blob: f0070640be50f98083e437325e46d851783c89b2 [file] [log] [blame]
//===- llvm/unittests/Transforms/Vectorize/VPlanTest.cpp - VPlan tests ----===//
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../lib/Transforms/Vectorize/VPlan.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "gtest/gtest.h"
#include <string>
namespace llvm {
namespace {
#define CHECK_ITERATOR(Range1, ...) \
do { \
std::vector<VPInstruction *> Tmp = {__VA_ARGS__}; \
EXPECT_EQ((size_t)std::distance(Range1.begin(), Range1.end()), \
Tmp.size()); \
for (auto Pair : zip(Range1, make_range(Tmp.begin(), Tmp.end()))) \
EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair)); \
} while (0)
TEST(VPInstructionTest, insertBefore) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock VPBB1;
VPBB1.appendRecipe(I1);
I2->insertBefore(I1);
CHECK_ITERATOR(VPBB1, I2, I1);
I3->insertBefore(I2);
CHECK_ITERATOR(VPBB1, I3, I2, I1);
}
TEST(VPInstructionTest, eraseFromParent) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock VPBB1;
VPBB1.appendRecipe(I1);
VPBB1.appendRecipe(I2);
VPBB1.appendRecipe(I3);
I2->eraseFromParent();
CHECK_ITERATOR(VPBB1, I1, I3);
I1->eraseFromParent();
CHECK_ITERATOR(VPBB1, I3);
I3->eraseFromParent();
EXPECT_TRUE(VPBB1.empty());
}
TEST(VPInstructionTest, moveAfter) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock VPBB1;
VPBB1.appendRecipe(I1);
VPBB1.appendRecipe(I2);
VPBB1.appendRecipe(I3);
I1->moveAfter(I2);
CHECK_ITERATOR(VPBB1, I2, I1, I3);
VPInstruction *I4 = new VPInstruction(4, {});
VPInstruction *I5 = new VPInstruction(5, {});
VPBasicBlock VPBB2;
VPBB2.appendRecipe(I4);
VPBB2.appendRecipe(I5);
I3->moveAfter(I4);
CHECK_ITERATOR(VPBB1, I2, I1);
CHECK_ITERATOR(VPBB2, I4, I3, I5);
EXPECT_EQ(I3->getParent(), I4->getParent());
}
TEST(VPInstructionTest, moveBefore) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock VPBB1;
VPBB1.appendRecipe(I1);
VPBB1.appendRecipe(I2);
VPBB1.appendRecipe(I3);
I1->moveBefore(VPBB1, I3->getIterator());
CHECK_ITERATOR(VPBB1, I2, I1, I3);
VPInstruction *I4 = new VPInstruction(4, {});
VPInstruction *I5 = new VPInstruction(5, {});
VPBasicBlock VPBB2;
VPBB2.appendRecipe(I4);
VPBB2.appendRecipe(I5);
I3->moveBefore(VPBB2, I4->getIterator());
CHECK_ITERATOR(VPBB1, I2, I1);
CHECK_ITERATOR(VPBB2, I3, I4, I5);
EXPECT_EQ(I3->getParent(), I4->getParent());
VPBasicBlock VPBB3;
I4->moveBefore(VPBB3, VPBB3.end());
CHECK_ITERATOR(VPBB1, I2, I1);
CHECK_ITERATOR(VPBB2, I3, I5);
CHECK_ITERATOR(VPBB3, I4);
EXPECT_EQ(&VPBB3, I4->getParent());
}
TEST(VPInstructionTest, setOperand) {
VPValue *VPV1 = new VPValue();
VPValue *VPV2 = new VPValue();
VPInstruction *I1 = new VPInstruction(0, {VPV1, VPV2});
EXPECT_EQ(1u, VPV1->getNumUsers());
EXPECT_EQ(I1, *VPV1->user_begin());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
// Replace operand 0 (VPV1) with VPV3.
VPValue *VPV3 = new VPValue();
I1->setOperand(0, VPV3);
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
EXPECT_EQ(1u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
// Replace operand 1 (VPV2) with VPV3.
I1->setOperand(1, VPV3);
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(0u, VPV2->getNumUsers());
EXPECT_EQ(2u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
EXPECT_EQ(I1, *std::next(VPV3->user_begin()));
// Replace operand 0 (VPV3) with VPV4.
VPValue *VPV4 = new VPValue();
I1->setOperand(0, VPV4);
EXPECT_EQ(1u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
EXPECT_EQ(I1, *VPV4->user_begin());
// Replace operand 1 (VPV3) with VPV4.
I1->setOperand(1, VPV4);
EXPECT_EQ(0u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV4->user_begin());
EXPECT_EQ(I1, *std::next(VPV4->user_begin()));
delete I1;
delete VPV1;
delete VPV2;
delete VPV3;
delete VPV4;
}
TEST(VPInstructionTest, replaceAllUsesWith) {
VPValue *VPV1 = new VPValue();
VPValue *VPV2 = new VPValue();
VPInstruction *I1 = new VPInstruction(0, {VPV1, VPV2});
// Replace all uses of VPV1 with VPV3.
VPValue *VPV3 = new VPValue();
VPV1->replaceAllUsesWith(VPV3);
EXPECT_EQ(VPV3, I1->getOperand(0));
EXPECT_EQ(VPV2, I1->getOperand(1));
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
EXPECT_EQ(1u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
// Replace all uses of VPV2 with VPV3.
VPV2->replaceAllUsesWith(VPV3);
EXPECT_EQ(VPV3, I1->getOperand(0));
EXPECT_EQ(VPV3, I1->getOperand(1));
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(0u, VPV2->getNumUsers());
EXPECT_EQ(2u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
// Replace all uses of VPV3 with VPV1.
VPV3->replaceAllUsesWith(VPV1);
EXPECT_EQ(VPV1, I1->getOperand(0));
EXPECT_EQ(VPV1, I1->getOperand(1));
EXPECT_EQ(2u, VPV1->getNumUsers());
EXPECT_EQ(I1, *VPV1->user_begin());
EXPECT_EQ(0u, VPV2->getNumUsers());
EXPECT_EQ(0u, VPV3->getNumUsers());
VPInstruction *I2 = new VPInstruction(0, {VPV1, VPV2});
EXPECT_EQ(3u, VPV1->getNumUsers());
VPV1->replaceAllUsesWith(VPV3);
EXPECT_EQ(3u, VPV3->getNumUsers());
delete I1;
delete I2;
delete VPV1;
delete VPV2;
delete VPV3;
}
TEST(VPInstructionTest, releaseOperandsAtDeletion) {
VPValue *VPV1 = new VPValue();
VPValue *VPV2 = new VPValue();
VPInstruction *I1 = new VPInstruction(0, {VPV1, VPV2});
EXPECT_EQ(1u, VPV1->getNumUsers());
EXPECT_EQ(I1, *VPV1->user_begin());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
delete I1;
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(0u, VPV2->getNumUsers());
delete VPV1;
delete VPV2;
}
TEST(VPBasicBlockTest, getPlan) {
{
VPBasicBlock *VPBB1 = new VPBasicBlock();
VPBasicBlock *VPBB2 = new VPBasicBlock();
VPBasicBlock *VPBB3 = new VPBasicBlock();
VPBasicBlock *VPBB4 = new VPBasicBlock();
// VPBB1
// / \
// VPBB2 VPBB3
// \ /
// VPBB4
VPBlockUtils::connectBlocks(VPBB1, VPBB2);
VPBlockUtils::connectBlocks(VPBB1, VPBB3);
VPBlockUtils::connectBlocks(VPBB2, VPBB4);
VPBlockUtils::connectBlocks(VPBB3, VPBB4);
VPlan Plan;
Plan.setEntry(VPBB1);
EXPECT_EQ(&Plan, VPBB1->getPlan());
EXPECT_EQ(&Plan, VPBB2->getPlan());
EXPECT_EQ(&Plan, VPBB3->getPlan());
EXPECT_EQ(&Plan, VPBB4->getPlan());
}
{
// Region block is entry into VPlan.
VPBasicBlock *R1BB1 = new VPBasicBlock();
VPBasicBlock *R1BB2 = new VPBasicBlock();
VPRegionBlock *R1 = new VPRegionBlock(R1BB1, R1BB2, "R1");
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPlan Plan;
Plan.setEntry(R1);
EXPECT_EQ(&Plan, R1->getPlan());
EXPECT_EQ(&Plan, R1BB1->getPlan());
EXPECT_EQ(&Plan, R1BB2->getPlan());
}
{
// VPBasicBlock is the entry into the VPlan, followed by a region.
VPBasicBlock *R1BB1 = new VPBasicBlock();
VPBasicBlock *R1BB2 = new VPBasicBlock();
VPRegionBlock *R1 = new VPRegionBlock(R1BB1, R1BB2, "R1");
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPBasicBlock *VPBB1 = new VPBasicBlock();
VPBlockUtils::connectBlocks(VPBB1, R1);
VPlan Plan;
Plan.setEntry(VPBB1);
EXPECT_EQ(&Plan, VPBB1->getPlan());
EXPECT_EQ(&Plan, R1->getPlan());
EXPECT_EQ(&Plan, R1BB1->getPlan());
EXPECT_EQ(&Plan, R1BB2->getPlan());
}
{
VPBasicBlock *R1BB1 = new VPBasicBlock();
VPBasicBlock *R1BB2 = new VPBasicBlock();
VPRegionBlock *R1 = new VPRegionBlock(R1BB1, R1BB2, "R1");
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPBasicBlock *R2BB1 = new VPBasicBlock();
VPBasicBlock *R2BB2 = new VPBasicBlock();
VPRegionBlock *R2 = new VPRegionBlock(R2BB1, R2BB2, "R2");
VPBlockUtils::connectBlocks(R2BB1, R2BB2);
VPBasicBlock *VPBB1 = new VPBasicBlock();
VPBlockUtils::connectBlocks(VPBB1, R1);
VPBlockUtils::connectBlocks(VPBB1, R2);
VPBasicBlock *VPBB2 = new VPBasicBlock();
VPBlockUtils::connectBlocks(R1, VPBB2);
VPBlockUtils::connectBlocks(R2, VPBB2);
VPlan Plan;
Plan.setEntry(VPBB1);
EXPECT_EQ(&Plan, VPBB1->getPlan());
EXPECT_EQ(&Plan, R1->getPlan());
EXPECT_EQ(&Plan, R1BB1->getPlan());
EXPECT_EQ(&Plan, R1BB2->getPlan());
EXPECT_EQ(&Plan, R2->getPlan());
EXPECT_EQ(&Plan, R2BB1->getPlan());
EXPECT_EQ(&Plan, R2BB2->getPlan());
EXPECT_EQ(&Plan, VPBB2->getPlan());
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
TEST(VPBasicBlockTest, print) {
VPInstruction *I1 = new VPInstruction(Instruction::Add, {});
VPInstruction *I2 = new VPInstruction(Instruction::Sub, {I1});
VPInstruction *I3 = new VPInstruction(Instruction::Br, {I1, I2});
VPBasicBlock *VPBB1 = new VPBasicBlock();
VPBB1->appendRecipe(I1);
VPBB1->appendRecipe(I2);
VPBB1->appendRecipe(I3);
VPBB1->setName("bb1");
VPInstruction *I4 = new VPInstruction(Instruction::Mul, {I2, I1});
VPInstruction *I5 = new VPInstruction(Instruction::Ret, {I4});
VPBasicBlock *VPBB2 = new VPBasicBlock();
VPBB2->appendRecipe(I4);
VPBB2->appendRecipe(I5);
VPBB2->setName("bb2");
VPBlockUtils::connectBlocks(VPBB1, VPBB2);
// Check printing an instruction without associated VPlan.
{
std::string I3Dump;
raw_string_ostream OS(I3Dump);
VPSlotTracker SlotTracker;
I3->print(OS, "", SlotTracker);
OS.flush();
EXPECT_EQ("EMIT br <badref> <badref>", I3Dump);
}
VPlan Plan;
Plan.setEntry(VPBB1);
std::string FullDump;
raw_string_ostream OS(FullDump);
Plan.printDOT(OS);
const char *ExpectedStr = R"(digraph VPlan {
graph [labelloc=t, fontsize=30; label="Vectorization Plan"]
node [shape=rect, fontname=Courier, fontsize=30]
edge [fontname=Courier, fontsize=30]
compound=true
N0 [label =
"bb1:\l" +
" EMIT vp\<%0\> = add\l" +
" EMIT vp\<%1\> = sub vp\<%0\>\l" +
" EMIT br vp\<%0\> vp\<%1\>\l" +
"Successor(s): bb2\l"
]
N0 -> N1 [ label=""]
N1 [label =
"bb2:\l" +
" EMIT vp\<%3\> = mul vp\<%1\> vp\<%0\>\l" +
" EMIT ret vp\<%3\>\l" +
"No successors\l"
]
}
)";
EXPECT_EQ(ExpectedStr, FullDump);
const char *ExpectedBlock1Str = R"(bb1:
EMIT vp<%0> = add
EMIT vp<%1> = sub vp<%0>
EMIT br vp<%0> vp<%1>
Successor(s): bb2
)";
std::string Block1Dump;
raw_string_ostream OS1(Block1Dump);
VPBB1->print(OS1);
EXPECT_EQ(ExpectedBlock1Str, Block1Dump);
// Ensure that numbering is good when dumping the second block in isolation.
const char *ExpectedBlock2Str = R"(bb2:
EMIT vp<%3> = mul vp<%1> vp<%0>
EMIT ret vp<%3>
No successors
)";
std::string Block2Dump;
raw_string_ostream OS2(Block2Dump);
VPBB2->print(OS2);
EXPECT_EQ(ExpectedBlock2Str, Block2Dump);
{
std::string I3Dump;
raw_string_ostream OS(I3Dump);
VPSlotTracker SlotTracker(&Plan);
I3->print(OS, "", SlotTracker);
OS.flush();
EXPECT_EQ("EMIT br vp<%0> vp<%1>", I3Dump);
}
{
std::string I4Dump;
raw_string_ostream OS(I4Dump);
OS << *I4;
OS.flush();
EXPECT_EQ("EMIT vp<%3> = mul vp<%1> vp<%0>", I4Dump);
}
}
#endif
TEST(VPRecipeTest, CastVPInstructionToVPUser) {
VPValue Op1;
VPValue Op2;
VPInstruction Recipe(Instruction::Add, {&Op1, &Op2});
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
}
TEST(VPRecipeTest, CastVPWidenRecipeToVPUser) {
LLVMContext C;
IntegerType *Int32 = IntegerType::get(C, 32);
auto *AI =
BinaryOperator::CreateAdd(UndefValue::get(Int32), UndefValue::get(Int32));
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 2> Args;
Args.push_back(&Op1);
Args.push_back(&Op1);
VPWidenRecipe WidenR(*AI, make_range(Args.begin(), Args.end()));
EXPECT_TRUE(isa<VPUser>(&WidenR));
VPRecipeBase *WidenRBase = &WidenR;
EXPECT_TRUE(isa<VPUser>(WidenRBase));
EXPECT_EQ(&WidenR, WidenRBase);
delete AI;
}
TEST(VPRecipeTest, CastVPWidenCallRecipeToVPUserAndVPDef) {
LLVMContext C;
IntegerType *Int32 = IntegerType::get(C, 32);
FunctionType *FTy = FunctionType::get(Int32, false);
auto *Call = CallInst::Create(FTy, UndefValue::get(FTy));
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 2> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
VPWidenCallRecipe Recipe(*Call, make_range(Args.begin(), Args.end()));
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
VPValue *VPV = &Recipe;
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDef()));
EXPECT_EQ(&Recipe, dyn_cast<VPRecipeBase>(VPV->getDef()));
delete Call;
}
TEST(VPRecipeTest, CastVPWidenSelectRecipeToVPUserAndVPDef) {
LLVMContext C;
IntegerType *Int1 = IntegerType::get(C, 1);
IntegerType *Int32 = IntegerType::get(C, 32);
auto *SelectI = SelectInst::Create(
UndefValue::get(Int1), UndefValue::get(Int32), UndefValue::get(Int32));
VPValue Op1;
VPValue Op2;
VPValue Op3;
SmallVector<VPValue *, 4> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
Args.push_back(&Op3);
VPWidenSelectRecipe WidenSelectR(*SelectI,
make_range(Args.begin(), Args.end()), false);
EXPECT_TRUE(isa<VPUser>(&WidenSelectR));
VPRecipeBase *BaseR = &WidenSelectR;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&WidenSelectR, BaseR);
VPValue *VPV = &WidenSelectR;
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDef()));
EXPECT_EQ(&WidenSelectR, dyn_cast<VPRecipeBase>(VPV->getDef()));
delete SelectI;
}
TEST(VPRecipeTest, CastVPWidenGEPRecipeToVPUserAndVPDef) {
LLVMContext C;
IntegerType *Int32 = IntegerType::get(C, 32);
PointerType *Int32Ptr = PointerType::get(Int32, 0);
auto *GEP = GetElementPtrInst::Create(Int32, UndefValue::get(Int32Ptr),
UndefValue::get(Int32));
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 4> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
VPWidenGEPRecipe Recipe(GEP, make_range(Args.begin(), Args.end()));
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
VPValue *VPV = &Recipe;
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDef()));
EXPECT_EQ(&Recipe, dyn_cast<VPRecipeBase>(VPV->getDef()));
delete GEP;
}
TEST(VPRecipeTest, CastVPBlendRecipeToVPUser) {
LLVMContext C;
IntegerType *Int32 = IntegerType::get(C, 32);
auto *Phi = PHINode::Create(Int32, 1);
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 4> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
VPBlendRecipe Recipe(Phi, Args);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
delete Phi;
}
TEST(VPRecipeTest, CastVPInterleaveRecipeToVPUser) {
LLVMContext C;
VPValue Addr;
VPValue Mask;
InterleaveGroup<Instruction> IG(4, false, Align(4));
VPInterleaveRecipe Recipe(&IG, &Addr, {}, &Mask);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
}
TEST(VPRecipeTest, CastVPReplicateRecipeToVPUser) {
LLVMContext C;
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 4> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
VPReplicateRecipe Recipe(nullptr, make_range(Args.begin(), Args.end()), true,
false);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
}
TEST(VPRecipeTest, CastVPBranchOnMaskRecipeToVPUser) {
LLVMContext C;
VPValue Mask;
VPBranchOnMaskRecipe Recipe(&Mask);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
}
TEST(VPRecipeTest, CastVPWidenMemoryInstructionRecipeToVPUserAndVPDef) {
LLVMContext C;
IntegerType *Int32 = IntegerType::get(C, 32);
PointerType *Int32Ptr = PointerType::get(Int32, 0);
auto *Load =
new LoadInst(Int32, UndefValue::get(Int32Ptr), "", false, Align(1));
VPValue Addr;
VPValue Mask;
VPWidenMemoryInstructionRecipe Recipe(*Load, &Addr, &Mask);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
VPValue *VPV = Recipe.getVPValue();
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDef()));
EXPECT_EQ(&Recipe, dyn_cast<VPRecipeBase>(VPV->getDef()));
delete Load;
}
TEST(VPRecipeTest, MayHaveSideEffects) {
LLVMContext C;
IntegerType *Int1 = IntegerType::get(C, 1);
IntegerType *Int32 = IntegerType::get(C, 32);
PointerType *Int32Ptr = PointerType::get(Int32, 0);
{
auto *AI = BinaryOperator::CreateAdd(UndefValue::get(Int32),
UndefValue::get(Int32));
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 2> Args;
Args.push_back(&Op1);
Args.push_back(&Op1);
VPWidenRecipe Recipe(*AI, make_range(Args.begin(), Args.end()));
EXPECT_FALSE(Recipe.mayHaveSideEffects());
delete AI;
}
{
auto *SelectI = SelectInst::Create(
UndefValue::get(Int1), UndefValue::get(Int32), UndefValue::get(Int32));
VPValue Op1;
VPValue Op2;
VPValue Op3;
SmallVector<VPValue *, 4> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
Args.push_back(&Op3);
VPWidenSelectRecipe Recipe(*SelectI, make_range(Args.begin(), Args.end()),
false);
EXPECT_FALSE(Recipe.mayHaveSideEffects());
delete SelectI;
}
{
auto *GEP = GetElementPtrInst::Create(Int32, UndefValue::get(Int32Ptr),
UndefValue::get(Int32));
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 4> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
VPWidenGEPRecipe Recipe(GEP, make_range(Args.begin(), Args.end()));
EXPECT_FALSE(Recipe.mayHaveSideEffects());
delete GEP;
}
{
VPValue Mask;
VPBranchOnMaskRecipe Recipe(&Mask);
EXPECT_FALSE(Recipe.mayHaveSideEffects());
}
{
VPValue ChainOp;
VPValue VecOp;
VPValue CondOp;
VPReductionRecipe Recipe(nullptr, nullptr, &ChainOp, &CondOp, &VecOp,
nullptr);
EXPECT_FALSE(Recipe.mayHaveSideEffects());
}
{
auto *Load =
new LoadInst(Int32, UndefValue::get(Int32Ptr), "", false, Align(1));
VPValue Addr;
VPValue Mask;
VPWidenMemoryInstructionRecipe Recipe(*Load, &Addr, &Mask);
EXPECT_TRUE(Recipe.mayHaveSideEffects());
delete Load;
}
{
FunctionType *FTy = FunctionType::get(Int32, false);
auto *Call = CallInst::Create(FTy, UndefValue::get(FTy));
VPValue Op1;
VPValue Op2;
SmallVector<VPValue *, 2> Args;
Args.push_back(&Op1);
Args.push_back(&Op2);
VPWidenCallRecipe Recipe(*Call, make_range(Args.begin(), Args.end()));
EXPECT_TRUE(Recipe.mayHaveSideEffects());
delete Call;
}
// The initial implementation is conservative with respect to VPInstructions.
{
VPValue Op1;
VPValue Op2;
VPInstruction Recipe(Instruction::Add, {&Op1, &Op2});
EXPECT_TRUE(Recipe.mayHaveSideEffects());
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
TEST(VPRecipeTest, dump) {
VPlan Plan;
VPBasicBlock *VPBB1 = new VPBasicBlock();
Plan.setEntry(VPBB1);
LLVMContext C;
IntegerType *Int32 = IntegerType::get(C, 32);
auto *AI =
BinaryOperator::CreateAdd(UndefValue::get(Int32), UndefValue::get(Int32));
AI->setName("a");
SmallVector<VPValue *, 2> Args;
VPValue *ExtVPV1 = new VPValue();
VPValue *ExtVPV2 = new VPValue();
Plan.addExternalDef(ExtVPV1);
Plan.addExternalDef(ExtVPV2);
Args.push_back(ExtVPV1);
Args.push_back(ExtVPV2);
VPWidenRecipe *WidenR =
new VPWidenRecipe(*AI, make_range(Args.begin(), Args.end()));
VPBB1->appendRecipe(WidenR);
{
// Use EXPECT_EXIT to capture stderr and compare against expected output.
//
// Test VPValue::dump().
VPValue *VPV = WidenR;
EXPECT_EXIT(
{
VPV->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add vp<%0>, vp<%1>");
// Test VPRecipeBase::dump().
VPRecipeBase *R = WidenR;
EXPECT_EXIT(
{
R->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add vp<%0>, vp<%1>");
// Test VPDef::dump().
VPDef *D = WidenR;
EXPECT_EXIT(
{
D->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add vp<%0>, vp<%1>");
}
delete AI;
}
#endif
TEST(VPRecipeTest, CastVPReductionRecipeToVPUser) {
LLVMContext C;
VPValue ChainOp;
VPValue VecOp;
VPValue CondOp;
VPReductionRecipe Recipe(nullptr, nullptr, &ChainOp, &CondOp, &VecOp,
nullptr);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
}
struct VPDoubleValueDef : public VPRecipeBase {
VPDoubleValueDef(ArrayRef<VPValue *> Operands) : VPRecipeBase(99, Operands) {
new VPValue(nullptr, this);
new VPValue(nullptr, this);
}
void execute(struct VPTransformState &State) override{};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override {}
#endif
};
TEST(VPDoubleValueDefTest, traverseUseLists) {
// Check that the def-use chains of a multi-def can be traversed in both
// directions.
// Create a new VPDef which defines 2 values and has 2 operands.
VPInstruction Op0(20, {});
VPInstruction Op1(30, {});
VPDoubleValueDef DoubleValueDef({&Op0, &Op1});
// Create a new users of the defined values.
VPInstruction I1(
1, {DoubleValueDef.getVPValue(0), DoubleValueDef.getVPValue(1)});
VPInstruction I2(2, {DoubleValueDef.getVPValue(0)});
VPInstruction I3(3, {DoubleValueDef.getVPValue(1)});
// Check operands of the VPDef (traversing upwards).
SmallVector<VPValue *, 4> DoubleOperands(DoubleValueDef.op_begin(),
DoubleValueDef.op_end());
EXPECT_EQ(2u, DoubleOperands.size());
EXPECT_EQ(&Op0, DoubleOperands[0]);
EXPECT_EQ(&Op1, DoubleOperands[1]);
// Check users of the defined values (traversing downwards).
SmallVector<VPUser *, 4> DoubleValueDefV0Users(
DoubleValueDef.getVPValue(0)->user_begin(),
DoubleValueDef.getVPValue(0)->user_end());
EXPECT_EQ(2u, DoubleValueDefV0Users.size());
EXPECT_EQ(&I1, DoubleValueDefV0Users[0]);
EXPECT_EQ(&I2, DoubleValueDefV0Users[1]);
SmallVector<VPUser *, 4> DoubleValueDefV1Users(
DoubleValueDef.getVPValue(1)->user_begin(),
DoubleValueDef.getVPValue(1)->user_end());
EXPECT_EQ(2u, DoubleValueDefV1Users.size());
EXPECT_EQ(&I1, DoubleValueDefV1Users[0]);
EXPECT_EQ(&I3, DoubleValueDefV1Users[1]);
// Now check that we can get the right VPDef for each defined value.
EXPECT_EQ(&DoubleValueDef, I1.getOperand(0)->getDef());
EXPECT_EQ(&DoubleValueDef, I1.getOperand(1)->getDef());
EXPECT_EQ(&DoubleValueDef, I2.getOperand(0)->getDef());
EXPECT_EQ(&DoubleValueDef, I3.getOperand(0)->getDef());
}
} // namespace
} // namespace llvm