any bit width. Exactly 64 bits will be translated. |
| double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); } |
| |
| /// Converts APInt bits to a float |
| /// |
| /// The conversion does not do a translation from integer to float, it just |
| /// re-interprets the bits as a float. Note that it is valid to do this on |
| /// any bit width. Exactly 32 bits will be translated. |
| float bitsToFloat() const { |
| return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0))); |
| } |
| |
| /// Converts a double to APInt bits. |
| /// |
| /// The conversion does not do a translation from double to integer, it just |
| /// re-interprets the bits of the double. |
| static APInt doubleToBits(double V) { |
| return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V)); |
| } |
| |
| /// Converts a float to APInt bits. |
| /// |
| /// The conversion does not do a translation from float to integer, it just |
| /// re-interprets the bits of the float. |
| static APInt floatToBits(float V) { |
| return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V)); |
| } |
| |
| /// @} |
| /// \name Mathematics Operations |
| /// @{ |
| |
| /// \returns the floor log base 2 of this APInt. |
| unsigned logBase2() const { return getActiveBits() - 1; } |
| |
| /// \returns the ceil log base 2 of this APInt. |
| unsigned ceilLogBase2() const { |
| APInt temp(*this); |
| --temp; |
| return temp.getActiveBits(); |
| } |
| |
| /// \returns the nearest log base 2 of this APInt. Ties round up. |
| /// |
| /// NOTE: When we have a BitWidth of 1, we define: |
| /// |
| /// log2(0) = UINT32_MAX |
| /// log2(1) = 0 |
| /// |
| /// to get around any mathematical concerns resulting from |
| /// referencing 2 in a space where 2 does no exist. |
| unsigned nearestLogBase2() const; |
| |
| /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
| /// otherwise |
| int32_t exactLogBase2() const { |
| if (!isPowerOf2()) |
| return -1; |
| return logBase2(); |
| } |
| |
| /// Compute the square root. |
| APInt sqrt() const; |
| |
| /// Get the absolute value. If *this is < 0 then return -(*this), otherwise |
| /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit |
| /// wide APInt) is unchanged due to how negation works. |
| APInt abs() const { |
| if (isNegative()) |
| return -(*this); |
| return *this; |
| } |
| |
| /// \returns the multiplicative inverse for a given modulo. |
| APInt multiplicativeInverse(const APInt &modulo) const; |
| |
| /// @} |
| /// \name Building-block Operations for APInt and APFloat |
| /// @{ |
| |
| // These building block operations operate on a representation of arbitrary |
| // precision, two's-complement, bignum integer values. They should be |
| // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
| // generally a pointer to the base of an array of integer parts, representing |
| // an unsigned bignum, and a count of how many parts there are. |
| |
| /// Sets the least significant part of a bignum to the input value, and zeroes |
| /// out higher parts. |
| static void tcSet(WordType *, WordType, unsigned); |
| |
| /// Assign one bignum to another. |
| static void tcAssign(WordType *, const WordType *, unsigned); |
| |
| /// Returns true if a bignum is zero, false otherwise. |
| static bool tcIsZero(const WordType *, unsigned); |
| |
| /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
| static int tcExtractBit(const WordType *, unsigned bit); |
| |
| /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
| /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
| /// significant bit of DST. All high bits above srcBITS in DST are |
| /// zero-filled. |
| static void tcExtract(WordType *, unsigned dstCount, const WordType *, |
| unsigned srcBits, unsigned srcLSB); |
| |
| /// Set the given bit of a bignum. Zero-based. |
| static void tcSetBit(WordType *, unsigned bit); |
| |
| /// Clear the given bit of a bignum. Zero-based. |
| static void tcClearBit(WordType *, unsigned bit); |
| |
| /// Returns the bit number of the least or most significant set bit of a |
| /// number. If the input number has no bits set -1U is returned. |
| static unsigned tcLSB(const WordType *, unsigned n); |
| static unsigned tcMSB(const WordType *parts, unsigned n); |
| |
| /// Negate a bignum in-place. |
| static void tcNegate(WordType *, unsigned); |
| |
| /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); |
| /// DST += RHS. Returns the carry flag. |
| static WordType tcAddPart(WordType *, WordType, unsigned); |
| |
| /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| static WordType tcSubtract(WordType *, const WordType *, WordType carry, |
| unsigned); |
| /// DST -= RHS. Returns the carry flag. |
| static WordType tcSubtractPart(WordType *, WordType, unsigned); |
| |
| /// DST += SRC * MULTIPLIER + PART if add is true |
| /// DST = SRC * MULTIPLIER + PART if add is false |
| /// |
| /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
| /// start at the same point, i.e. DST == SRC. |
| /// |
| /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
| /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
| /// result, and if all of the omitted higher parts were zero return zero, |
| /// otherwise overflow occurred and return one. |
| static int tcMultiplyPart(WordType *dst, const WordType *src, |
| WordType multiplier, WordType carry, |
| unsigned srcParts, unsigned dstParts, bool add); |
| |
| /// DST = LHS * RHS, where DST has the same width as the operands and is |
| /// filled with the least significant parts of the result. Returns one if |
| /// overflow occurred, otherwise zero. DST must be disjoint from both |
| /// operands. |
| static int tcMultiply(WordType *, const WordType *, const WordType *, |
| unsigned); |
| |
| /// DST = LHS * RHS, where DST has width the sum of the widths of the |
| /// operands. No overflow occurs. DST must be disjoint from both operands. |
| static void tcFullMultiply(WordType *, const WordType *, const WordType *, |
| unsigned, unsigned); |
| |
| /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
| /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
| /// REMAINDER to the remainder, return zero. i.e. |
| /// |
| /// OLD_LHS = RHS * LHS + REMAINDER |
| /// |
| /// SCRATCH is a bignum of the same size as the operands and result for use by |
| /// the routine; its contents need not be initialized and are destroyed. LHS, |
| /// REMAINDER and SCRATCH must be distinct. |
| static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, |
| WordType *scratch, unsigned parts); |
| |
| /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
| /// restrictions on Count. |
| static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
| |
| /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
| /// restrictions on Count. |
| static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
| |
| /// Comparison (unsigned) of two bignums. |
| static int tcCompare(const WordType *, const WordType *, unsigned); |
| |
| /// Increment a bignum in-place. Return the carry flag. |
| static WordType tcIncrement(WordType *dst, unsigned parts) { |
| return tcAddPart(dst, 1, parts); |
| } |
| |
| /// Decrement a bignum in-place. Return the borrow flag. |
| static WordType tcDecrement(WordType *dst, unsigned parts) { |
| return tcSubtractPart(dst, 1, parts); |
| } |
| |
| /// Used to insert APInt objects, or objects that contain APInt objects, into |
| /// FoldingSets. |
| void Profile(FoldingSetNodeID &id) const; |
| |
| /// debug method |
| void dump() const; |
| |
| /// Returns whether this instance allocated memory. |
| bool needsCleanup() const { return !isSingleWord(); } |
| |
| private: |
| /// This union is used to store the integer value. When the |
| /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
| union { |
| uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
| uint64_t *pVal; ///< Used to store the >64 bits integer value. |
| } U; |
| |
| unsigned BitWidth = 1; ///< The number of bits in this APInt. |
| |
| friend struct DenseMapInfo<APInt, void>; |
| friend class APSInt; |
| |
| /// This constructor is used only internally for speed of construction of |
| /// temporaries. It is unsafe since it takes ownership of the pointer, so it |
| /// is not public. |
| APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } |
| |
| /// Determine which word a bit is in. |
| /// |
| /// \returns the word position for the specified bit position. |
| static unsigned whichWord(unsigned bitPosition) { |
| return bitPosition / APINT_BITS_PER_WORD; |
| } |
| |
| /// Determine which bit in a word the specified bit position is in. |
| static unsigned whichBit(unsigned bitPosition) { |
| return bitPosition % APINT_BITS_PER_WORD; |
| } |
| |
| /// Get a single bit mask. |
| /// |
| /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
| /// This method generates and returns a uint64_t (word) mask for a single |
| /// bit at a specific bit position. This is used to mask the bit in the |
| /// corresponding word. |
| static uint64_t maskBit(unsigned bitPosition) { |
| return 1ULL << whichBit(bitPosition); |
| } |
| |
| /// Clear unused high order bits |
| /// |
| /// This method is used internally to clear the top "N" bits in the high order |
| /// word that are not used by the APInt. This is needed after the most |
| /// significant word is assigned a value to ensure that those bits are |
| /// zero'd out. |
| APInt &clearUnusedBits() { |
| // Compute how many bits are used in the final word. |
| unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; |
| |
| // Mask out the high bits. |
| uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
| if (LLVM_UNLIKELY(BitWidth == 0)) |
| mask = 0; |
| |
| if (isSingleWord()) |
| U.VAL &= mask; |
| else |
| U.pVal[getNumWords() - 1] &= mask; |
| return *this; |
| } |
| |
| /// Get the word corresponding to a bit position |
| /// \returns the corresponding word for the specified bit position. |
| uint64_t getWord(unsigned bitPosition) const { |
| return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
| } |
| |
| /// Utility method to change the bit width of this APInt to new bit width, |
| /// allocating and/or deallocating as necessary. There is no guarantee on the |
| /// value of any bits upon return. Caller should populate the bits after. |
| void reallocate(unsigned NewBitWidth); |
| |
| /// Convert a char array into an APInt |
| /// |
| /// \param radix 2, 8, 10, 16, or 36 |
| /// Converts a string into a number. The string must be non-empty |
| /// and well-formed as a number of the given base. The bit-width |
| /// must be sufficient to hold the result. |
| /// |
| /// This is used by the constructors that take string arguments. |
| /// |
| /// StringRef::getAsInteger is superficially similar but (1) does |
| /// not assume that the string is well-formed and (2) grows the |
| /// result to hold the input. |
| void fromString(unsigned numBits, StringRef str, uint8_t radix); |
| |
| /// An internal division function for dividing APInts. |
| /// |
| /// This is used by the toString method to divide by the radix. It simply |
| /// provides a more convenient form of divide for internal use since KnuthDiv |
| /// has specific constraints on its inputs. If those constraints are not met |
| /// then it provides a simpler form of divide. |
| static void divide(const WordType *LHS, unsigned lhsWords, |
| const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
| WordType *Remainder); |
| |
| /// out-of-line slow case for inline constructor |
| void initSlowCase(uint64_t val, bool isSigned); |
| |
| /// shared code between two array constructors |
| void initFromArray(ArrayRef<uint64_t> array); |
| |
| /// out-of-line slow case for inline copy constructor |
| void initSlowCase(const APInt &that); |
| |
| /// out-of-line slow case for shl |
| void shlSlowCase(unsigned ShiftAmt); |
| |
| /// out-of-line slow case for lshr. |
| void lshrSlowCase(unsigned ShiftAmt); |
| |
| /// out-of-line slow case for ashr. |
| void ashrSlowCase(unsigned ShiftAmt); |
| |
| /// out-of-line slow case for operator= |
| void assignSlowCase(const APInt &RHS); |
| |
| /// out-of-line slow case for operator== |
| bool equalSlowCase(const APInt &RHS) const LLVM_READONLY; |
| |
| /// out-of-line slow case for countLeadingZeros |
| unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
| |
| /// out-of-line slow case for countLeadingOnes. |
| unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
| |
| /// out-of-line slow case for countTrailingZeros. |
| unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
| |
| /// out-of-line slow case for countTrailingOnes |
| unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
| |
| /// out-of-line slow case for countPopulation |
| unsigned countPopulationSlowCase() const LLVM_READONLY; |
| |
| /// out-of-line slow case for intersects. |
| bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
| |
| /// out-of-line slow case for isSubsetOf. |
| bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
| |
| /// out-of-line slow case for setBits. |
| void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
| |
| /// out-of-line slow case for flipAllBits. |
| void flipAllBitsSlowCase(); |
| |
| /// out-of-line slow case for concat. |
| APInt concatSlowCase(const APInt &NewLSB) const; |
| |
| /// out-of-line slow case for operator&=. |
| void andAssignSlowCase(const APInt &RHS); |
| |
| /// out-of-line slow case for operator|=. |
| void orAssignSlowCase(const APInt &RHS); |
| |
| /// out-of-line slow case for operator^=. |
| void xorAssignSlowCase(const APInt &RHS); |
| |
| /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
| /// to, or greater than RHS. |
| int compare(const APInt &RHS) const LLVM_READONLY; |
| |
| /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
| /// to, or greater than RHS. |
| int compareSigned(const APInt &RHS) const LLVM_READONLY; |
| |
| /// @} |
| }; |
| |
| inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
| |
| inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
| |
| /// Unary bitwise complement operator. |
| /// |
| /// \returns an APInt that is the bitwise complement of \p v. |
| inline APInt operator~(APInt v) { |
| v.flipAllBits(); |
| return v; |
| } |
| |
| inline APInt operator&(APInt a, const APInt &b) { |
| a &= b; |
| return a; |
| } |
| |
| inline APInt operator&(const APInt &a, APInt &&b) { |
| b &= a; |
| return std::move(b); |
| } |
| |
| inline APInt operator&(APInt a, uint64_t RHS) { |
| a &= RHS; |
| return a; |
| } |
| |
| inline APInt operator&(uint64_t LHS, APInt b) { |
| b &= LHS; |
| return b; |
| } |
| |
| inline APInt operator|(APInt a, const APInt &b) { |
| a |= b; |
| return a; |
| } |
| |
| inline APInt operator|(const APInt &a, APInt &&b) { |
| b |= a; |
| return std::move(b); |
| } |
| |
| inline APInt operator|(APInt a, uint64_t RHS) { |
| a |= RHS; |
| return a; |
| } |
| |
| inline APInt operator|(uint64_t LHS, APInt b) { |
| b |= LHS; |
| return b; |
| } |
| |
| inline APInt operator^(APInt a, const APInt &b) { |
| a ^= b; |
| return a; |
| } |
| |
| inline APInt operator^(const APInt &a, APInt &&b) { |
| b ^= a; |
| return std::move(b); |
| } |
| |
| inline APInt operator^(APInt a, uint64_t RHS) { |
| a ^= RHS; |
| return a; |
| } |
| |
| inline APInt operator^(uint64_t LHS, APInt b) { |
| b ^= LHS; |
| return b; |
| } |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
| I.print(OS, true); |
| return OS; |
| } |
| |
| inline APInt operator-(APInt v) { |
| v.negate(); |
| return v; |
| } |
| |
| inline APInt operator+(APInt a, const APInt &b) { |
| a += b; |
| return a; |
| } |
| |
| inline APInt operator+(const APInt &a, APInt &&b) { |
| b += a; |
| return std::move(b); |
| } |
| |
| inline APInt operator+(APInt a, uint64_t RHS) { |
| a += RHS; |
| return a; |
| } |
| |
| inline APInt operator+(uint64_t LHS, APInt b) { |
| b += LHS; |
| return b; |
| } |
| |
| inline APInt operator-(APInt a, const APInt &b) { |
| a -= b; |
| return a; |
| } |
| |
| inline APInt operator-(const APInt &a, APInt &&b) { |
| b.negate(); |
| b += a; |
| return std::move(b); |
| } |
| |
| inline APInt operator-(APInt a, uint64_t RHS) { |
| a -= RHS; |
| return a; |
| } |
| |
| inline APInt operator-(uint64_t LHS, APInt b) { |
| b.negate(); |
| b += LHS; |
| return b; |
| } |
| |
| inline APInt operator*(APInt a, uint64_t RHS) { |
| a *= RHS; |
| return a; |
| } |
| |
| inline APInt operator*(uint64_t LHS, APInt b) { |
| b *= LHS; |
| return b; |
| } |
| |
| namespace APIntOps { |
| |
| /// Determine the smaller of two APInts considered to be signed. |
| inline const APInt &smin(const APInt &A, const APInt &B) { |
| return A.slt(B) ? A : B; |
| } |
| |
| /// Determine the larger of two APInts considered to be signed. |
| inline const APInt &smax(const APInt &A, const APInt &B) { |
| return A.sgt(B) ? A : B; |
| } |
| |
| /// Determine the smaller of two APInts considered to be unsigned. |
| inline const APInt &umin(const APInt &A, const APInt &B) { |
| return A.ult(B) ? A : B; |
| } |
| |
| /// Determine the larger of two APInts considered to be unsigned. |
| inline const APInt &umax(const APInt &A, const APInt &B) { |
| return A.ugt(B) ? A : B; |
| } |
| |
| /// Compute GCD of two unsigned APInt values. |
| /// |
| /// This function returns the greatest common divisor of the two APInt values |
| /// using Stein's algorithm. |
| /// |
| /// \returns the greatest common divisor of A and B. |
| APInt GreatestCommonDivisor(APInt A, APInt B); |
| |
| /// Converts the given APInt to a double value. |
| /// |
| /// Treats the APInt as an unsigned value for conversion purposes. |
| inline double RoundAPIntToDouble(const APInt &APIVal) { |
| return APIVal.roundToDouble(); |
| } |
| |
| /// Converts the given APInt to a double value. |
| /// |
| /// Treats the APInt as a signed value for conversion purposes. |
| inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
| return APIVal.signedRoundToDouble(); |
| } |
| |
| /// Converts the given APInt to a float value. |
| inline float RoundAPIntToFloat(const APInt &APIVal) { |
| return float(RoundAPIntToDouble(APIVal)); |
| } |
| |
| /// Converts the given APInt to a float value. |
| /// |
| /// Treats the APInt as a signed value for conversion purposes. |
| inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
| return float(APIVal.signedRoundToDouble()); |
| } |
| |
| /// Converts the given double value into a APInt. |
| /// |
| /// This function convert a double value to an APInt value. |
| APInt RoundDoubleToAPInt(double Double, unsigned width); |
| |
| /// Converts a float value into a APInt. |
| /// |
| /// Converts a float value into an APInt value. |
| inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
| return RoundDoubleToAPInt(double(Float), width); |
| } |
| |
| /// Return A unsign-divided by B, rounded by the given rounding mode. |
| APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
| |
| /// Return A sign-divided by B, rounded by the given rounding mode. |
| APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
| |
| /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
| /// (e.g. 32 for i32). |
| /// This function finds the smallest number n, such that |
| /// (a) n >= 0 and q(n) = 0, or |
| /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
| /// integers, belong to two different intervals [Rk, Rk+R), |
| /// where R = 2^BW, and k is an integer. |
| /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
| /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
| /// subtraction (treated as addition of negated numbers) would always |
| /// count as an overflow, but here we want to allow values to decrease |
| /// and increase as long as they are within the same interval. |
| /// Specifically, adding of two negative numbers should not cause an |
| /// overflow (as long as the magnitude does not exceed the bit width). |
| /// On the other hand, given a positive number, adding a negative |
| /// number to it can give a negative result, which would cause the |
| /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
| /// treated as a special case of an overflow. |
| /// |
| /// This function returns std::nullopt if after finding k that minimizes the |
| /// positive solution to q(n) = kR, both solutions are contained between |
| /// two consecutive integers. |
| /// |
| /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
| /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
| /// virtue of *signed* overflow. This function will *not* find such an n, |
| /// however it may find a value of n satisfying the inequalities due to |
| /// an *unsigned* overflow (if the values are treated as unsigned). |
| /// To find a solution for a signed overflow, treat it as a problem of |
| /// finding an unsigned overflow with a range with of BW-1. |
| /// |
| /// The returned value may have a different bit width from the input |
| /// coefficients. |
| std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
| unsigned RangeWidth); |
| |
| /// Compare two values, and if they are different, return the position of the |
| /// most significant bit that is different in the values. |
| std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
| const APInt &B); |
| |
| /// Splat/Merge neighboring bits to widen/narrow the bitmask represented |
| /// by \param A to \param NewBitWidth bits. |
| /// |
| /// MatchAnyBits: (Default) |
| /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
| /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 |
| /// |
| /// MatchAllBits: |
| /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 |
| /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001 |
| /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. |
| APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, |
| bool MatchAllBits = false); |
| } // namespace APIntOps |
| |
| // See friend declaration above. This additional declaration is required in |
| // order to compile LLVM with IBM xlC compiler. |
| hash_code hash_value(const APInt &Arg); |
| |
| /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
| /// with the integer held in IntVal. |
| void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
| |
| /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
| /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
| void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); |
| |
| /// Provide DenseMapInfo for APInt. |
| template <> struct DenseMapInfo<APInt, void> { |
| static inline APInt getEmptyKey() { |
| APInt V(nullptr, 0); |
| V.U.VAL = ~0ULL; |
| return V; |
| } |
| |
| static inline APInt getTombstoneKey() { |
| APInt V(nullptr, 0); |
| V.U.VAL = ~1ULL; |
| return V; |
| } |
| |
| static unsigned getHashValue(const APInt &Key); |
| |
| static bool isEqual(const APInt &LHS, const APInt &RHS) { |
| return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
| } |
| }; |
| |
| } // namespace llvm |
| |
| #endif |