| //===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SSAUpdaterBulk class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" |
| #include "llvm/Analysis/IteratedDominanceFrontier.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ssaupdaterbulk" |
| |
| /// Helper function for finding a block which should have a value for the given |
| /// user. For PHI-nodes this block is the corresponding predecessor, for other |
| /// instructions it's their parent block. |
| static BasicBlock *getUserBB(Use *U) { |
| auto *User = cast<Instruction>(U->getUser()); |
| |
| if (auto *UserPN = dyn_cast<PHINode>(User)) |
| return UserPN->getIncomingBlock(*U); |
| else |
| return User->getParent(); |
| } |
| |
| /// Add a new variable to the SSA rewriter. This needs to be called before |
| /// AddAvailableValue or AddUse calls. |
| unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) { |
| unsigned Var = Rewrites.size(); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = " |
| << *Ty << ", Name = " << Name << "\n"); |
| RewriteInfo RI(Name, Ty); |
| Rewrites.push_back(RI); |
| return Var; |
| } |
| |
| /// Indicate that a rewritten value is available in the specified block with the |
| /// specified value. |
| void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) { |
| assert(Var < Rewrites.size() && "Variable not found!"); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var |
| << ": added new available value" << *V << " in " |
| << BB->getName() << "\n"); |
| Rewrites[Var].Defines[BB] = V; |
| } |
| |
| /// Record a use of the symbolic value. This use will be updated with a |
| /// rewritten value when RewriteAllUses is called. |
| void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) { |
| assert(Var < Rewrites.size() && "Variable not found!"); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get() |
| << " in " << getUserBB(U)->getName() << "\n"); |
| Rewrites[Var].Uses.push_back(U); |
| } |
| |
| /// Return true if the SSAUpdater already has a value for the specified variable |
| /// in the specified block. |
| bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) { |
| return (Var < Rewrites.size()) ? Rewrites[Var].Defines.count(BB) : false; |
| } |
| |
| // Compute value at the given block BB. We either should already know it, or we |
| // should be able to recursively reach it going up dominator tree. |
| Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R, |
| DominatorTree *DT) { |
| if (!R.Defines.count(BB)) { |
| if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) { |
| BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock(); |
| Value *V = computeValueAt(IDom, R, DT); |
| R.Defines[BB] = V; |
| } else |
| R.Defines[BB] = UndefValue::get(R.Ty); |
| } |
| return R.Defines[BB]; |
| } |
| |
| /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks. |
| /// This is basically a subgraph limited by DefBlocks and UsingBlocks. |
| static void |
| ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks, |
| const SmallPtrSetImpl<BasicBlock *> &DefBlocks, |
| SmallPtrSetImpl<BasicBlock *> &LiveInBlocks, |
| PredIteratorCache &PredCache) { |
| // To determine liveness, we must iterate through the predecessors of blocks |
| // where the def is live. Blocks are added to the worklist if we need to |
| // check their predecessors. Start with all the using blocks. |
| SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(), |
| UsingBlocks.end()); |
| |
| // Now that we have a set of blocks where the phi is live-in, recursively add |
| // their predecessors until we find the full region the value is live. |
| while (!LiveInBlockWorklist.empty()) { |
| BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
| |
| // The block really is live in here, insert it into the set. If already in |
| // the set, then it has already been processed. |
| if (!LiveInBlocks.insert(BB).second) |
| continue; |
| |
| // Since the value is live into BB, it is either defined in a predecessor or |
| // live into it to. Add the preds to the worklist unless they are a |
| // defining block. |
| for (BasicBlock *P : PredCache.get(BB)) { |
| // The value is not live into a predecessor if it defines the value. |
| if (DefBlocks.count(P)) |
| continue; |
| |
| // Otherwise it is, add to the worklist. |
| LiveInBlockWorklist.push_back(P); |
| } |
| } |
| } |
| |
| /// Perform all the necessary updates, including new PHI-nodes insertion and the |
| /// requested uses update. |
| void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT, |
| SmallVectorImpl<PHINode *> *InsertedPHIs) { |
| for (auto &R : Rewrites) { |
| // Compute locations for new phi-nodes. |
| // For that we need to initialize DefBlocks from definitions in R.Defines, |
| // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use |
| // this set for computing iterated dominance frontier (IDF). |
| // The IDF blocks are the blocks where we need to insert new phi-nodes. |
| ForwardIDFCalculator IDF(*DT); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size() |
| << " use(s)\n"); |
| |
| SmallPtrSet<BasicBlock *, 2> DefBlocks; |
| for (auto &Def : R.Defines) |
| DefBlocks.insert(Def.first); |
| IDF.setDefiningBlocks(DefBlocks); |
| |
| SmallPtrSet<BasicBlock *, 2> UsingBlocks; |
| for (Use *U : R.Uses) |
| UsingBlocks.insert(getUserBB(U)); |
| |
| SmallVector<BasicBlock *, 32> IDFBlocks; |
| SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
| ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache); |
| IDF.resetLiveInBlocks(); |
| IDF.setLiveInBlocks(LiveInBlocks); |
| IDF.calculate(IDFBlocks); |
| |
| // We've computed IDF, now insert new phi-nodes there. |
| SmallVector<PHINode *, 4> InsertedPHIsForVar; |
| for (auto *FrontierBB : IDFBlocks) { |
| IRBuilder<> B(FrontierBB, FrontierBB->begin()); |
| PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name); |
| R.Defines[FrontierBB] = PN; |
| InsertedPHIsForVar.push_back(PN); |
| if (InsertedPHIs) |
| InsertedPHIs->push_back(PN); |
| } |
| |
| // Fill in arguments of the inserted PHIs. |
| for (auto *PN : InsertedPHIsForVar) { |
| BasicBlock *PBB = PN->getParent(); |
| for (BasicBlock *Pred : PredCache.get(PBB)) |
| PN->addIncoming(computeValueAt(Pred, R, DT), Pred); |
| } |
| |
| // Rewrite actual uses with the inserted definitions. |
| SmallPtrSet<Use *, 4> ProcessedUses; |
| for (Use *U : R.Uses) { |
| if (!ProcessedUses.insert(U).second) |
| continue; |
| Value *V = computeValueAt(getUserBB(U), R, DT); |
| Value *OldVal = U->get(); |
| assert(OldVal && "Invalid use!"); |
| // Notify that users of the existing value that it is being replaced. |
| if (OldVal != V && OldVal->hasValueHandle()) |
| ValueHandleBase::ValueIsRAUWd(OldVal, V); |
| LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V |
| << "\n"); |
| U->set(V); |
| } |
| } |
| } |