blob: 4d9ae39f721f7a2bbe445994999d845b627ac61d [file] [log] [blame]
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -S -indvars -loop-unroll -verify-loop-info | FileCheck %s
;
; Unit tests for loop unrolling using ScalarEvolution to compute trip counts.
;
; Indvars is run first to generate an "old" SCEV result. Some unit
; tests may check that SCEV is properly invalidated between passes.
; Completely unroll loops without a canonical IV.
define i32 @sansCanonical(i32* %base) nounwind {
; CHECK-LABEL: @sansCanonical(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[ZEXT:%.*]] = zext i32 0 to i64
; CHECK-NEXT: br label [[WHILE_BODY:%.*]]
; CHECK: while.body:
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[BASE:%.*]], i64 9
; CHECK-NEXT: [[TMP:%.*]] = load i32, i32* [[ADR]], align 8
; CHECK-NEXT: [[ADR_1:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 8
; CHECK-NEXT: [[TMP_1:%.*]] = load i32, i32* [[ADR_1]], align 8
; CHECK-NEXT: [[SUM_NEXT_1:%.*]] = add i32 [[TMP]], [[TMP_1]]
; CHECK-NEXT: [[ADR_2:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 7
; CHECK-NEXT: [[TMP_2:%.*]] = load i32, i32* [[ADR_2]], align 8
; CHECK-NEXT: [[SUM_NEXT_2:%.*]] = add i32 [[SUM_NEXT_1]], [[TMP_2]]
; CHECK-NEXT: [[ADR_3:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 6
; CHECK-NEXT: [[TMP_3:%.*]] = load i32, i32* [[ADR_3]], align 8
; CHECK-NEXT: [[SUM_NEXT_3:%.*]] = add i32 [[SUM_NEXT_2]], [[TMP_3]]
; CHECK-NEXT: [[ADR_4:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 5
; CHECK-NEXT: [[TMP_4:%.*]] = load i32, i32* [[ADR_4]], align 8
; CHECK-NEXT: [[SUM_NEXT_4:%.*]] = add i32 [[SUM_NEXT_3]], [[TMP_4]]
; CHECK-NEXT: [[ADR_5:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 4
; CHECK-NEXT: [[TMP_5:%.*]] = load i32, i32* [[ADR_5]], align 8
; CHECK-NEXT: [[SUM_NEXT_5:%.*]] = add i32 [[SUM_NEXT_4]], [[TMP_5]]
; CHECK-NEXT: [[ADR_6:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 3
; CHECK-NEXT: [[TMP_6:%.*]] = load i32, i32* [[ADR_6]], align 8
; CHECK-NEXT: [[SUM_NEXT_6:%.*]] = add i32 [[SUM_NEXT_5]], [[TMP_6]]
; CHECK-NEXT: [[ADR_7:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 2
; CHECK-NEXT: [[TMP_7:%.*]] = load i32, i32* [[ADR_7]], align 8
; CHECK-NEXT: [[SUM_NEXT_7:%.*]] = add i32 [[SUM_NEXT_6]], [[TMP_7]]
; CHECK-NEXT: [[ADR_8:%.*]] = getelementptr inbounds i32, i32* [[BASE]], i64 1
; CHECK-NEXT: [[TMP_8:%.*]] = load i32, i32* [[ADR_8]], align 8
; CHECK-NEXT: [[SUM_NEXT_8:%.*]] = add i32 [[SUM_NEXT_7]], [[TMP_8]]
; CHECK-NEXT: [[TMP_9:%.*]] = load i32, i32* [[BASE]], align 8
; CHECK-NEXT: ret i32 [[SUM_NEXT_8]]
;
entry:
br label %while.body
while.body:
%iv = phi i64 [ 10, %entry ], [ %iv.next, %while.body ]
%sum = phi i32 [ 0, %entry ], [ %sum.next, %while.body ]
%iv.next = add i64 %iv, -1
%adr = getelementptr inbounds i32, i32* %base, i64 %iv.next
%tmp = load i32, i32* %adr, align 8
%sum.next = add i32 %sum, %tmp
%iv.narrow = trunc i64 %iv.next to i32
%cmp.i65 = icmp sgt i32 %iv.narrow, 0
br i1 %cmp.i65, label %while.body, label %exit
exit:
ret i32 %sum
}
; SCEV unrolling properly handles loops with multiple exits. In this
; case, the computed trip count based on a canonical IV is *not* for a
; latch block. Canonical unrolling incorrectly unrolls it, but SCEV
; unrolling does not.
define i64 @earlyLoopTest(i64* %base) nounwind {
; CHECK-LABEL: @earlyLoopTest(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[TAIL:%.*]] ]
; CHECK-NEXT: [[S:%.*]] = phi i64 [ 0, [[ENTRY]] ], [ [[S_NEXT:%.*]], [[TAIL]] ]
; CHECK-NEXT: [[ADR:%.*]] = getelementptr i64, i64* [[BASE:%.*]], i64 [[IV]]
; CHECK-NEXT: [[VAL:%.*]] = load i64, i64* [[ADR]], align 4
; CHECK-NEXT: [[S_NEXT]] = add i64 [[S]], [[VAL]]
; CHECK-NEXT: [[INC]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[INC]], 4
; CHECK-NEXT: br i1 [[CMP]], label [[TAIL]], label [[EXIT1:%.*]]
; CHECK: tail:
; CHECK-NEXT: [[CMP2:%.*]] = icmp ne i64 [[VAL]], 0
; CHECK-NEXT: br i1 [[CMP2]], label [[LOOP]], label [[EXIT2:%.*]]
; CHECK: exit1:
; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i64 [ [[S]], [[LOOP]] ]
; CHECK-NEXT: ret i64 [[S_LCSSA]]
; CHECK: exit2:
; CHECK-NEXT: [[S_NEXT_LCSSA1:%.*]] = phi i64 [ [[S_NEXT]], [[TAIL]] ]
; CHECK-NEXT: ret i64 [[S_NEXT_LCSSA1]]
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %inc, %tail ]
%s = phi i64 [ 0, %entry ], [ %s.next, %tail ]
%adr = getelementptr i64, i64* %base, i64 %iv
%val = load i64, i64* %adr
%s.next = add i64 %s, %val
%inc = add i64 %iv, 1
%cmp = icmp ne i64 %inc, 4
br i1 %cmp, label %tail, label %exit1
tail:
%cmp2 = icmp ne i64 %val, 0
br i1 %cmp2, label %loop, label %exit2
exit1:
ret i64 %s
exit2:
ret i64 %s.next
}
; SCEV properly unrolls multi-exit loops.
define i32 @multiExit(i32* %base) nounwind {
; CHECK-LABEL: @multiExit(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[L1:%.*]]
; CHECK: l1:
; CHECK-NEXT: [[IV1:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC1:%.*]], [[L2:%.*]] ]
; CHECK-NEXT: [[INC1]] = add nuw nsw i32 [[IV1]], 1
; CHECK-NEXT: [[ADR:%.*]] = getelementptr i32, i32* [[BASE:%.*]], i32 [[IV1]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4
; CHECK-NEXT: br i1 false, label [[L2]], label [[EXIT1:%.*]]
; CHECK: l2:
; CHECK-NEXT: br i1 true, label [[L1]], label [[EXIT2:%.*]]
; CHECK: exit1:
; CHECK-NEXT: ret i32 1
; CHECK: exit2:
; CHECK-NEXT: [[VAL_LCSSA1:%.*]] = phi i32 [ [[VAL]], [[L2]] ]
; CHECK-NEXT: ret i32 [[VAL_LCSSA1]]
;
entry:
br label %l1
l1:
%iv1 = phi i32 [ 0, %entry ], [ %inc1, %l2 ]
%iv2 = phi i32 [ 0, %entry ], [ %inc2, %l2 ]
%inc1 = add i32 %iv1, 1
%inc2 = add i32 %iv2, 1
%adr = getelementptr i32, i32* %base, i32 %iv1
%val = load i32, i32* %adr
%cmp1 = icmp slt i32 %iv1, 5
br i1 %cmp1, label %l2, label %exit1
l2:
%cmp2 = icmp slt i32 %iv2, 10
br i1 %cmp2, label %l1, label %exit2
exit1:
ret i32 1
exit2:
ret i32 %val
}
; SCEV should not unroll a multi-exit loops unless the latch block has
; a known trip count, regardless of the early exit trip counts. The
; LoopUnroll utility uses this assumption to optimize the latch
; block's branch.
define i32 @multiExitIncomplete(i32* %base) nounwind {
; CHECK-LABEL: @multiExitIncomplete(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[L1:%.*]]
; CHECK: l1:
; CHECK-NEXT: [[IV1:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC1:%.*]], [[L3:%.*]] ]
; CHECK-NEXT: [[INC1]] = add nuw i32 [[IV1]], 1
; CHECK-NEXT: [[ADR:%.*]] = getelementptr i32, i32* [[BASE:%.*]], i32 [[IV1]]
; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4
; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 [[IV1]], 5
; CHECK-NEXT: br i1 [[CMP1]], label [[L2:%.*]], label [[EXIT1:%.*]]
; CHECK: l2:
; CHECK-NEXT: br i1 true, label [[L3]], label [[EXIT2:%.*]]
; CHECK: l3:
; CHECK-NEXT: [[CMP3:%.*]] = icmp ne i32 [[VAL]], 0
; CHECK-NEXT: br i1 [[CMP3]], label [[L1]], label [[EXIT3:%.*]]
; CHECK: exit1:
; CHECK-NEXT: ret i32 1
; CHECK: exit2:
; CHECK-NEXT: ret i32 2
; CHECK: exit3:
; CHECK-NEXT: ret i32 3
;
entry:
br label %l1
l1:
%iv1 = phi i32 [ 0, %entry ], [ %inc1, %l3 ]
%iv2 = phi i32 [ 0, %entry ], [ %inc2, %l3 ]
%inc1 = add i32 %iv1, 1
%inc2 = add i32 %iv2, 1
%adr = getelementptr i32, i32* %base, i32 %iv1
%val = load i32, i32* %adr
%cmp1 = icmp slt i32 %iv1, 5
br i1 %cmp1, label %l2, label %exit1
l2:
%cmp2 = icmp slt i32 %iv2, 10
br i1 %cmp2, label %l3, label %exit2
l3:
%cmp3 = icmp ne i32 %val, 0
br i1 %cmp3, label %l1, label %exit3
exit1:
ret i32 1
exit2:
ret i32 2
exit3:
ret i32 3
}
; When loop unroll merges a loop exit with one of its parent loop's
; exits, SCEV must forget its ExitNotTaken info.
define void @nestedUnroll() nounwind {
; CHECK-LABEL: @nestedUnroll(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_INC:%.*]]
; CHECK: for.inc:
; CHECK-NEXT: br label [[FOR_BODY38:%.*]]
; CHECK: for.body38:
; CHECK-NEXT: br label [[FOR_BODY43:%.*]]
; CHECK: for.body43:
; CHECK-NEXT: br label [[FOR_BODY87:%.*]]
; CHECK: for.body87:
; CHECK-NEXT: br label [[FOR_BODY87]]
;
entry:
br label %for.inc
for.inc:
br i1 false, label %for.inc, label %for.body38.preheader
for.body38.preheader:
br label %for.body38
for.body38:
%i.113 = phi i32 [ %inc76, %for.inc74 ], [ 0, %for.body38.preheader ]
%mul48 = mul nsw i32 %i.113, 6
br label %for.body43
for.body43:
%j.011 = phi i32 [ 0, %for.body38 ], [ %inc72, %for.body43 ]
%add49 = add nsw i32 %j.011, %mul48
%sh_prom50 = zext i32 %add49 to i64
%inc72 = add nsw i32 %j.011, 1
br i1 false, label %for.body43, label %for.inc74
for.inc74:
%inc76 = add nsw i32 %i.113, 1
br i1 false, label %for.body38, label %for.body87.preheader
for.body87.preheader:
br label %for.body87
for.body87:
br label %for.body87
}
; PR16130: clang produces incorrect code with loop/expression at -O2
; rdar:14036816 loop-unroll makes assumptions about undefined behavior
;
; The loop latch is assumed to exit after the first iteration because
; of the induction variable's NSW flag. However, the loop latch's
; equality test is skipped and the loop exits after the second
; iteration via the early exit. So loop unrolling cannot assume that
; the loop latch's exit count of zero is an upper bound on the number
; of iterations.
define void @nsw_latch(i32* %a) nounwind {
; CHECK-LABEL: @nsw_latch(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[B_03:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[ADD:%.*]], [[FOR_COND:%.*]] ]
; CHECK-NEXT: [[TOBOOL:%.*]] = icmp eq i32 [[B_03]], 0
; CHECK-NEXT: [[ADD]] = add nuw nsw i32 [[B_03]], 8
; CHECK-NEXT: br i1 [[TOBOOL]], label [[FOR_COND]], label [[RETURN:%.*]]
; CHECK: for.cond:
; CHECK-NEXT: br i1 false, label [[RETURN]], label [[FOR_BODY]]
; CHECK: return:
; CHECK-NEXT: [[B_03_LCSSA:%.*]] = phi i32 [ 8, [[FOR_BODY]] ], [ 0, [[FOR_COND]] ]
; CHECK-NEXT: [[RETVAL_0:%.*]] = phi i32 [ 1, [[FOR_BODY]] ], [ 0, [[FOR_COND]] ]
; CHECK-NEXT: store i32 [[B_03_LCSSA]], i32* [[A:%.*]], align 4
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body: ; preds = %for.cond, %entry
%b.03 = phi i32 [ 0, %entry ], [ %add, %for.cond ]
%tobool = icmp eq i32 %b.03, 0
%add = add nsw i32 %b.03, 8
br i1 %tobool, label %for.cond, label %return
for.cond: ; preds = %for.body
%cmp = icmp eq i32 %add, 13
br i1 %cmp, label %return, label %for.body
return: ; preds = %for.body, %for.cond
%b.03.lcssa = phi i32 [ %b.03, %for.body ], [ %b.03, %for.cond ]
%retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ]
store i32 %b.03.lcssa, i32* %a, align 4
ret void
}