| //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions perform manipulations on basic blocks, and |
| // instructions contained within basic blocks. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/PseudoProbe.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "basicblock-utils" |
| |
| void llvm::DetatchDeadBlocks( |
| ArrayRef<BasicBlock *> BBs, |
| SmallVectorImpl<DominatorTree::UpdateType> *Updates, |
| bool KeepOneInputPHIs) { |
| for (auto *BB : BBs) { |
| // Loop through all of our successors and make sure they know that one |
| // of their predecessors is going away. |
| SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; |
| for (BasicBlock *Succ : successors(BB)) { |
| Succ->removePredecessor(BB, KeepOneInputPHIs); |
| if (Updates && UniqueSuccessors.insert(Succ).second) |
| Updates->push_back({DominatorTree::Delete, BB, Succ}); |
| } |
| |
| // Zap all the instructions in the block. |
| while (!BB->empty()) { |
| Instruction &I = BB->back(); |
| // If this instruction is used, replace uses with an arbitrary value. |
| // Because control flow can't get here, we don't care what we replace the |
| // value with. Note that since this block is unreachable, and all values |
| // contained within it must dominate their uses, that all uses will |
| // eventually be removed (they are themselves dead). |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(UndefValue::get(I.getType())); |
| BB->getInstList().pop_back(); |
| } |
| new UnreachableInst(BB->getContext(), BB); |
| assert(BB->getInstList().size() == 1 && |
| isa<UnreachableInst>(BB->getTerminator()) && |
| "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| } |
| } |
| |
| void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, |
| bool KeepOneInputPHIs) { |
| DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); |
| } |
| |
| void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, |
| bool KeepOneInputPHIs) { |
| #ifndef NDEBUG |
| // Make sure that all predecessors of each dead block is also dead. |
| SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); |
| assert(Dead.size() == BBs.size() && "Duplicating blocks?"); |
| for (auto *BB : Dead) |
| for (BasicBlock *Pred : predecessors(BB)) |
| assert(Dead.count(Pred) && "All predecessors must be dead!"); |
| #endif |
| |
| SmallVector<DominatorTree::UpdateType, 4> Updates; |
| DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| |
| for (BasicBlock *BB : BBs) |
| if (DTU) |
| DTU->deleteBB(BB); |
| else |
| BB->eraseFromParent(); |
| } |
| |
| bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, |
| bool KeepOneInputPHIs) { |
| df_iterator_default_set<BasicBlock*> Reachable; |
| |
| // Mark all reachable blocks. |
| for (BasicBlock *BB : depth_first_ext(&F, Reachable)) |
| (void)BB/* Mark all reachable blocks */; |
| |
| // Collect all dead blocks. |
| std::vector<BasicBlock*> DeadBlocks; |
| for (BasicBlock &BB : F) |
| if (!Reachable.count(&BB)) |
| DeadBlocks.push_back(&BB); |
| |
| // Delete the dead blocks. |
| DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); |
| |
| return !DeadBlocks.empty(); |
| } |
| |
| bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, |
| MemoryDependenceResults *MemDep) { |
| if (!isa<PHINode>(BB->begin())) |
| return false; |
| |
| while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { |
| if (PN->getIncomingValue(0) != PN) |
| PN->replaceAllUsesWith(PN->getIncomingValue(0)); |
| else |
| PN->replaceAllUsesWith(UndefValue::get(PN->getType())); |
| |
| if (MemDep) |
| MemDep->removeInstruction(PN); // Memdep updates AA itself. |
| |
| PN->eraseFromParent(); |
| } |
| return true; |
| } |
| |
| bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, |
| MemorySSAUpdater *MSSAU) { |
| // Recursively deleting a PHI may cause multiple PHIs to be deleted |
| // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. |
| SmallVector<WeakTrackingVH, 8> PHIs; |
| for (PHINode &PN : BB->phis()) |
| PHIs.push_back(&PN); |
| |
| bool Changed = false; |
| for (unsigned i = 0, e = PHIs.size(); i != e; ++i) |
| if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) |
| Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); |
| |
| return Changed; |
| } |
| |
| bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| MemoryDependenceResults *MemDep, |
| bool PredecessorWithTwoSuccessors) { |
| if (BB->hasAddressTaken()) |
| return false; |
| |
| // Can't merge if there are multiple predecessors, or no predecessors. |
| BasicBlock *PredBB = BB->getUniquePredecessor(); |
| if (!PredBB) return false; |
| |
| // Don't break self-loops. |
| if (PredBB == BB) return false; |
| // Don't break unwinding instructions. |
| if (PredBB->getTerminator()->isExceptionalTerminator()) |
| return false; |
| |
| // Can't merge if there are multiple distinct successors. |
| if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) |
| return false; |
| |
| // Currently only allow PredBB to have two predecessors, one being BB. |
| // Update BI to branch to BB's only successor instead of BB. |
| BranchInst *PredBB_BI; |
| BasicBlock *NewSucc = nullptr; |
| unsigned FallThruPath; |
| if (PredecessorWithTwoSuccessors) { |
| if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) |
| return false; |
| BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!BB_JmpI || !BB_JmpI->isUnconditional()) |
| return false; |
| NewSucc = BB_JmpI->getSuccessor(0); |
| FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; |
| } |
| |
| // Can't merge if there is PHI loop. |
| for (PHINode &PN : BB->phis()) |
| if (llvm::is_contained(PN.incoming_values(), &PN)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " |
| << PredBB->getName() << "\n"); |
| |
| // Begin by getting rid of unneeded PHIs. |
| SmallVector<AssertingVH<Value>, 4> IncomingValues; |
| if (isa<PHINode>(BB->front())) { |
| for (PHINode &PN : BB->phis()) |
| if (!isa<PHINode>(PN.getIncomingValue(0)) || |
| cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) |
| IncomingValues.push_back(PN.getIncomingValue(0)); |
| FoldSingleEntryPHINodes(BB, MemDep); |
| } |
| |
| // DTU update: Collect all the edges that exit BB. |
| // These dominator edges will be redirected from Pred. |
| std::vector<DominatorTree::UpdateType> Updates; |
| if (DTU) { |
| SmallPtrSet<BasicBlock *, 2> SuccsOfBB(succ_begin(BB), succ_end(BB)); |
| SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), |
| succ_begin(PredBB)); |
| Updates.reserve(Updates.size() + 2 * SuccsOfBB.size() + 1); |
| // Add insert edges first. Experimentally, for the particular case of two |
| // blocks that can be merged, with a single successor and single predecessor |
| // respectively, it is beneficial to have all insert updates first. Deleting |
| // edges first may lead to unreachable blocks, followed by inserting edges |
| // making the blocks reachable again. Such DT updates lead to high compile |
| // times. We add inserts before deletes here to reduce compile time. |
| for (BasicBlock *SuccOfBB : SuccsOfBB) |
| // This successor of BB may already be a PredBB's successor. |
| if (!SuccsOfPredBB.contains(SuccOfBB)) |
| Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); |
| for (BasicBlock *SuccOfBB : SuccsOfBB) |
| Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); |
| Updates.push_back({DominatorTree::Delete, PredBB, BB}); |
| } |
| |
| Instruction *PTI = PredBB->getTerminator(); |
| Instruction *STI = BB->getTerminator(); |
| Instruction *Start = &*BB->begin(); |
| // If there's nothing to move, mark the starting instruction as the last |
| // instruction in the block. Terminator instruction is handled separately. |
| if (Start == STI) |
| Start = PTI; |
| |
| // Move all definitions in the successor to the predecessor... |
| PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), |
| BB->begin(), STI->getIterator()); |
| |
| if (MSSAU) |
| MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); |
| |
| // Make all PHI nodes that referred to BB now refer to Pred as their |
| // source... |
| BB->replaceAllUsesWith(PredBB); |
| |
| if (PredecessorWithTwoSuccessors) { |
| // Delete the unconditional branch from BB. |
| BB->getInstList().pop_back(); |
| |
| // Update branch in the predecessor. |
| PredBB_BI->setSuccessor(FallThruPath, NewSucc); |
| } else { |
| // Delete the unconditional branch from the predecessor. |
| PredBB->getInstList().pop_back(); |
| |
| // Move terminator instruction. |
| PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); |
| |
| // Terminator may be a memory accessing instruction too. |
| if (MSSAU) |
| if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( |
| MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) |
| MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); |
| } |
| // Add unreachable to now empty BB. |
| new UnreachableInst(BB->getContext(), BB); |
| |
| // Inherit predecessors name if it exists. |
| if (!PredBB->hasName()) |
| PredBB->takeName(BB); |
| |
| if (LI) |
| LI->removeBlock(BB); |
| |
| if (MemDep) |
| MemDep->invalidateCachedPredecessors(); |
| |
| // Finally, erase the old block and update dominator info. |
| if (DTU) { |
| assert(BB->getInstList().size() == 1 && |
| isa<UnreachableInst>(BB->getTerminator()) && |
| "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| DTU->applyUpdates(Updates); |
| DTU->deleteBB(BB); |
| } else { |
| BB->eraseFromParent(); // Nuke BB if DTU is nullptr. |
| } |
| |
| return true; |
| } |
| |
| bool llvm::MergeBlockSuccessorsIntoGivenBlocks( |
| SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, |
| LoopInfo *LI) { |
| assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); |
| |
| bool BlocksHaveBeenMerged = false; |
| while (!MergeBlocks.empty()) { |
| BasicBlock *BB = *MergeBlocks.begin(); |
| BasicBlock *Dest = BB->getSingleSuccessor(); |
| if (Dest && (!L || L->contains(Dest))) { |
| BasicBlock *Fold = Dest->getUniquePredecessor(); |
| (void)Fold; |
| if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { |
| assert(Fold == BB && |
| "Expecting BB to be unique predecessor of the Dest block"); |
| MergeBlocks.erase(Dest); |
| BlocksHaveBeenMerged = true; |
| } else |
| MergeBlocks.erase(BB); |
| } else |
| MergeBlocks.erase(BB); |
| } |
| return BlocksHaveBeenMerged; |
| } |
| |
| /// Remove redundant instructions within sequences of consecutive dbg.value |
| /// instructions. This is done using a backward scan to keep the last dbg.value |
| /// describing a specific variable/fragment. |
| /// |
| /// BackwardScan strategy: |
| /// ---------------------- |
| /// Given a sequence of consecutive DbgValueInst like this |
| /// |
| /// dbg.value ..., "x", FragmentX1 (*) |
| /// dbg.value ..., "y", FragmentY1 |
| /// dbg.value ..., "x", FragmentX2 |
| /// dbg.value ..., "x", FragmentX1 (**) |
| /// |
| /// then the instruction marked with (*) can be removed (it is guaranteed to be |
| /// obsoleted by the instruction marked with (**) as the latter instruction is |
| /// describing the same variable using the same fragment info). |
| /// |
| /// Possible improvements: |
| /// - Check fully overlapping fragments and not only identical fragments. |
| /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta |
| /// instructions being part of the sequence of consecutive instructions. |
| static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { |
| SmallVector<DbgValueInst *, 8> ToBeRemoved; |
| SmallDenseSet<DebugVariable> VariableSet; |
| for (auto &I : reverse(*BB)) { |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { |
| DebugVariable Key(DVI->getVariable(), |
| DVI->getExpression(), |
| DVI->getDebugLoc()->getInlinedAt()); |
| auto R = VariableSet.insert(Key); |
| // If the same variable fragment is described more than once it is enough |
| // to keep the last one (i.e. the first found since we for reverse |
| // iteration). |
| if (!R.second) |
| ToBeRemoved.push_back(DVI); |
| continue; |
| } |
| // Sequence with consecutive dbg.value instrs ended. Clear the map to |
| // restart identifying redundant instructions if case we find another |
| // dbg.value sequence. |
| VariableSet.clear(); |
| } |
| |
| for (auto &Instr : ToBeRemoved) |
| Instr->eraseFromParent(); |
| |
| return !ToBeRemoved.empty(); |
| } |
| |
| /// Remove redundant dbg.value instructions using a forward scan. This can |
| /// remove a dbg.value instruction that is redundant due to indicating that a |
| /// variable has the same value as already being indicated by an earlier |
| /// dbg.value. |
| /// |
| /// ForwardScan strategy: |
| /// --------------------- |
| /// Given two identical dbg.value instructions, separated by a block of |
| /// instructions that isn't describing the same variable, like this |
| /// |
| /// dbg.value X1, "x", FragmentX1 (**) |
| /// <block of instructions, none being "dbg.value ..., "x", ..."> |
| /// dbg.value X1, "x", FragmentX1 (*) |
| /// |
| /// then the instruction marked with (*) can be removed. Variable "x" is already |
| /// described as being mapped to the SSA value X1. |
| /// |
| /// Possible improvements: |
| /// - Keep track of non-overlapping fragments. |
| static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { |
| SmallVector<DbgValueInst *, 8> ToBeRemoved; |
| DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> |
| VariableMap; |
| for (auto &I : *BB) { |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { |
| DebugVariable Key(DVI->getVariable(), |
| NoneType(), |
| DVI->getDebugLoc()->getInlinedAt()); |
| auto VMI = VariableMap.find(Key); |
| // Update the map if we found a new value/expression describing the |
| // variable, or if the variable wasn't mapped already. |
| SmallVector<Value *, 4> Values(DVI->getValues()); |
| if (VMI == VariableMap.end() || VMI->second.first != Values || |
| VMI->second.second != DVI->getExpression()) { |
| VariableMap[Key] = {Values, DVI->getExpression()}; |
| continue; |
| } |
| // Found an identical mapping. Remember the instruction for later removal. |
| ToBeRemoved.push_back(DVI); |
| } |
| } |
| |
| for (auto &Instr : ToBeRemoved) |
| Instr->eraseFromParent(); |
| |
| return !ToBeRemoved.empty(); |
| } |
| |
| bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) { |
| bool MadeChanges = false; |
| // By using the "backward scan" strategy before the "forward scan" strategy we |
| // can remove both dbg.value (2) and (3) in a situation like this: |
| // |
| // (1) dbg.value V1, "x", DIExpression() |
| // ... |
| // (2) dbg.value V2, "x", DIExpression() |
| // (3) dbg.value V1, "x", DIExpression() |
| // |
| // The backward scan will remove (2), it is made obsolete by (3). After |
| // getting (2) out of the way, the foward scan will remove (3) since "x" |
| // already is described as having the value V1 at (1). |
| MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); |
| MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); |
| if (RemovePseudoOp) |
| MadeChanges |= removeRedundantPseudoProbes(BB); |
| |
| if (MadeChanges) |
| LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " |
| << BB->getName() << "\n"); |
| return MadeChanges; |
| } |
| |
| void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, |
| BasicBlock::iterator &BI, Value *V) { |
| Instruction &I = *BI; |
| // Replaces all of the uses of the instruction with uses of the value |
| I.replaceAllUsesWith(V); |
| |
| // Make sure to propagate a name if there is one already. |
| if (I.hasName() && !V->hasName()) |
| V->takeName(&I); |
| |
| // Delete the unnecessary instruction now... |
| BI = BIL.erase(BI); |
| } |
| |
| void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, |
| BasicBlock::iterator &BI, Instruction *I) { |
| assert(I->getParent() == nullptr && |
| "ReplaceInstWithInst: Instruction already inserted into basic block!"); |
| |
| // Copy debug location to newly added instruction, if it wasn't already set |
| // by the caller. |
| if (!I->getDebugLoc()) |
| I->setDebugLoc(BI->getDebugLoc()); |
| |
| // Insert the new instruction into the basic block... |
| BasicBlock::iterator New = BIL.insert(BI, I); |
| |
| // Replace all uses of the old instruction, and delete it. |
| ReplaceInstWithValue(BIL, BI, I); |
| |
| // Move BI back to point to the newly inserted instruction |
| BI = New; |
| } |
| |
| void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { |
| BasicBlock::iterator BI(From); |
| ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); |
| } |
| |
| BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| const Twine &BBName) { |
| unsigned SuccNum = GetSuccessorNumber(BB, Succ); |
| |
| Instruction *LatchTerm = BB->getTerminator(); |
| |
| CriticalEdgeSplittingOptions Options = |
| CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); |
| |
| if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { |
| // If it is a critical edge, and the succesor is an exception block, handle |
| // the split edge logic in this specific function |
| if (Succ->isEHPad()) |
| return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); |
| |
| // If this is a critical edge, let SplitKnownCriticalEdge do it. |
| return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); |
| } |
| |
| // If the edge isn't critical, then BB has a single successor or Succ has a |
| // single pred. Split the block. |
| if (BasicBlock *SP = Succ->getSinglePredecessor()) { |
| // If the successor only has a single pred, split the top of the successor |
| // block. |
| assert(SP == BB && "CFG broken"); |
| SP = nullptr; |
| return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, |
| /*Before=*/true); |
| } |
| |
| // Otherwise, if BB has a single successor, split it at the bottom of the |
| // block. |
| assert(BB->getTerminator()->getNumSuccessors() == 1 && |
| "Should have a single succ!"); |
| return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); |
| } |
| |
| void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { |
| if (auto *II = dyn_cast<InvokeInst>(TI)) |
| II->setUnwindDest(Succ); |
| else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) |
| CS->setUnwindDest(Succ); |
| else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) |
| CR->setUnwindDest(Succ); |
| else |
| llvm_unreachable("unexpected terminator instruction"); |
| } |
| |
| void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, |
| BasicBlock *NewPred, PHINode *Until) { |
| int BBIdx = 0; |
| for (PHINode &PN : DestBB->phis()) { |
| // We manually update the LandingPadReplacement PHINode and it is the last |
| // PHI Node. So, if we find it, we are done. |
| if (Until == &PN) |
| break; |
| |
| // Reuse the previous value of BBIdx if it lines up. In cases where we |
| // have multiple phi nodes with *lots* of predecessors, this is a speed |
| // win because we don't have to scan the PHI looking for TIBB. This |
| // happens because the BB list of PHI nodes are usually in the same |
| // order. |
| if (PN.getIncomingBlock(BBIdx) != OldPred) |
| BBIdx = PN.getBasicBlockIndex(OldPred); |
| |
| assert(BBIdx != -1 && "Invalid PHI Index!"); |
| PN.setIncomingBlock(BBIdx, NewPred); |
| } |
| } |
| |
| BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, |
| LandingPadInst *OriginalPad, |
| PHINode *LandingPadReplacement, |
| const CriticalEdgeSplittingOptions &Options, |
| const Twine &BBName) { |
| |
| auto *PadInst = Succ->getFirstNonPHI(); |
| if (!LandingPadReplacement && !PadInst->isEHPad()) |
| return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); |
| |
| auto *LI = Options.LI; |
| SmallVector<BasicBlock *, 4> LoopPreds; |
| // Check if extra modifications will be required to preserve loop-simplify |
| // form after splitting. If it would require splitting blocks with IndirectBr |
| // terminators, bail out if preserving loop-simplify form is requested. |
| if (Options.PreserveLoopSimplify && LI) { |
| if (Loop *BBLoop = LI->getLoopFor(BB)) { |
| |
| // The only way that we can break LoopSimplify form by splitting a |
| // critical edge is when there exists some edge from BBLoop to Succ *and* |
| // the only edge into Succ from outside of BBLoop is that of NewBB after |
| // the split. If the first isn't true, then LoopSimplify still holds, |
| // NewBB is the new exit block and it has no non-loop predecessors. If the |
| // second isn't true, then Succ was not in LoopSimplify form prior to |
| // the split as it had a non-loop predecessor. In both of these cases, |
| // the predecessor must be directly in BBLoop, not in a subloop, or again |
| // LoopSimplify doesn't hold. |
| for (BasicBlock *P : predecessors(Succ)) { |
| if (P == BB) |
| continue; // The new block is known. |
| if (LI->getLoopFor(P) != BBLoop) { |
| // Loop is not in LoopSimplify form, no need to re simplify after |
| // splitting edge. |
| LoopPreds.clear(); |
| break; |
| } |
| LoopPreds.push_back(P); |
| } |
| // Loop-simplify form can be preserved, if we can split all in-loop |
| // predecessors. |
| if (any_of(LoopPreds, [](BasicBlock *Pred) { |
| return isa<IndirectBrInst>(Pred->getTerminator()); |
| })) { |
| return nullptr; |
| } |
| } |
| } |
| |
| auto *NewBB = |
| BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); |
| setUnwindEdgeTo(BB->getTerminator(), NewBB); |
| updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); |
| |
| if (LandingPadReplacement) { |
| auto *NewLP = OriginalPad->clone(); |
| auto *Terminator = BranchInst::Create(Succ, NewBB); |
| NewLP->insertBefore(Terminator); |
| LandingPadReplacement->addIncoming(NewLP, NewBB); |
| } else { |
| Value *ParentPad = nullptr; |
| if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) |
| ParentPad = FuncletPad->getParentPad(); |
| else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) |
| ParentPad = CatchSwitch->getParentPad(); |
| else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) |
| ParentPad = CleanupPad->getParentPad(); |
| else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) |
| ParentPad = LandingPad->getParent(); |
| else |
| llvm_unreachable("handling for other EHPads not implemented yet"); |
| |
| auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); |
| CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); |
| } |
| |
| auto *DT = Options.DT; |
| auto *MSSAU = Options.MSSAU; |
| if (!DT && !LI) |
| return NewBB; |
| |
| if (DT) { |
| DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| SmallVector<DominatorTree::UpdateType, 3> Updates; |
| |
| Updates.push_back({DominatorTree::Insert, BB, NewBB}); |
| Updates.push_back({DominatorTree::Insert, NewBB, Succ}); |
| Updates.push_back({DominatorTree::Delete, BB, Succ}); |
| |
| DTU.applyUpdates(Updates); |
| DTU.flush(); |
| |
| if (MSSAU) { |
| MSSAU->applyUpdates(Updates, *DT); |
| if (VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| } |
| } |
| |
| if (LI) { |
| if (Loop *BBLoop = LI->getLoopFor(BB)) { |
| // If one or the other blocks were not in a loop, the new block is not |
| // either, and thus LI doesn't need to be updated. |
| if (Loop *SuccLoop = LI->getLoopFor(Succ)) { |
| if (BBLoop == SuccLoop) { |
| // Both in the same loop, the NewBB joins loop. |
| SuccLoop->addBasicBlockToLoop(NewBB, *LI); |
| } else if (BBLoop->contains(SuccLoop)) { |
| // Edge from an outer loop to an inner loop. Add to the outer loop. |
| BBLoop->addBasicBlockToLoop(NewBB, *LI); |
| } else if (SuccLoop->contains(BBLoop)) { |
| // Edge from an inner loop to an outer loop. Add to the outer loop. |
| SuccLoop->addBasicBlockToLoop(NewBB, *LI); |
| } else { |
| // Edge from two loops with no containment relation. Because these |
| // are natural loops, we know that the destination block must be the |
| // header of its loop (adding a branch into a loop elsewhere would |
| // create an irreducible loop). |
| assert(SuccLoop->getHeader() == Succ && |
| "Should not create irreducible loops!"); |
| if (Loop *P = SuccLoop->getParentLoop()) |
| P->addBasicBlockToLoop(NewBB, *LI); |
| } |
| } |
| |
| // If BB is in a loop and Succ is outside of that loop, we may need to |
| // update LoopSimplify form and LCSSA form. |
| if (!BBLoop->contains(Succ)) { |
| assert(!BBLoop->contains(NewBB) && |
| "Split point for loop exit is contained in loop!"); |
| |
| // Update LCSSA form in the newly created exit block. |
| if (Options.PreserveLCSSA) { |
| createPHIsForSplitLoopExit(BB, NewBB, Succ); |
| } |
| |
| if (!LoopPreds.empty()) { |
| BasicBlock *NewExitBB = SplitBlockPredecessors( |
| Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); |
| if (Options.PreserveLCSSA) |
| createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); |
| } |
| } |
| } |
| } |
| |
| return NewBB; |
| } |
| |
| void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, |
| BasicBlock *SplitBB, BasicBlock *DestBB) { |
| // SplitBB shouldn't have anything non-trivial in it yet. |
| assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || |
| SplitBB->isLandingPad()) && |
| "SplitBB has non-PHI nodes!"); |
| |
| // For each PHI in the destination block. |
| for (PHINode &PN : DestBB->phis()) { |
| int Idx = PN.getBasicBlockIndex(SplitBB); |
| assert(Idx >= 0 && "Invalid Block Index"); |
| Value *V = PN.getIncomingValue(Idx); |
| |
| // If the input is a PHI which already satisfies LCSSA, don't create |
| // a new one. |
| if (const PHINode *VP = dyn_cast<PHINode>(V)) |
| if (VP->getParent() == SplitBB) |
| continue; |
| |
| // Otherwise a new PHI is needed. Create one and populate it. |
| PHINode *NewPN = PHINode::Create( |
| PN.getType(), Preds.size(), "split", |
| SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); |
| for (BasicBlock *BB : Preds) |
| NewPN->addIncoming(V, BB); |
| |
| // Update the original PHI. |
| PN.setIncomingValue(Idx, NewPN); |
| } |
| } |
| |
| unsigned |
| llvm::SplitAllCriticalEdges(Function &F, |
| const CriticalEdgeSplittingOptions &Options) { |
| unsigned NumBroken = 0; |
| for (BasicBlock &BB : F) { |
| Instruction *TI = BB.getTerminator(); |
| if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && |
| !isa<CallBrInst>(TI)) |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (SplitCriticalEdge(TI, i, Options)) |
| ++NumBroken; |
| } |
| return NumBroken; |
| } |
| |
| static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, |
| DomTreeUpdater *DTU, DominatorTree *DT, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| const Twine &BBName, bool Before) { |
| if (Before) { |
| DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| return splitBlockBefore(Old, SplitPt, |
| DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, |
| BBName); |
| } |
| BasicBlock::iterator SplitIt = SplitPt->getIterator(); |
| while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) |
| ++SplitIt; |
| std::string Name = BBName.str(); |
| BasicBlock *New = Old->splitBasicBlock( |
| SplitIt, Name.empty() ? Old->getName() + ".split" : Name); |
| |
| // The new block lives in whichever loop the old one did. This preserves |
| // LCSSA as well, because we force the split point to be after any PHI nodes. |
| if (LI) |
| if (Loop *L = LI->getLoopFor(Old)) |
| L->addBasicBlockToLoop(New, *LI); |
| |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 8> Updates; |
| // Old dominates New. New node dominates all other nodes dominated by Old. |
| SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New), |
| succ_end(New)); |
| Updates.push_back({DominatorTree::Insert, Old, New}); |
| Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size()); |
| for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) { |
| Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld}); |
| Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld}); |
| } |
| |
| DTU->applyUpdates(Updates); |
| } else if (DT) |
| // Old dominates New. New node dominates all other nodes dominated by Old. |
| if (DomTreeNode *OldNode = DT->getNode(Old)) { |
| std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); |
| |
| DomTreeNode *NewNode = DT->addNewBlock(New, Old); |
| for (DomTreeNode *I : Children) |
| DT->changeImmediateDominator(I, NewNode); |
| } |
| |
| // Move MemoryAccesses still tracked in Old, but part of New now. |
| // Update accesses in successor blocks accordingly. |
| if (MSSAU) |
| MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); |
| |
| return New; |
| } |
| |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, |
| DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, const Twine &BBName, |
| bool Before) { |
| return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, |
| Before); |
| } |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, |
| DomTreeUpdater *DTU, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, const Twine &BBName, |
| bool Before) { |
| return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, |
| Before); |
| } |
| |
| BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, |
| DomTreeUpdater *DTU, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, |
| const Twine &BBName) { |
| |
| BasicBlock::iterator SplitIt = SplitPt->getIterator(); |
| while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) |
| ++SplitIt; |
| std::string Name = BBName.str(); |
| BasicBlock *New = Old->splitBasicBlock( |
| SplitIt, Name.empty() ? Old->getName() + ".split" : Name, |
| /* Before=*/true); |
| |
| // The new block lives in whichever loop the old one did. This preserves |
| // LCSSA as well, because we force the split point to be after any PHI nodes. |
| if (LI) |
| if (Loop *L = LI->getLoopFor(Old)) |
| L->addBasicBlockToLoop(New, *LI); |
| |
| if (DTU) { |
| SmallVector<DominatorTree::UpdateType, 8> DTUpdates; |
| // New dominates Old. The predecessor nodes of the Old node dominate |
| // New node. |
| SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New), |
| pred_end(New)); |
| DTUpdates.push_back({DominatorTree::Insert, New, Old}); |
| DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size()); |
| for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) { |
| DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New}); |
| DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old}); |
| } |
| |
| DTU->applyUpdates(DTUpdates); |
| |
| // Move MemoryAccesses still tracked in Old, but part of New now. |
| // Update accesses in successor blocks accordingly. |
| if (MSSAU) { |
| MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); |
| if (VerifyMemorySSA) |
| MSSAU->getMemorySSA()->verifyMemorySSA(); |
| } |
| } |
| return New; |
| } |
| |
| /// Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, |
| ArrayRef<BasicBlock *> Preds, |
| DomTreeUpdater *DTU, DominatorTree *DT, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA, bool &HasLoopExit) { |
| // Update dominator tree if available. |
| if (DTU) { |
| // Recalculation of DomTree is needed when updating a forward DomTree and |
| // the Entry BB is replaced. |
| if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) { |
| // The entry block was removed and there is no external interface for |
| // the dominator tree to be notified of this change. In this corner-case |
| // we recalculate the entire tree. |
| DTU->recalculate(*NewBB->getParent()); |
| } else { |
| // Split block expects NewBB to have a non-empty set of predecessors. |
| SmallVector<DominatorTree::UpdateType, 8> Updates; |
| SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end()); |
| Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); |
| Updates.reserve(Updates.size() + 2 * UniquePreds.size()); |
| for (auto *UniquePred : UniquePreds) { |
| Updates.push_back({DominatorTree::Insert, UniquePred, NewBB}); |
| Updates.push_back({DominatorTree::Delete, UniquePred, OldBB}); |
| } |
| DTU->applyUpdates(Updates); |
| } |
| } else if (DT) { |
| if (OldBB == DT->getRootNode()->getBlock()) { |
| assert(NewBB == &NewBB->getParent()->getEntryBlock()); |
| DT->setNewRoot(NewBB); |
| } else { |
| // Split block expects NewBB to have a non-empty set of predecessors. |
| DT->splitBlock(NewBB); |
| } |
| } |
| |
| // Update MemoryPhis after split if MemorySSA is available |
| if (MSSAU) |
| MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); |
| |
| // The rest of the logic is only relevant for updating the loop structures. |
| if (!LI) |
| return; |
| |
| if (DTU && DTU->hasDomTree()) |
| DT = &DTU->getDomTree(); |
| assert(DT && "DT should be available to update LoopInfo!"); |
| Loop *L = LI->getLoopFor(OldBB); |
| |
| // If we need to preserve loop analyses, collect some information about how |
| // this split will affect loops. |
| bool IsLoopEntry = !!L; |
| bool SplitMakesNewLoopHeader = false; |
| for (BasicBlock *Pred : Preds) { |
| // Preds that are not reachable from entry should not be used to identify if |
| // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks |
| // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader |
| // as true and make the NewBB the header of some loop. This breaks LI. |
| if (!DT->isReachableFromEntry(Pred)) |
| continue; |
| // If we need to preserve LCSSA, determine if any of the preds is a loop |
| // exit. |
| if (PreserveLCSSA) |
| if (Loop *PL = LI->getLoopFor(Pred)) |
| if (!PL->contains(OldBB)) |
| HasLoopExit = true; |
| |
| // If we need to preserve LoopInfo, note whether any of the preds crosses |
| // an interesting loop boundary. |
| if (!L) |
| continue; |
| if (L->contains(Pred)) |
| IsLoopEntry = false; |
| else |
| SplitMakesNewLoopHeader = true; |
| } |
| |
| // Unless we have a loop for OldBB, nothing else to do here. |
| if (!L) |
| return; |
| |
| if (IsLoopEntry) { |
| // Add the new block to the nearest enclosing loop (and not an adjacent |
| // loop). To find this, examine each of the predecessors and determine which |
| // loops enclose them, and select the most-nested loop which contains the |
| // loop containing the block being split. |
| Loop *InnermostPredLoop = nullptr; |
| for (BasicBlock *Pred : Preds) { |
| if (Loop *PredLoop = LI->getLoopFor(Pred)) { |
| // Seek a loop which actually contains the block being split (to avoid |
| // adjacent loops). |
| while (PredLoop && !PredLoop->contains(OldBB)) |
| PredLoop = PredLoop->getParentLoop(); |
| |
| // Select the most-nested of these loops which contains the block. |
| if (PredLoop && PredLoop->contains(OldBB) && |
| (!InnermostPredLoop || |
| InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) |
| InnermostPredLoop = PredLoop; |
| } |
| } |
| |
| if (InnermostPredLoop) |
| InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); |
| } else { |
| L->addBasicBlockToLoop(NewBB, *LI); |
| if (SplitMakesNewLoopHeader) |
| L->moveToHeader(NewBB); |
| } |
| } |
| |
| /// Update the PHI nodes in OrigBB to include the values coming from NewBB. |
| /// This also updates AliasAnalysis, if available. |
| static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, |
| ArrayRef<BasicBlock *> Preds, BranchInst *BI, |
| bool HasLoopExit) { |
| // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. |
| SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); |
| for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { |
| PHINode *PN = cast<PHINode>(I++); |
| |
| // Check to see if all of the values coming in are the same. If so, we |
| // don't need to create a new PHI node, unless it's needed for LCSSA. |
| Value *InVal = nullptr; |
| if (!HasLoopExit) { |
| InVal = PN->getIncomingValueForBlock(Preds[0]); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| if (!PredSet.count(PN->getIncomingBlock(i))) |
| continue; |
| if (!InVal) |
| InVal = PN->getIncomingValue(i); |
| else if (InVal != PN->getIncomingValue(i)) { |
| InVal = nullptr; |
| break; |
| } |
| } |
| } |
| |
| if (InVal) { |
| // If all incoming values for the new PHI would be the same, just don't |
| // make a new PHI. Instead, just remove the incoming values from the old |
| // PHI. |
| |
| // NOTE! This loop walks backwards for a reason! First off, this minimizes |
| // the cost of removal if we end up removing a large number of values, and |
| // second off, this ensures that the indices for the incoming values |
| // aren't invalidated when we remove one. |
| for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) |
| if (PredSet.count(PN->getIncomingBlock(i))) |
| PN->removeIncomingValue(i, false); |
| |
| // Add an incoming value to the PHI node in the loop for the preheader |
| // edge. |
| PN->addIncoming(InVal, NewBB); |
| continue; |
| } |
| |
| // If the values coming into the block are not the same, we need a new |
| // PHI. |
| // Create the new PHI node, insert it into NewBB at the end of the block |
| PHINode *NewPHI = |
| PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); |
| |
| // NOTE! This loop walks backwards for a reason! First off, this minimizes |
| // the cost of removal if we end up removing a large number of values, and |
| // second off, this ensures that the indices for the incoming values aren't |
| // invalidated when we remove one. |
| for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { |
| BasicBlock *IncomingBB = PN->getIncomingBlock(i); |
| if (PredSet.count(IncomingBB)) { |
| Value *V = PN->removeIncomingValue(i, false); |
| NewPHI->addIncoming(V, IncomingBB); |
| } |
| } |
| |
| PN->addIncoming(NewPHI, NewBB); |
| } |
| } |
| |
| static void SplitLandingPadPredecessorsImpl( |
| BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, |
| const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, |
| DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, bool PreserveLCSSA); |
| |
| static BasicBlock * |
| SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, |
| const char *Suffix, DomTreeUpdater *DTU, |
| DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
| // Do not attempt to split that which cannot be split. |
| if (!BB->canSplitPredecessors()) |
| return nullptr; |
| |
| // For the landingpads we need to act a bit differently. |
| // Delegate this work to the SplitLandingPadPredecessors. |
| if (BB->isLandingPad()) { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| std::string NewName = std::string(Suffix) + ".split-lp"; |
| |
| SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, |
| DTU, DT, LI, MSSAU, PreserveLCSSA); |
| return NewBBs[0]; |
| } |
| |
| // Create new basic block, insert right before the original block. |
| BasicBlock *NewBB = BasicBlock::Create( |
| BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); |
| |
| // The new block unconditionally branches to the old block. |
| BranchInst *BI = BranchInst::Create(BB, NewBB); |
| |
| Loop *L = nullptr; |
| BasicBlock *OldLatch = nullptr; |
| // Splitting the predecessors of a loop header creates a preheader block. |
| if (LI && LI->isLoopHeader(BB)) { |
| L = LI->getLoopFor(BB); |
| // Using the loop start line number prevents debuggers stepping into the |
| // loop body for this instruction. |
| BI->setDebugLoc(L->getStartLoc()); |
| |
| // If BB is the header of the Loop, it is possible that the loop is |
| // modified, such that the current latch does not remain the latch of the |
| // loop. If that is the case, the loop metadata from the current latch needs |
| // to be applied to the new latch. |
| OldLatch = L->getLoopLatch(); |
| } else |
| BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); |
| |
| // Move the edges from Preds to point to NewBB instead of BB. |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) { |
| // This is slightly more strict than necessary; the minimum requirement |
| // is that there be no more than one indirectbr branching to BB. And |
| // all BlockAddress uses would need to be updated. |
| assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && |
| "Cannot split an edge from an IndirectBrInst"); |
| assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && |
| "Cannot split an edge from a CallBrInst"); |
| Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); |
| } |
| |
| // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI |
| // node becomes an incoming value for BB's phi node. However, if the Preds |
| // list is empty, we need to insert dummy entries into the PHI nodes in BB to |
| // account for the newly created predecessor. |
| if (Preds.empty()) { |
| // Insert dummy values as the incoming value. |
| for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) |
| cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); |
| } |
| |
| // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| bool HasLoopExit = false; |
| UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, |
| HasLoopExit); |
| |
| if (!Preds.empty()) { |
| // Update the PHI nodes in BB with the values coming from NewBB. |
| UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); |
| } |
| |
| if (OldLatch) { |
| BasicBlock *NewLatch = L->getLoopLatch(); |
| if (NewLatch != OldLatch) { |
| MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); |
| NewLatch->getTerminator()->setMetadata("llvm.loop", MD); |
| OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); |
| } |
| } |
| |
| return NewBB; |
| } |
| |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
| ArrayRef<BasicBlock *> Preds, |
| const char *Suffix, DominatorTree *DT, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA) { |
| return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, |
| MSSAU, PreserveLCSSA); |
| } |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
| ArrayRef<BasicBlock *> Preds, |
| const char *Suffix, |
| DomTreeUpdater *DTU, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA) { |
| return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, |
| /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); |
| } |
| |
| static void SplitLandingPadPredecessorsImpl( |
| BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, |
| const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, |
| DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { |
| assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); |
| |
| // Create a new basic block for OrigBB's predecessors listed in Preds. Insert |
| // it right before the original block. |
| BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), |
| OrigBB->getName() + Suffix1, |
| OrigBB->getParent(), OrigBB); |
| NewBBs.push_back(NewBB1); |
| |
| // The new block unconditionally branches to the old block. |
| BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); |
| BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); |
| |
| // Move the edges from Preds to point to NewBB1 instead of OrigBB. |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) { |
| // This is slightly more strict than necessary; the minimum requirement |
| // is that there be no more than one indirectbr branching to BB. And |
| // all BlockAddress uses would need to be updated. |
| assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && |
| "Cannot split an edge from an IndirectBrInst"); |
| Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); |
| } |
| |
| bool HasLoopExit = false; |
| UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, |
| PreserveLCSSA, HasLoopExit); |
| |
| // Update the PHI nodes in OrigBB with the values coming from NewBB1. |
| UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); |
| |
| // Move the remaining edges from OrigBB to point to NewBB2. |
| SmallVector<BasicBlock*, 8> NewBB2Preds; |
| for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); |
| i != e; ) { |
| BasicBlock *Pred = *i++; |
| if (Pred == NewBB1) continue; |
| assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
| "Cannot split an edge from an IndirectBrInst"); |
| NewBB2Preds.push_back(Pred); |
| e = pred_end(OrigBB); |
| } |
| |
| BasicBlock *NewBB2 = nullptr; |
| if (!NewBB2Preds.empty()) { |
| // Create another basic block for the rest of OrigBB's predecessors. |
| NewBB2 = BasicBlock::Create(OrigBB->getContext(), |
| OrigBB->getName() + Suffix2, |
| OrigBB->getParent(), OrigBB); |
| NewBBs.push_back(NewBB2); |
| |
| // The new block unconditionally branches to the old block. |
| BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); |
| BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); |
| |
| // Move the remaining edges from OrigBB to point to NewBB2. |
| for (BasicBlock *NewBB2Pred : NewBB2Preds) |
| NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); |
| |
| // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| HasLoopExit = false; |
| UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, |
| PreserveLCSSA, HasLoopExit); |
| |
| // Update the PHI nodes in OrigBB with the values coming from NewBB2. |
| UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); |
| } |
| |
| LandingPadInst *LPad = OrigBB->getLandingPadInst(); |
| Instruction *Clone1 = LPad->clone(); |
| Clone1->setName(Twine("lpad") + Suffix1); |
| NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); |
| |
| if (NewBB2) { |
| Instruction *Clone2 = LPad->clone(); |
| Clone2->setName(Twine("lpad") + Suffix2); |
| NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); |
| |
| // Create a PHI node for the two cloned landingpad instructions only |
| // if the original landingpad instruction has some uses. |
| if (!LPad->use_empty()) { |
| assert(!LPad->getType()->isTokenTy() && |
| "Split cannot be applied if LPad is token type. Otherwise an " |
| "invalid PHINode of token type would be created."); |
| PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); |
| PN->addIncoming(Clone1, NewBB1); |
| PN->addIncoming(Clone2, NewBB2); |
| LPad->replaceAllUsesWith(PN); |
| } |
| LPad->eraseFromParent(); |
| } else { |
| // There is no second clone. Just replace the landing pad with the first |
| // clone. |
| LPad->replaceAllUsesWith(Clone1); |
| LPad->eraseFromParent(); |
| } |
| } |
| |
| void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, |
| ArrayRef<BasicBlock *> Preds, |
| const char *Suffix1, const char *Suffix2, |
| SmallVectorImpl<BasicBlock *> &NewBBs, |
| DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA) { |
| return SplitLandingPadPredecessorsImpl( |
| OrigBB, Preds, Suffix1, Suffix2, NewBBs, |
| /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); |
| } |
| void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, |
| ArrayRef<BasicBlock *> Preds, |
| const char *Suffix1, const char *Suffix2, |
| SmallVectorImpl<BasicBlock *> &NewBBs, |
| DomTreeUpdater *DTU, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA) { |
| return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, |
| NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, |
| PreserveLCSSA); |
| } |
| |
| ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, |
| BasicBlock *Pred, |
| DomTreeUpdater *DTU) { |
| Instruction *UncondBranch = Pred->getTerminator(); |
| // Clone the return and add it to the end of the predecessor. |
| Instruction *NewRet = RI->clone(); |
| Pred->getInstList().push_back(NewRet); |
| |
| // If the return instruction returns a value, and if the value was a |
| // PHI node in "BB", propagate the right value into the return. |
| for (Use &Op : NewRet->operands()) { |
| Value *V = Op; |
| Instruction *NewBC = nullptr; |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { |
| // Return value might be bitcasted. Clone and insert it before the |
| // return instruction. |
| V = BCI->getOperand(0); |
| NewBC = BCI->clone(); |
| Pred->getInstList().insert(NewRet->getIterator(), NewBC); |
| Op = NewBC; |
| } |
| |
| Instruction *NewEV = nullptr; |
| if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { |
| V = EVI->getOperand(0); |
| NewEV = EVI->clone(); |
| if (NewBC) { |
| NewBC->setOperand(0, NewEV); |
| Pred->getInstList().insert(NewBC->getIterator(), NewEV); |
| } else { |
| Pred->getInstList().insert(NewRet->getIterator(), NewEV); |
| Op = NewEV; |
| } |
| } |
| |
| if (PHINode *PN = dyn_cast<PHINode>(V)) { |
| if (PN->getParent() == BB) { |
| if (NewEV) { |
| NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); |
| } else if (NewBC) |
| NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); |
| else |
| Op = PN->getIncomingValueForBlock(Pred); |
| } |
| } |
| } |
| |
| // Update any PHI nodes in the returning block to realize that we no |
| // longer branch to them. |
| BB->removePredecessor(Pred); |
| UncondBranch->eraseFromParent(); |
| |
| if (DTU) |
| DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); |
| |
| return cast<ReturnInst>(NewRet); |
| } |
| |
| static Instruction * |
| SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore, |
| bool Unreachable, MDNode *BranchWeights, |
| DomTreeUpdater *DTU, DominatorTree *DT, |
| LoopInfo *LI, BasicBlock *ThenBlock) { |
| SmallVector<DominatorTree::UpdateType, 8> Updates; |
| BasicBlock *Head = SplitBefore->getParent(); |
| BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); |
| if (DTU) { |
| SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail), |
| succ_end(Tail)); |
| Updates.push_back({DominatorTree::Insert, Head, Tail}); |
| Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size()); |
| for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) { |
| Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead}); |
| Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead}); |
| } |
| } |
| Instruction *HeadOldTerm = Head->getTerminator(); |
| LLVMContext &C = Head->getContext(); |
| Instruction *CheckTerm; |
| bool CreateThenBlock = (ThenBlock == nullptr); |
| if (CreateThenBlock) { |
| ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); |
| if (Unreachable) |
| CheckTerm = new UnreachableInst(C, ThenBlock); |
| else { |
| CheckTerm = BranchInst::Create(Tail, ThenBlock); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, ThenBlock, Tail}); |
| } |
| CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); |
| } else |
| CheckTerm = ThenBlock->getTerminator(); |
| BranchInst *HeadNewTerm = |
| BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond); |
| if (DTU) |
| Updates.push_back({DominatorTree::Insert, Head, ThenBlock}); |
| HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); |
| ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); |
| |
| if (DTU) |
| DTU->applyUpdates(Updates); |
| else if (DT) { |
| if (DomTreeNode *OldNode = DT->getNode(Head)) { |
| std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); |
| |
| DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); |
| for (DomTreeNode *Child : Children) |
| DT->changeImmediateDominator(Child, NewNode); |
| |
| // Head dominates ThenBlock. |
| if (CreateThenBlock) |
| DT->addNewBlock(ThenBlock, Head); |
| else |
| DT->changeImmediateDominator(ThenBlock, Head); |
| } |
| } |
| |
| if (LI) { |
| if (Loop *L = LI->getLoopFor(Head)) { |
| L->addBasicBlockToLoop(ThenBlock, *LI); |
| L->addBasicBlockToLoop(Tail, *LI); |
| } |
| } |
| |
| return CheckTerm; |
| } |
| |
| Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, |
| Instruction *SplitBefore, |
| bool Unreachable, |
| MDNode *BranchWeights, |
| DominatorTree *DT, LoopInfo *LI, |
| BasicBlock *ThenBlock) { |
| return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, |
| BranchWeights, |
| /*DTU=*/nullptr, DT, LI, ThenBlock); |
| } |
| Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, |
| Instruction *SplitBefore, |
| bool Unreachable, |
| MDNode *BranchWeights, |
| DomTreeUpdater *DTU, LoopInfo *LI, |
| BasicBlock *ThenBlock) { |
| return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, |
| BranchWeights, DTU, /*DT=*/nullptr, LI, |
| ThenBlock); |
| } |
| |
| void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, |
| Instruction **ThenTerm, |
| Instruction **ElseTerm, |
| MDNode *BranchWeights) { |
| BasicBlock *Head = SplitBefore->getParent(); |
| BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); |
| Instruction *HeadOldTerm = Head->getTerminator(); |
| LLVMContext &C = Head->getContext(); |
| BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); |
| BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); |
| *ThenTerm = BranchInst::Create(Tail, ThenBlock); |
| (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); |
| *ElseTerm = BranchInst::Create(Tail, ElseBlock); |
| (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); |
| BranchInst *HeadNewTerm = |
| BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); |
| HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); |
| ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); |
| } |
| |
| Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, |
| BasicBlock *&IfFalse) { |
| PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); |
| BasicBlock *Pred1 = nullptr; |
| BasicBlock *Pred2 = nullptr; |
| |
| if (SomePHI) { |
| if (SomePHI->getNumIncomingValues() != 2) |
| return nullptr; |
| Pred1 = SomePHI->getIncomingBlock(0); |
| Pred2 = SomePHI->getIncomingBlock(1); |
| } else { |
| pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| if (PI == PE) // No predecessor |
| return nullptr; |
| Pred1 = *PI++; |
| if (PI == PE) // Only one predecessor |
| return nullptr; |
| Pred2 = *PI++; |
| if (PI != PE) // More than two predecessors |
| return nullptr; |
| } |
| |
| // We can only handle branches. Other control flow will be lowered to |
| // branches if possible anyway. |
| BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); |
| BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); |
| if (!Pred1Br || !Pred2Br) |
| return nullptr; |
| |
| // Eliminate code duplication by ensuring that Pred1Br is conditional if |
| // either are. |
| if (Pred2Br->isConditional()) { |
| // If both branches are conditional, we don't have an "if statement". In |
| // reality, we could transform this case, but since the condition will be |
| // required anyway, we stand no chance of eliminating it, so the xform is |
| // probably not profitable. |
| if (Pred1Br->isConditional()) |
| return nullptr; |
| |
| std::swap(Pred1, Pred2); |
| std::swap(Pred1Br, Pred2Br); |
| } |
| |
| if (Pred1Br->isConditional()) { |
| // The only thing we have to watch out for here is to make sure that Pred2 |
| // doesn't have incoming edges from other blocks. If it does, the condition |
| // doesn't dominate BB. |
| if (!Pred2->getSinglePredecessor()) |
| return nullptr; |
| |
| // If we found a conditional branch predecessor, make sure that it branches |
| // to BB and Pred2Br. If it doesn't, this isn't an "if statement". |
| if (Pred1Br->getSuccessor(0) == BB && |
| Pred1Br->getSuccessor(1) == Pred2) { |
| IfTrue = Pred1; |
| IfFalse = Pred2; |
| } else if (Pred1Br->getSuccessor(0) == Pred2 && |
| Pred1Br->getSuccessor(1) == BB) { |
| IfTrue = Pred2; |
| IfFalse = Pred1; |
| } else { |
| // We know that one arm of the conditional goes to BB, so the other must |
| // go somewhere unrelated, and this must not be an "if statement". |
| return nullptr; |
| } |
| |
| return Pred1Br->getCondition(); |
| } |
| |
| // Ok, if we got here, both predecessors end with an unconditional branch to |
| // BB. Don't panic! If both blocks only have a single (identical) |
| // predecessor, and THAT is a conditional branch, then we're all ok! |
| BasicBlock *CommonPred = Pred1->getSinglePredecessor(); |
| if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) |
| return nullptr; |
| |
| // Otherwise, if this is a conditional branch, then we can use it! |
| BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); |
| if (!BI) return nullptr; |
| |
| assert(BI->isConditional() && "Two successors but not conditional?"); |
| if (BI->getSuccessor(0) == Pred1) { |
| IfTrue = Pred1; |
| IfFalse = Pred2; |
| } else { |
| IfTrue = Pred2; |
| IfFalse = Pred1; |
| } |
| return BI->getCondition(); |
| } |
| |
| // After creating a control flow hub, the operands of PHINodes in an outgoing |
| // block Out no longer match the predecessors of that block. Predecessors of Out |
| // that are incoming blocks to the hub are now replaced by just one edge from |
| // the hub. To match this new control flow, the corresponding values from each |
| // PHINode must now be moved a new PHINode in the first guard block of the hub. |
| // |
| // This operation cannot be performed with SSAUpdater, because it involves one |
| // new use: If the block Out is in the list of Incoming blocks, then the newly |
| // created PHI in the Hub will use itself along that edge from Out to Hub. |
| static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, |
| const SetVector<BasicBlock *> &Incoming, |
| BasicBlock *FirstGuardBlock) { |
| auto I = Out->begin(); |
| while (I != Out->end() && isa<PHINode>(I)) { |
| auto Phi = cast<PHINode>(I); |
| auto NewPhi = |
| PHINode::Create(Phi->getType(), Incoming.size(), |
| Phi->getName() + ".moved", &FirstGuardBlock->back()); |
| for (auto In : Incoming) { |
| Value *V = UndefValue::get(Phi->getType()); |
| if (In == Out) { |
| V = NewPhi; |
| } else if (Phi->getBasicBlockIndex(In) != -1) { |
| V = Phi->removeIncomingValue(In, false); |
| } |
| NewPhi->addIncoming(V, In); |
| } |
| assert(NewPhi->getNumIncomingValues() == Incoming.size()); |
| if (Phi->getNumOperands() == 0) { |
| Phi->replaceAllUsesWith(NewPhi); |
| I = Phi->eraseFromParent(); |
| continue; |
| } |
| Phi->addIncoming(NewPhi, GuardBlock); |
| ++I; |
| } |
| } |
| |
| using BBPredicates = DenseMap<BasicBlock *, PHINode *>; |
| using BBSetVector = SetVector<BasicBlock *>; |
| |
| // Redirects the terminator of the incoming block to the first guard |
| // block in the hub. The condition of the original terminator (if it |
| // was conditional) and its original successors are returned as a |
| // tuple <condition, succ0, succ1>. The function additionally filters |
| // out successors that are not in the set of outgoing blocks. |
| // |
| // - condition is non-null iff the branch is conditional. |
| // - Succ1 is non-null iff the sole/taken target is an outgoing block. |
| // - Succ2 is non-null iff condition is non-null and the fallthrough |
| // target is an outgoing block. |
| static std::tuple<Value *, BasicBlock *, BasicBlock *> |
| redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, |
| const BBSetVector &Outgoing) { |
| auto Branch = cast<BranchInst>(BB->getTerminator()); |
| auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; |
| |
| BasicBlock *Succ0 = Branch->getSuccessor(0); |
| BasicBlock *Succ1 = nullptr; |
| Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; |
| |
| if (Branch->isUnconditional()) { |
| Branch->setSuccessor(0, FirstGuardBlock); |
| assert(Succ0); |
| } else { |
| Succ1 = Branch->getSuccessor(1); |
| Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; |
| assert(Succ0 || Succ1); |
| if (Succ0 && !Succ1) { |
| Branch->setSuccessor(0, FirstGuardBlock); |
| } else if (Succ1 && !Succ0) { |
| Branch->setSuccessor(1, FirstGuardBlock); |
| } else { |
| Branch->eraseFromParent(); |
| BranchInst::Create(FirstGuardBlock, BB); |
| } |
| } |
| |
| assert(Succ0 || Succ1); |
| return std::make_tuple(Condition, Succ0, Succ1); |
| } |
| |
| // Capture the existing control flow as guard predicates, and redirect |
| // control flow from every incoming block to the first guard block in |
| // the hub. |
| // |
| // There is one guard predicate for each outgoing block OutBB. The |
| // predicate is a PHINode with one input for each InBB which |
| // represents whether the hub should transfer control flow to OutBB if |
| // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub |
| // evaluates them in the same order as the Outgoing set-vector, and |
| // control branches to the first outgoing block whose predicate |
| // evaluates to true. |
| static void convertToGuardPredicates( |
| BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, |
| SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, |
| const BBSetVector &Outgoing) { |
| auto &Context = Incoming.front()->getContext(); |
| auto BoolTrue = ConstantInt::getTrue(Context); |
| auto BoolFalse = ConstantInt::getFalse(Context); |
| |
| // The predicate for the last outgoing is trivially true, and so we |
| // process only the first N-1 successors. |
| for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { |
| auto Out = Outgoing[i]; |
| LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); |
| auto Phi = |
| PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), |
| StringRef("Guard.") + Out->getName(), FirstGuardBlock); |
| GuardPredicates[Out] = Phi; |
| } |
| |
| for (auto In : Incoming) { |
| Value *Condition; |
| BasicBlock *Succ0; |
| BasicBlock *Succ1; |
| std::tie(Condition, Succ0, Succ1) = |
| redirectToHub(In, FirstGuardBlock, Outgoing); |
| |
| // Optimization: Consider an incoming block A with both successors |
| // Succ0 and Succ1 in the set of outgoing blocks. The predicates |
| // for Succ0 and Succ1 complement each other. If Succ0 is visited |
| // first in the loop below, control will branch to Succ0 using the |
| // corresponding predicate. But if that branch is not taken, then |
| // control must reach Succ1, which means that the predicate for |
| // Succ1 is always true. |
| bool OneSuccessorDone = false; |
| for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { |
| auto Out = Outgoing[i]; |
| auto Phi = GuardPredicates[Out]; |
| if (Out != Succ0 && Out != Succ1) { |
| Phi->addIncoming(BoolFalse, In); |
| continue; |
| } |
| // Optimization: When only one successor is an outgoing block, |
| // the predicate is always true. |
| if (!Succ0 || !Succ1 || OneSuccessorDone) { |
| Phi->addIncoming(BoolTrue, In); |
| continue; |
| } |
| assert(Succ0 && Succ1); |
| OneSuccessorDone = true; |
| if (Out == Succ0) { |
| Phi->addIncoming(Condition, In); |
| continue; |
| } |
| auto Inverted = invertCondition(Condition); |
| DeletionCandidates.push_back(Condition); |
| Phi->addIncoming(Inverted, In); |
| } |
| } |
| } |
| |
| // For each outgoing block OutBB, create a guard block in the Hub. The |
| // first guard block was already created outside, and available as the |
| // first element in the vector of guard blocks. |
| // |
| // Each guard block terminates in a conditional branch that transfers |
| // control to the corresponding outgoing block or the next guard |
| // block. The last guard block has two outgoing blocks as successors |
| // since the condition for the final outgoing block is trivially |
| // true. So we create one less block (including the first guard block) |
| // than the number of outgoing blocks. |
| static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, |
| Function *F, const BBSetVector &Outgoing, |
| BBPredicates &GuardPredicates, StringRef Prefix) { |
| for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { |
| GuardBlocks.push_back( |
| BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); |
| } |
| assert(GuardBlocks.size() == GuardPredicates.size()); |
| |
| // To help keep the loop simple, temporarily append the last |
| // outgoing block to the list of guard blocks. |
| GuardBlocks.push_back(Outgoing.back()); |
| |
| for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { |
| auto Out = Outgoing[i]; |
| assert(GuardPredicates.count(Out)); |
| BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], |
| GuardBlocks[i]); |
| } |
| |
| // Remove the last block from the guard list. |
| GuardBlocks.pop_back(); |
| } |
| |
| BasicBlock *llvm::CreateControlFlowHub( |
| DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, |
| const BBSetVector &Incoming, const BBSetVector &Outgoing, |
| const StringRef Prefix) { |
| auto F = Incoming.front()->getParent(); |
| auto FirstGuardBlock = |
| BasicBlock::Create(F->getContext(), Prefix + ".guard", F); |
| |
| SmallVector<DominatorTree::UpdateType, 16> Updates; |
| if (DTU) { |
| for (auto In : Incoming) { |
| Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); |
| for (auto Succ : successors(In)) { |
| if (Outgoing.count(Succ)) |
| Updates.push_back({DominatorTree::Delete, In, Succ}); |
| } |
| } |
| } |
| |
| BBPredicates GuardPredicates; |
| SmallVector<WeakVH, 8> DeletionCandidates; |
| convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, |
| Incoming, Outgoing); |
| |
| GuardBlocks.push_back(FirstGuardBlock); |
| createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); |
| |
| // Update the PHINodes in each outgoing block to match the new control flow. |
| for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { |
| reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); |
| } |
| reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); |
| |
| if (DTU) { |
| int NumGuards = GuardBlocks.size(); |
| assert((int)Outgoing.size() == NumGuards + 1); |
| for (int i = 0; i != NumGuards - 1; ++i) { |
| Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); |
| Updates.push_back( |
| {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); |
| } |
| Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], |
| Outgoing[NumGuards - 1]}); |
| Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], |
| Outgoing[NumGuards]}); |
| DTU->applyUpdates(Updates); |
| } |
| |
| for (auto I : DeletionCandidates) { |
| if (I->use_empty()) |
| if (auto Inst = dyn_cast_or_null<Instruction>(I)) |
| Inst->eraseFromParent(); |
| } |
| |
| return FirstGuardBlock; |
| } |