blob: 6dcbd7903c4a75476dc6f9a01256518ee609d158 [file] [log] [blame]
; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s
; First licm pass is to hoist/sink invariant stores if possible. Today LICM does
; not hoist/sink the invariant stores. Even if that changes, we should still
; vectorize this loop in case licm is not run.
; The next licm pass after vectorization is to hoist/sink loop invariant
; instructions.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; all tests check that it is legal to vectorize the stores to invariant
; address.
; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction(
; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b)
; CHECK: vector.memcheck:
; CHECK: found.conflict
; CHECK-LABEL: vector.body:
; CHECK: %vec.phi = phi <4 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
; CHECK: %wide.load = load <4 x i32>
; CHECK: [[ADD]] = add <4 x i32> %vec.phi, %wide.load
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
; CHECK-LABEL: middle.block:
; CHECK: call i32 @llvm.vector.reduce.add.v4i32(<4 x i32>
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
store i32 %ntrunc, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; CHECK-LABEL: inv_val_store_to_inv_address(
; CHECK-LABEL: vector.body:
; CHECK: store i32 %ntrunc, i32* %a
; CHECK: store <4 x i32>
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %a
store i32 %ntrunc, i32* %tmp1
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Both of these tests below are handled as predicated stores.
; Conditional store
; if (b[i] == k) a = ntrunc
; TODO: We can be better with the code gen for the first test and we can have
; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional(
; CHECK-LABEL: vector.body:
; CHECK: %wide.load = load <4 x i32>, <4 x i32>*
; CHECK: [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}}
; CHECK: store <4 x i32>
; CHECK-NEXT: [[EE:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 0
; CHECK-NEXT: br i1 [[EE]], label %pred.store.if, label %pred.store.continue
; CHECK-LABEL: pred.store.if:
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: br label %pred.store.continue
; CHECK-LABEL: pred.store.continue:
; CHECK-NEXT: [[EE1:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 1
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %latch
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; if (b[i] == k)
; a = ntrunc
; else a = k;
; TODO: We could vectorize this once we support multiple uniform stores to the
; same address.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values(
; CHECK-NOT: load <4 x i32>
define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
cond_store_k:
store i32 %k, i32 * %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Instcombine'd version of above test. Now the store is no longer of invariant
; value.
; scalar store the value extracted from the last element of the vector value.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[SMAX:%.*]] = call i64 @llvm.smax.i64(i64 [[N]], i64 1)
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[SMAX2:%.*]] = call i64 @llvm.smax.i64(i64 [[N]], i64 1)
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> poison, i32 [[K:%.*]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> poison, <4 x i32> zeroinitializer
; CHECK-NEXT: [[BROADCAST_SPLATINSERT7:%.*]] = insertelement <4 x i32> poison, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT8:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT7]], <4 x i32> poison, <4 x i32> zeroinitializer
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq <4 x i32> [[WIDE_LOAD]], [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32>* [[TMP5]], align 4
; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP4]], <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32> [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT: store i32 [[TMP6]], i32* [[A]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[TMP2]], [[K]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK: cond_store:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: cond_store_k:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; invariant val stored to invariant address predicated on invariant condition
; This is not treated as a predicated store since the block the store belongs to
; is the latch block (which doesn't need to be predicated).
; variant/invariant values being stored to invariant address.
; test checks that the last element of the phi is extracted and scalar stored
; into the uniform address within the loop.
; Since the condition and the phi is loop invariant, they are LICM'ed after
; vectorization.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[NTRUNC]], [[K:%.*]]
; CHECK-NEXT: [[SMAX:%.*]] = call i64 @llvm.smax.i64(i64 [[N]], i64 1)
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[SMAX2:%.*]] = call i64 @llvm.smax.i64(i64 [[N]], i64 1)
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> poison, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> poison, <4 x i32> zeroinitializer
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i1> undef, i1 [[CMP]], i32 3
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i32> poison, i32 [[K]], i32 3
; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32> [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP7:%.*]] = bitcast i32* [[TMP6]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32>* [[TMP7]], align 4
; CHECK-NEXT: store i32 [[TMP5]], i32* [[A]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK: cond_store:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: cond_store_k:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; variant value stored to uniform address tests that the code gen extracts the
; last element from the variant vector and scalar stores it into the uniform
; address.
define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) {
; CHECK-LABEL: @variant_val_store_to_inv_address(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[SMAX:%.*]] = call i64 @llvm.smax.i64(i64 [[N]], i64 1)
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[B2:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[A1:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A1]], i64 1
; CHECK-NEXT: [[SMAX3:%.*]] = call i64 @llvm.smax.i64(i64 [[N]], i64 1)
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX3]]
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B2]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP5:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8, !alias.scope !36
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x i32> [[WIDE_LOAD]], i32 3
; CHECK-NEXT: store i32 [[TMP4]], i32* [[A]], align 4, !alias.scope !39, !noalias !36
; CHECK-NEXT: [[TMP5]] = add <4 x i32> [[VEC_PHI]], [[WIDE_LOAD]]
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP6:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP6]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], [[LOOP41:!llvm.loop !.*]]
; CHECK: middle.block:
; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi <4 x i32> [ [[TMP5]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP7:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[DOTLCSSA]])
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: [[BC_MERGE_RDX:%.*]] = phi i32 [ [[TMP7]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[FOR_BODY]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ [[TMP3:%.*]], [[FOR_BODY]] ], [ [[BC_MERGE_RDX]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: store i32 [[TMP2]], i32* [[A]], align 4
; CHECK-NEXT: [[TMP3]] = add i32 [[TMP0]], [[TMP2]]
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]], [[LOOP42:!llvm.loop !.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: [[TMP3_LCSSA:%.*]] = phi i32 [ [[TMP3]], [[FOR_BODY]] ]
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: [[RDX_LCSSA:%.*]] = phi i32 [ [[TMP7]], [[MIDDLE_BLOCK]] ], [ [[TMP3_LCSSA]], [[FOR_END_LOOPEXIT]] ]
; CHECK-NEXT: ret i32 [[RDX_LCSSA]]
;
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %tmp2, i32* %a
%tmp3 = add i32 %tmp0, %tmp2
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%rdx.lcssa = phi i32 [ %tmp3, %for.body ]
ret i32 %rdx.lcssa
}
; Multiple variant stores to the same uniform address
; We do not vectorize such loops currently.
; for(; i < itr; i++) {
; for(; j < itr; j++) {
; var1[i] = var2[j] + var1[i];
; var1[i]++;
; }
; }
; CHECK-LABEL: multiple_uniform_stores
; CHECK-NOT: <4 x i32>
define i32 @multiple_uniform_stores(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
%cmp20 = icmp eq i32 %itr, 0
br i1 %cmp20, label %for.end10, label %for.cond1.preheader
for.cond1.preheader: ; preds = %entry, %for.inc8
%indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
%j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
%cmp218 = icmp ult i32 %j.022, %itr
br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8
for.body3.lr.ph: ; preds = %for.cond1.preheader
%arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
%0 = zext i32 %j.022 to i64
br label %for.body3
for.body3: ; preds = %for.body3, %for.body3.lr.ph
%indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %for.body3 ]
%arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%2 = load i32, i32* %arrayidx5, align 4
%add = add nsw i32 %2, %1
store i32 %add, i32* %arrayidx5, align 4
%3 = load i32, i32* %arrayidx5, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* %arrayidx5, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %itr
br i1 %exitcond, label %for.inc8, label %for.body3
for.inc8: ; preds = %for.body3, %for.cond1.preheader
%j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %for.body3 ]
%indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
%lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
%exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
br i1 %exitcond26, label %for.end10, label %for.cond1.preheader
for.end10: ; preds = %for.inc8, %entry
ret i32 undef
}
; second uniform store to the same address is conditional.
; we do not vectorize this.
; CHECK-LABEL: multiple_uniform_stores_conditional
; CHECK-NOT: <4 x i32>
define i32 @multiple_uniform_stores_conditional(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
%cmp20 = icmp eq i32 %itr, 0
br i1 %cmp20, label %for.end10, label %for.cond1.preheader
for.cond1.preheader: ; preds = %entry, %for.inc8
%indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
%j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
%cmp218 = icmp ult i32 %j.022, %itr
br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8
for.body3.lr.ph: ; preds = %for.cond1.preheader
%arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
%0 = zext i32 %j.022 to i64
br label %for.body3
for.body3: ; preds = %for.body3, %for.body3.lr.ph
%indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %latch ]
%arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%2 = load i32, i32* %arrayidx5, align 4
%add = add nsw i32 %2, %1
store i32 %add, i32* %arrayidx5, align 4
%3 = load i32, i32* %arrayidx5, align 4
%4 = add nsw i32 %3, 1
%5 = icmp ugt i32 %3, 42
br i1 %5, label %cond_store, label %latch
cond_store:
store i32 %4, i32* %arrayidx5, align 4
br label %latch
latch:
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %itr
br i1 %exitcond, label %for.inc8, label %for.body3
for.inc8: ; preds = %for.body3, %for.cond1.preheader
%j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %latch ]
%indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
%lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
%exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
br i1 %exitcond26, label %for.end10, label %for.cond1.preheader
for.end10: ; preds = %for.inc8, %entry
ret i32 undef
}
; cannot vectorize loop with unsafe dependency between uniform load (%tmp10) and store
; (%tmp12) to the same address
; PR39653
; Note: %tmp10 could be replaced by phi(%arg4, %tmp12), a potentially vectorizable
; 1st-order-recurrence
define void @unsafe_dep_uniform_load_store(i32 %arg, i32 %arg1, i64 %arg2, i16* %arg3, i32 %arg4, i64 %arg5) {
; CHECK-LABEL: unsafe_dep_uniform_load_store
; CHECK-NOT: <4 x i32>
bb:
%tmp = alloca i32
store i32 %arg4, i32* %tmp
%tmp6 = getelementptr inbounds i16, i16* %arg3, i64 %arg5
br label %bb7
bb7:
%tmp8 = phi i64 [ 0, %bb ], [ %tmp24, %bb7 ]
%tmp9 = phi i32 [ %arg1, %bb ], [ %tmp23, %bb7 ]
%tmp10 = load i32, i32* %tmp
%tmp11 = mul nsw i32 %tmp9, %tmp10
%tmp12 = srem i32 %tmp11, 65536
%tmp13 = add nsw i32 %tmp12, %tmp9
%tmp14 = trunc i32 %tmp13 to i16
%tmp15 = trunc i64 %tmp8 to i32
%tmp16 = add i32 %arg, %tmp15
%tmp17 = zext i32 %tmp16 to i64
%tmp18 = getelementptr inbounds i16, i16* %tmp6, i64 %tmp17
store i16 %tmp14, i16* %tmp18, align 2
%tmp19 = add i32 %tmp13, %tmp9
%tmp20 = trunc i32 %tmp19 to i16
%tmp21 = and i16 %tmp20, 255
%tmp22 = getelementptr inbounds i16, i16* %arg3, i64 %tmp17
store i16 %tmp21, i16* %tmp22, align 2
%tmp23 = add nsw i32 %tmp9, 1
%tmp24 = add nuw nsw i64 %tmp8, 1
%tmp25 = icmp eq i64 %tmp24, %arg2
store i32 %tmp12, i32* %tmp
br i1 %tmp25, label %bb26, label %bb7
bb26:
ret void
}
; Make sure any check-not directives are not triggered by function declarations.
; CHECK: declare