blob: 2f77daae713049d01cba3c338ae792f6311e59d0 [file] [log] [blame]
//===-- VEInstrInfo.td - Target Description for VE Target -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the VE instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "VEInstrFormats.td"
//===----------------------------------------------------------------------===//
// Helper functions to retrieve target constants.
//
// VE instructions have a space to hold following immediates
// $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp.
// $sz also has 7 bits to represent mimm or mimmfp.
// $disp has 32 bits to represent simm32.
//
// The mimm is a special immediate value of sequential bit stream of 0 or 1.
// `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11,
// where `m` is equal to the number of leading zeros.
// `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00,
// where `m` is equal to the number of leading ones.
// Each bit of mimm's 7 bits is used like below:
// bit 6 : If `(m)0`, this bit is 1. Otherwise, this bit is 0.
// bit 5-0: Represents the m (0-63).
// Use `!add(m, 64)` to generates an immediate value in pattern matchings.
//
// The floating point immediate value is not something like compacted value.
// It is simple integer representation, so it works rarely.
// e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1).
//===----------------------------------------------------------------------===//
def ULO7 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0x7f,
SDLoc(N), MVT::i32);
}]>;
def LO7 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7),
SDLoc(N), MVT::i32);
}]>;
def MIMM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(val2MImm(getImmVal(N)),
SDLoc(N), MVT::i32);
}]>;
def LO32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()),
SDLoc(N), MVT::i32);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()),
SDLoc(N), MVT::i32);
}]>;
def LO7FP : SDNodeXForm<fpimm, [{
uint64_t Val = getFpImmVal(N);
return CurDAG->getTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32);
}]>;
def MIMMFP : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(val2MImm(getFpImmVal(N)),
SDLoc(N), MVT::i32);
}]>;
def LOFP32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff),
SDLoc(N), MVT::i32);
}]>;
def HIFP32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32);
}]>;
def icond2cc : SDNodeXForm<cond, [{
VECC::CondCode VECC = intCondCode2Icc(N->get());
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def icond2ccSwap : SDNodeXForm<cond, [{
ISD::CondCode CC = getSetCCSwappedOperands(N->get());
VECC::CondCode VECC = intCondCode2Icc(CC);
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def fcond2cc : SDNodeXForm<cond, [{
VECC::CondCode VECC = fpCondCode2Fcc(N->get());
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def fcond2ccSwap : SDNodeXForm<cond, [{
ISD::CondCode CC = getSetCCSwappedOperands(N->get());
VECC::CondCode VECC = fpCondCode2Fcc(CC);
return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32);
}]>;
def CCOP : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(),
SDLoc(N), MVT::i32);
}]>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
// zero
def ZeroAsmOperand : AsmOperandClass {
let Name = "Zero";
}
def zero : Operand<i32>, PatLeaf<(imm), [{
return N->getSExtValue() == 0; }]> {
let ParserMatchClass = ZeroAsmOperand;
}
// uimm0to2 - Special immediate value represents 0, 1, and 2.
def UImm0to2AsmOperand : AsmOperandClass {
let Name = "UImm0to2";
}
def uimm0to2 : Operand<i32>, PatLeaf<(imm), [{
return N->getZExtValue() < 3; }], ULO7> {
let ParserMatchClass = UImm0to2AsmOperand;
}
// uimm1 - Generic immediate value.
def UImm1AsmOperand : AsmOperandClass {
let Name = "UImm1";
}
def uimm1 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<1>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm1AsmOperand;
}
// uimm2 - Generic immediate value.
def UImm2AsmOperand : AsmOperandClass {
let Name = "UImm2";
}
def uimm2 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<2>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm2AsmOperand;
}
// uimm3 - Generic immediate value.
def UImm3AsmOperand : AsmOperandClass {
let Name = "UImm3";
}
def uimm3 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<3>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm3AsmOperand;
}
// uimm4 - Generic immediate value.
def UImm4AsmOperand : AsmOperandClass {
let Name = "UImm4";
}
def uimm4 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<4>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm4AsmOperand;
}
// uimm6 - Generic immediate value.
def UImm6AsmOperand : AsmOperandClass {
let Name = "UImm6";
}
def uimm6 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<6>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm6AsmOperand;
}
// uimm7 - Generic immediate value.
def UImm7AsmOperand : AsmOperandClass {
let Name = "UImm7";
}
def uimm7 : Operand<i32>, PatLeaf<(imm), [{
return isUInt<7>(N->getZExtValue()); }], ULO7> {
let ParserMatchClass = UImm7AsmOperand;
}
// simm7 - Generic immediate value.
def SImm7AsmOperand : AsmOperandClass {
let Name = "SImm7";
}
def simm7 : Operand<i32>, PatLeaf<(imm), [{
return isInt<7>(N->getSExtValue()); }], LO7> {
let ParserMatchClass = SImm7AsmOperand;
let DecoderMethod = "DecodeSIMM7";
}
// mimm - Special immediate value of sequential bit stream of 0 or 1.
def MImmAsmOperand : AsmOperandClass {
let Name = "MImm";
let ParserMethod = "parseMImmOperand";
}
def mimm : Operand<i32>, PatLeaf<(imm), [{
return isMImmVal(getImmVal(N)); }], MIMM> {
let ParserMatchClass = MImmAsmOperand;
let PrintMethod = "printMImmOperand";
}
// zerofp - Generic fp immediate zero value.
def zerofp : Operand<i32>, PatLeaf<(fpimm), [{
return getFpImmVal(N) == 0; }]> {
let ParserMatchClass = ZeroAsmOperand;
}
// simm7fp - Generic fp immediate value.
def simm7fp : Operand<i32>, PatLeaf<(fpimm), [{
return isInt<7>(getFpImmVal(N));
}], LO7FP> {
let ParserMatchClass = SImm7AsmOperand;
let DecoderMethod = "DecodeSIMM7";
}
// mimmfp - Special fp immediate value of sequential bit stream of 0 or 1.
def mimmfp : Operand<i32>, PatLeaf<(fpimm), [{
return isMImmVal(getFpImmVal(N)); }], MIMMFP> {
let ParserMatchClass = MImmAsmOperand;
let PrintMethod = "printMImmOperand";
}
// mimmfp32 - 32 bit width mimmfp
// Float value places at higher bits, so ignore lower 32 bits.
def mimmfp32 : Operand<i32>, PatLeaf<(fpimm), [{
return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> {
let ParserMatchClass = MImmAsmOperand;
let PrintMethod = "printMImmOperand";
}
// other generic patterns to use in pattern matchings
def simm32 : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>;
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def lomsbzero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000)
== 0; }]>;
def lozero : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff)
== 0; }]>;
def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000)
== 0; }]>;
def fplozero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff)
== 0; }]>;
def nonzero : PatLeaf<(imm), [{ return N->getSExtValue() !=0 ; }]>;
def CCSIOp : PatLeaf<(cond), [{
switch (N->get()) {
default: return true;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return false;
}
}]>;
def CCUIOp : PatLeaf<(cond), [{
switch (N->get()) {
default: return true;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return false;
}
}]>;
//===----------------------------------------------------------------------===//
// Addressing modes.
// SX-Aurora has following fields.
// sz: register or 0
// sy: register or immediate (-64 to 63)
// disp: immediate (-2147483648 to 2147483647)
//
// There are two kinds of instruction.
// ASX format uses sz + sy + disp.
// AS format uses sz + disp.
//
// Moreover, there are four kinds of assembly instruction format.
// ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)",
// "(, sz)", "(sy)", or "(sy, sz)".
// AS format uses "disp", "disp(, sz)", or "(, sz)" in general.
// AS format in RRM format uses "disp", "disp(sz)", or "(sz)".
// AS format in RRM format for host memory access uses "sz", "(sz)",
// or "disp(sz)".
//
// We defined them below.
//
// ASX format:
// MEMrri, MEMrii, MEMzri, MEMzii
// AS format:
// MEMriASX, MEMziASX : simple AS format
// MEMriRRM, MEMziRRM : AS format in RRM format
// MEMriHM, MEMziHM : AS format in RRM format for host memory access
//===----------------------------------------------------------------------===//
// DAG selections for both ASX and AS formats.
def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>;
def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>;
def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>;
def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>;
def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>;
def ADDRzi : ComplexPattern<iPTR, 2, "selectADDRzi", [], []>;
// ASX format.
def VEMEMrriAsmOperand : AsmOperandClass {
let Name = "MEMrri";
let ParserMethod = "parseMEMOperand";
}
def VEMEMriiAsmOperand : AsmOperandClass {
let Name = "MEMrii";
let ParserMethod = "parseMEMOperand";
}
def VEMEMzriAsmOperand : AsmOperandClass {
let Name = "MEMzri";
let ParserMethod = "parseMEMOperand";
}
def VEMEMziiAsmOperand : AsmOperandClass {
let Name = "MEMzii";
let ParserMethod = "parseMEMOperand";
}
// ASX format uses single assembly instruction format.
def MEMrri : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops ptr_rc, ptr_rc, i32imm);
let ParserMatchClass = VEMEMrriAsmOperand;
}
def MEMrii : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops ptr_rc, i32imm, i32imm);
let ParserMatchClass = VEMEMriiAsmOperand;
}
def MEMzri : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i32imm);
let ParserMatchClass = VEMEMzriAsmOperand;
}
def MEMzii : Operand<iPTR> {
let PrintMethod = "printMemASXOperand";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i32imm);
let ParserMatchClass = VEMEMziiAsmOperand;
}
// AS format.
def VEMEMriAsmOperand : AsmOperandClass {
let Name = "MEMri";
let ParserMethod = "parseMEMAsOperand";
}
def VEMEMziAsmOperand : AsmOperandClass {
let Name = "MEMzi";
let ParserMethod = "parseMEMAsOperand";
}
// AS format uses multiple assembly instruction formats
// 1. AS generic assembly instruction format:
def MEMriASX : Operand<iPTR> {
let PrintMethod = "printMemASOperandASX";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziASX : Operand<iPTR> {
let PrintMethod = "printMemASOperandASX";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
let ParserMatchClass = VEMEMziAsmOperand;
}
// 2. AS RRM style assembly instruction format:
def MEMriRRM : Operand<iPTR> {
let PrintMethod = "printMemASOperandRRM";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziRRM : Operand<iPTR> {
let PrintMethod = "printMemASOperandRRM";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
let ParserMatchClass = VEMEMziAsmOperand;
}
// 3. AS HM style assembly instruction format:
def MEMriHM : Operand<iPTR> {
let PrintMethod = "printMemASOperandHM";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = VEMEMriAsmOperand;
}
def MEMziHM : Operand<iPTR> {
let PrintMethod = "printMemASOperandHM";
let MIOperandInfo = (ops i32imm /* = 0 */, i32imm);
let ParserMatchClass = VEMEMziAsmOperand;
}
//===----------------------------------------------------------------------===//
// Other operands.
//===----------------------------------------------------------------------===//
// Branch targets have OtherVT type.
def brtarget32 : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let DecoderMethod = "DecodeSIMM32";
}
// Operand for printing out a condition code.
def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; }
def CCOp : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm < 22; }], CCOP> {
let PrintMethod = "printCCOperand";
let DecoderMethod = "DecodeCCOperand";
let EncoderMethod = "getCCOpValue";
let ParserMatchClass = CCOpAsmOperand;
}
// Operand for a rounding mode code.
def RDOpAsmOperand : AsmOperandClass {
let Name = "RDOp";
}
def RDOp : Operand<i32> {
let PrintMethod = "printRDOperand";
let DecoderMethod = "DecodeRDOperand";
let EncoderMethod = "getRDOpValue";
let ParserMatchClass = RDOpAsmOperand;
}
def VEhi : SDNode<"VEISD::Hi", SDTIntUnaryOp>;
def VElo : SDNode<"VEISD::Lo", SDTIntUnaryOp>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i64>,
SDTCisVT<1, i64> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>;
def call : SDNode<"VEISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def retflag : SDNode<"VEISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def getGOT : Operand<iPTR>;
def VEeh_sjlj_setjmp: SDNode<"VEISD::EH_SJLJ_SETJMP",
SDTypeProfile<1, 1, [SDTCisInt<0>,
SDTCisPtrTy<1>]>,
[SDNPHasChain, SDNPSideEffect]>;
def VEeh_sjlj_longjmp: SDNode<"VEISD::EH_SJLJ_LONGJMP",
SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>,
[SDNPHasChain, SDNPSideEffect]>;
def VEeh_sjlj_setup_dispatch: SDNode<"VEISD::EH_SJLJ_SETUP_DISPATCH",
SDTypeProfile<0, 0, []>,
[SDNPHasChain, SDNPSideEffect]>;
// GETFUNPLT for PIC
def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>;
// GETTLSADDR for TLS
def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
// GETSTACKTOP
def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
// MEMBARRIER
def MemBarrier : SDNode<"VEISD::MEMBARRIER", SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
// TS1AM
def SDT_TS1AM : SDTypeProfile<1, 3, [SDTCisSameAs<0, 3>, SDTCisPtrTy<1>,
SDTCisVT<2, i32>, SDTCisInt<3>]>;
def ts1am : SDNode<"VEISD::TS1AM", SDT_TS1AM,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad,
SDNPMemOperand]>;
//===----------------------------------------------------------------------===//
// VE Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class CC_VAL<int N> : PatLeaf<(i32 N)>;
def CC_IG : CC_VAL< 0>; // Greater
def CC_IL : CC_VAL< 1>; // Less
def CC_INE : CC_VAL< 2>; // Not Equal
def CC_IEQ : CC_VAL< 3>; // Equal
def CC_IGE : CC_VAL< 4>; // Greater or Equal
def CC_ILE : CC_VAL< 5>; // Less or Equal
def CC_AF : CC_VAL< 6>; // Always false
def CC_G : CC_VAL< 7>; // Greater
def CC_L : CC_VAL< 8>; // Less
def CC_NE : CC_VAL< 9>; // Not Equal
def CC_EQ : CC_VAL<10>; // Equal
def CC_GE : CC_VAL<11>; // Greater or Equal
def CC_LE : CC_VAL<12>; // Less or Equal
def CC_NUM : CC_VAL<13>; // Number
def CC_NAN : CC_VAL<14>; // NaN
def CC_GNAN : CC_VAL<15>; // Greater or NaN
def CC_LNAN : CC_VAL<16>; // Less or NaN
def CC_NENAN : CC_VAL<17>; // Not Equal or NaN
def CC_EQNAN : CC_VAL<18>; // Equal or NaN
def CC_GENAN : CC_VAL<19>; // Greater or Equal or NaN
def CC_LENAN : CC_VAL<20>; // Less or Equal or NaN
def CC_AT : CC_VAL<21>; // Always true
//===----------------------------------------------------------------------===//
// VE Rounding Mode
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the VERD::RoundingMode enum
// values.
class RD_VAL<int N> : PatLeaf<(i32 N)>;
def RD_NONE : RD_VAL< 0>; // According to PSW
def RD_RZ : RD_VAL< 8>; // Round toward Zero
def RD_RP : RD_VAL< 9>; // Round toward Plus infinity
def RD_RM : RD_VAL<10>; // Round toward Minus infinity
def RD_RN : RD_VAL<11>; // Round to Nearest (ties to Even)
def RD_RA : RD_VAL<12>; // Round to Nearest (ties to Away)
//===----------------------------------------------------------------------===//
// VE Multiclasses for common instruction formats
//===----------------------------------------------------------------------===//
// Multiclass for generic RR type instructions
let hasSideEffects = 0 in
multiclass RRbm<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm,
bit MoveImm = 0> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
// VE calculates (OpNode $sy, $sz), but llvm requires to have immediate
// in RHS, so we use following definition.
let cy = 0 in
def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi immOp:$sy)))]>;
let cz = 0 in
def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]> {
// VE uses ORim as a move immediate instruction, so declare it here.
// An instruction declared as MoveImm will be optimized in FoldImmediate
// later.
let isMoveImm = MoveImm;
}
}
// Multiclass for non-commutative RR type instructions
let hasSideEffects = 0 in
multiclass RRNCbm<string opcStr, bits<8>opc,
RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> {
def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>;
let cy = 0 in
def ir : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), Tyi:$sz))]>;
let cz = 0 in
def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz),
!strconcat(opcStr, " $sx, $sy, $sz"),
[(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>;
}
// Generic RR multiclass with 2 arguments.
// e.g. ADDUL, ADDSWSX, ADDSWZX, and etc.
multiclass RRm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm, bit MoveImm = 0> :
RRbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp, MoveImm>;
// Generic RR multiclass for non-commutative instructions with 2 arguments.
// e.g. SUBUL, SUBUW, SUBSWSX, and etc.
multiclass RRNCm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7, Operand mOp = mimm> :
RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
// Generic RR multiclass for floating point instructions with 2 arguments.
// e.g. FADDD, FADDS, FSUBD, and etc.
multiclass RRFm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag,
Operand immOp = simm7fp, Operand mOp = mimmfp> :
RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>;
// Generic RR multiclass for shift instructions with 2 arguments.
// e.g. SLL, SRL, SLAWSX, and etc.
let hasSideEffects = 0 in
multiclass RRIm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]>;
let cz = 0 in
def mr : RR<opc, (outs RC:$sx), (ins mimm:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), i32:$sy))]>;
let cy = 0 in
def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm7:$sy)))]>;
let cy = 0, cz = 0 in
def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm7:$sy)))]>;
}
// Special RR multiclass for 128 bits shift left instruction.
// e.g. SLD
let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in
multiclass RRILDm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rrr : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def rmr : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def rri : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def rmi : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Special RR multiclass for 128 bits shift right instruction.
// e.g. SRD
let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in
multiclass RRIRDm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rrr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def mrr : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, I32:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def rri : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def mri : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, uimm7:$sy),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Generic RR multiclass with an argument.
// e.g. LDZ, PCNT, and BRV
let cy = 0, sy = 0, hasSideEffects = 0 in
multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"),
[(set Ty:$sx, (OpNode Ty:$sz))]>;
let cz = 0 in
def m : RR<opc, (outs RC:$sx), (ins mimm:$sz),
!strconcat(opcStr, " $sx, $sz"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>;
}
// Special RR multiclass for MRG instruction.
// e.g. MRG
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in
multiclass RRMRGm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in
def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cz = 0 in
def rm : RR<opc, (outs RC:$sx), (ins RC:$sy, mimm:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs RC:$sx), (ins simm7:$sy, mimm:$sz, RC:$sd),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Special RR multiclass for BSWP instruction.
// e.g. BSWP
let hasSideEffects = 0 in
multiclass RRSWPm<string opcStr, bits<8>opc,
RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
let cy = 0 in
def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>;
let cy = 0, cz = 0 in
def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy),
!strconcat(opcStr, " $sx, $sz, $sy"),
[(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>;
}
// Multiclass for CMOV instructions.
// e.g. CMOVL, CMOVW, CMOVD, and etc.
let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0,
cfw = ? in
multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty> {
def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0 in
def ir : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, simm7:$sy, I64:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cz = 0 in
def rm : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
let cy = 0, cz = 0 in
def im : RR<opc, (outs I64:$sx),
(ins CCOp:$cfw, simm7:$sy, mimm:$sz, I64:$sd),
!strconcat(opcStr, " $sx, $sz, $sy")>;
}
// Multiclass for floating point conversion instructions.
// e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc.
// sz{3-0} = rounding mode
let cz = 0, hasSideEffects = 0 in
multiclass CVTRDm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi> {
def r : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, RCi:$sy),
!strconcat(opcStr, "${rd} $sx, $sy")> {
bits<4> rd;
let sz{5-4} = 0;
let sz{3-0} = rd;
}
let cy = 0 in
def i : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, simm7:$sy),
!strconcat(opcStr, "${rd} $sx, $sy")> {
bits<4> rd;
let sz{5-4} = 0;
let sz{3-0} = rd;
}
}
// Multiclass for floating point conversion instructions.
// e.g. CVTDW, CVTSW, CVTDL, and etc.
let cz = 0, sz = 0, hasSideEffects = 0 in
multiclass CVTm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo,
RegisterClass RCi, ValueType Tyi,
SDPatternOperator OpNode = null_frag> {
def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy),
!strconcat(opcStr, " $sx, $sy"),
[(set Tyo:$sx, (OpNode Tyi:$sy))]>;
let cy = 0 in
def i : RR<opc, (outs RCo:$sx), (ins simm7:$sy),
!strconcat(opcStr, " $sx, $sy")>;
}
// Multiclass for PFCH instructions.
// e.g. PFCH
let sx = 0, hasSideEffects = 0 in
multiclass PFCHm<string opcStr, bits<8>opc> {
def rri : RM<opc, (outs), (ins MEMrri:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRrri:$addr, imm, imm, (i32 1))]>;
let cy = 0 in
def rii : RM<opc, (outs), (ins MEMrii:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRrii:$addr, imm, imm, (i32 1))]>;
let cz = 0 in
def zri : RM<opc, (outs), (ins MEMzri:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRzri:$addr, imm, imm, (i32 1))]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs), (ins MEMzii:$addr), !strconcat(opcStr, " $addr"),
[(prefetch ADDRzii:$addr, imm, imm, (i32 1))]>;
}
// Multiclass for CAS instructions.
// e.g. TS1AML, TS1AMW, TS2AM, and etc.
let Constraints = "$dest = $sd", DisableEncoding = "$sd",
mayStore=1, mayLoad = 1, hasSideEffects = 0 in
multiclass RRCAStgm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
Operand immOp, Operand MEM, ComplexPattern ADDR,
SDPatternOperator OpNode = null_frag> {
def r : RRM<opc, (outs RC:$dest), (ins MEM:$addr, RC:$sy, RC:$sd),
!strconcat(opcStr, " $dest, $addr, $sy"),
[(set Ty:$dest, (OpNode ADDR:$addr, Ty:$sy, Ty:$sd))]>;
let cy = 0 in
def i : RRM<opc, (outs RC:$dest), (ins MEM:$addr, immOp:$sy, RC:$sd),
!strconcat(opcStr, " $dest, $addr, $sy"),
[(set Ty:$dest, (OpNode ADDR:$addr, (Ty immOp:$sy), Ty:$sd))]>;
}
multiclass RRCASm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty,
Operand immOp, SDPatternOperator OpNode = null_frag> {
defm ri : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMriRRM, ADDRri, OpNode>;
let cz = 0 in
defm zi : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMziRRM, ADDRzi, OpNode>;
}
// Multiclass for branch instructions
// e.g. BCFL, BCFW, BCFD, and etc.
let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in
multiclass BCbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond,
Operand ADDR> {
let bpf = 0 /* NONE */ in
def "" : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
!strconcat(opcStr, " ", cmpStr, "$addr")>;
let bpf = 2 /* NOT TAKEN */ in
def _nt : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
!strconcat(opcStr, ".nt ", cmpStr, "$addr")>;
let bpf = 3 /* TAKEN */ in
def _t : CF<opc, (outs), !con(cond, (ins ADDR:$addr)),
!strconcat(opcStr, ".t ", cmpStr, "$addr")>;
}
multiclass BCtgm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
defm ri : BCbpfm<opcStr, cmpStr, opc, cond, MEMriASX>;
let cz = 0 in defm zi : BCbpfm<opcStr, cmpStr, opc, cond, MEMziASX>;
}
multiclass BCm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
RegisterClass RC, Operand immOp> {
let DecoderMethod = "DecodeBranchCondition" in
defm r : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, RC:$comp)>;
let DecoderMethod = "DecodeBranchCondition", cy = 0 in
defm i : BCtgm<opcStr, "$comp, ", opc, (ins CCOp:$cond, immOp:$comp)>;
let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
cf = 15 /* AT */, isBarrier = 1 in
defm a : BCtgm<opcStrAt, "", opc, (ins)>;
let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0,
cf = 0 /* AF */ in
defm na : BCtgm<opcStrAf, "", opc, (ins)>;
}
// Multiclass for relative branch instructions
// e.g. BRCFL, BRCFW, BRCFD, and etc.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in
multiclass BCRbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond> {
let bpf = 0 /* NONE */ in
def "" : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
!strconcat(opcStr, " ", cmpStr, "$imm32")>;
let bpf = 2 /* NOT TAKEN */ in
def _nt : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
!strconcat(opcStr, ".nt ", cmpStr, "$imm32")>;
let bpf = 3 /* TAKEN */ in
def _t : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)),
!strconcat(opcStr, ".t ", cmpStr, "$imm32")>;
}
multiclass BCRm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc,
RegisterClass RC, Operand immOp, Operand zeroOp> {
defm rr : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, RC:$sy, RC:$sz)>;
let cy = 0 in
defm ir : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, immOp:$sy,
RC:$sz)>;
let cz = 0 in
defm rz : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, RC:$sy,
zeroOp:$sz)>;
let cy = 0, cz = 0 in
defm iz : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cf, immOp:$sy,
zeroOp:$sz)>;
let cy = 0, sy = 0, cz = 0, sz = 0, cf = 15 /* AT */, isBarrier = 1 in
defm a : BCRbpfm<opcStrAt, "", opc, (ins)>;
let cy = 0, sy = 0, cz = 0, sz = 0, cf = 0 /* AF */ in
defm na : BCRbpfm<opcStrAf, "", opc, (ins)>;
}
// Multiclass for communication register instructions.
// e.g. LCR
let hasSideEffects = 1 in
multiclass LOADCRm<string opcStr, bits<8>opc, RegisterClass RC> {
def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, simm7:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cz = 0 in def zr : RR<opc, (outs RC:$sx), (ins zero:$sz, RC:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0, cz = 0 in
def zi : RR<opc, (outs RC:$sx), (ins zero:$sz, simm7:$sy),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Multiclass for communication register instructions.
// e.g. SCR
let hasSideEffects = 1 in
multiclass STORECRm<string opcStr, bits<8>opc, RegisterClass RC> {
def rr : RR<opc, (outs), (ins RC:$sz, RC:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in def ri : RR<opc, (outs), (ins RC:$sz, simm7:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cz = 0 in def zr : RR<opc, (outs), (ins zero:$sz, RC:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0, cz = 0 in
def zi : RR<opc, (outs), (ins zero:$sz, simm7:$sy, RC:$sx),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Multiclass for communication register instructions.
// e.g. FIDCR
let cz = 0, hasSideEffects = 1 in
multiclass FIDCRm<string opcStr, bits<8>opc, RegisterClass RC> {
def ri : RR<opc, (outs RC:$sx), (ins RC:$sy, uimm3:$sz),
!strconcat(opcStr, " $sx, $sy, $sz")>;
let cy = 0 in def ii : RR<opc, (outs RC:$sx), (ins simm7:$sy, uimm3:$sz),
!strconcat(opcStr, " $sx, $sy, $sz")>;
}
// Multiclass for LHM instruction.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LHMm<string opcStr, bits<8> opc, RegisterClass RC> {
def ri : RRMHM<opc, (outs RC:$dest), (ins MEMriHM:$addr),
!strconcat(opcStr, " $dest, $addr")>;
let cz = 0 in
def zi : RRMHM<opc, (outs RC:$dest), (ins MEMziHM:$addr),
!strconcat(opcStr, " $dest, $addr")>;
}
// Multiclass for SHM instruction.
let mayStore = 1, hasSideEffects = 0 in
multiclass SHMm<string opcStr, bits<8> opc, RegisterClass RC> {
def ri : RRMHM<opc, (outs), (ins MEMriHM:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr")>;
let cz = 0 in
def zi : RRMHM<opc, (outs), (ins MEMziHM:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr")>;
}
//===----------------------------------------------------------------------===//
// Instructions
//
// Define all scalar instructions defined in SX-Aurora TSUBASA Architecture
// Guide here. As those mnemonics, we use mnemonics defined in Vector Engine
// Assembly Language Reference Manual.
//===----------------------------------------------------------------------===//
//-----------------------------------------------------------------------------
// Section 8.2 - Load/Store instructions
//-----------------------------------------------------------------------------
// Multiclass for generic RM instructions
multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC, bit MoveImm = 0> {
def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cy = 0 in
def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cz = 0 in
def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
!strconcat(opcStr, " $dest, $addr"), []>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
!strconcat(opcStr, " $dest, $addr"), []> {
// VE uses LEAzii and LEASLzii as a move immediate instruction, so declare
// it here. An instruction declared as MoveImm will be optimized in
// FoldImmediate later.
let isMoveImm = MoveImm;
}
}
// Section 8.2.1 - LEA
let isReMaterializable = 1, isAsCheapAsAMove = 1,
DecoderMethod = "DecodeLoadI64" in {
let cx = 0 in defm LEA : RMm<"lea", 0x06, I64, /* MoveImm */ 1>;
let cx = 1 in defm LEASL : RMm<"lea.sl", 0x06, I64, /* MoveImm */ 1>;
}
// LEA basic patterns.
// Need to be defined here to prioritize LEA over ADX.
def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>;
def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>;
def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>;
def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>;
// Multiclass for load instructions.
let mayLoad = 1, hasSideEffects = 0 in
multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rri : RM<opc, (outs RC:$dest), (ins MEMrri:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRrri:$addr))]>;
let cy = 0 in
def rii : RM<opc, (outs RC:$dest), (ins MEMrii:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRrii:$addr))]>;
let cz = 0 in
def zri : RM<opc, (outs RC:$dest), (ins MEMzri:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRzri:$addr))]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs RC:$dest), (ins MEMzii:$addr),
!strconcat(opcStr, " $dest, $addr"),
[(set Ty:$dest, (OpNode ADDRzii:$addr))]>;
}
// Section 8.2.2 - LDS
let DecoderMethod = "DecodeLoadI64" in
defm LD : LOADm<"ld", 0x01, I64, i64, load>;
def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>;
def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>;
def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>;
def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>;
// Section 8.2.3 - LDU
let DecoderMethod = "DecodeLoadF32" in
defm LDU : LOADm<"ldu", 0x02, F32, f32, load>;
// Section 8.2.4 - LDL
let DecoderMethod = "DecodeLoadI32" in
defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>;
// Section 8.2.5 - LD2B
let DecoderMethod = "DecodeLoadI32" in
defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>;
// Section 8.2.6 - LD1B
let DecoderMethod = "DecodeLoadI32" in
defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>;
// LDQ pseudo instructions
let mayLoad = 1, hasSideEffects = 0 in {
def LDQrii : Pseudo<(outs F128:$dest), (ins MEMrii:$addr),
"# pseudo ldq $dest, $addr",
[(set f128:$dest, (load ADDRrii:$addr))]>;
}
// Multiclass for store instructions.
let mayStore = 1 in
multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty,
SDPatternOperator OpNode = null_frag> {
def rri : RM<opc, (outs), (ins MEMrri:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRrri:$addr)]>;
let cy = 0 in
def rii : RM<opc, (outs), (ins MEMrii:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRrii:$addr)]>;
let cz = 0 in
def zri : RM<opc, (outs), (ins MEMzri:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRzri:$addr)]>;
let cy = 0, cz = 0 in
def zii : RM<opc, (outs), (ins MEMzii:$addr, RC:$sx),
!strconcat(opcStr, " $sx, $addr"),
[(OpNode Ty:$sx, ADDRzii:$addr)]>;
}
// Section 8.2.7 - STS
let DecoderMethod = "DecodeStoreI64" in
defm ST : STOREm<"st", 0x11, I64, i64, store>;
def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>;
def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>;
// Section 8.2.8 - STU
let DecoderMethod = "DecodeStoreF32" in
defm STU : STOREm<"stu", 0x12, F32, f32, store>;
// Section 8.2.9 - STL
let DecoderMethod = "DecodeStoreI32" in
defm STL : STOREm<"stl", 0x13, I32, i32, store>;
// Section 8.2.10 - ST2B
let DecoderMethod = "DecodeStoreI32" in
defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>;
// Section 8.2.11 - ST1B
let DecoderMethod = "DecodeStoreI32" in
defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>;
// STQ pseudo instructions
let mayStore = 1, hasSideEffects = 0 in {
def STQrii : Pseudo<(outs), (ins MEMrii:$addr, F128:$sx),
"# pseudo stq $sx, $addr",
[(store f128:$sx, ADDRrii:$addr)]>;
}
// Section 8.2.12 - DLDS
let DecoderMethod = "DecodeLoadI64" in
defm DLD : LOADm<"dld", 0x09, I64, i64, load>;
// Section 8.2.13 - DLDU
let DecoderMethod = "DecodeLoadF32" in
defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>;
// Section 8.2.14 - DLDL
let DecoderMethod = "DecodeLoadI32" in
defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>;
let cx = 1, DecoderMethod = "DecodeLoadI32" in
defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>;
// Section 8.2.15 - PFCH
let DecoderMethod = "DecodeASX" in
defm PFCH : PFCHm<"pfch", 0x0c>;
// Section 8.2.16 - TS1AM (Test and Set 1 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>;
let DecoderMethod = "DecodeTS1AMI32", cx = 1 in
defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>;
// Section 8.2.17 - TS2AM (Test and Set 2 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>;
// Section 8.2.18 - TS3AM (Test and Set 3 AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>;
// Section 8.2.19 - ATMAM (Atomic AM)
let DecoderMethod = "DecodeTS1AMI64" in
defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>;
// Section 8.2.20 - CAS (Compare and Swap)
let DecoderMethod = "DecodeCASI64" in
defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7, atomic_cmp_swap_64>;
let DecoderMethod = "DecodeCASI32", cx = 1 in
defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7, atomic_cmp_swap_32>;
//-----------------------------------------------------------------------------
// Section 8.3 - Transfer Control Instructions
//-----------------------------------------------------------------------------
// Section 8.3.1 - FENCE (Fence)
let hasSideEffects = 1 in {
let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">;
def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> {
bits<2> kind;
let lf = kind{1};
let sf = kind{0};
}
def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> {
bits<3> kind;
let c2 = kind{2};
let c1 = kind{1};
let c0 = kind{0};
}
}
// Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in
def SVOB : RR<0x30, (outs), (ins), "svob">;
//-----------------------------------------------------------------------------
// Section 8.4 - Fixed-point Operation Instructions
//-----------------------------------------------------------------------------
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// Section 8.4.1 - ADD (Add)
defm ADDUL : RRm<"addu.l", 0x48, I64, i64>;
let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>;
// Section 8.4.2 - ADS (Add Single)
defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>;
let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>;
// Section 8.4.3 - ADX (Add)
defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>;
// Section 8.4.4 - SUB (Subtract)
defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>;
let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>;
// Section 8.4.5 - SBS (Subtract Single)
defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>;
let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>;
// Section 8.4.6 - SBX (Subtract)
defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>;
} // isReMaterializable, isAsCheapAsAMove
// Section 8.4.7 - MPY (Multiply)
defm MULUL : RRm<"mulu.l", 0x49, I64, i64>;
let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>;
// Section 8.4.8 - MPS (Multiply Single)
defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>;
let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>;
// Section 8.4.9 - MPX (Multiply)
defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>;
// Section 8.4.10 - MPD (Multiply)
defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>;
// Section 8.4.11 - DIV (Divide)
defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>;
let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>;
// Section 8.4.12 - DVS (Divide Single)
defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>;
let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>;
// Section 8.4.13 - DVX (Divide)
defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// Section 8.4.14 - CMP (Compare)
defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64>;
let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32>;
// Section 8.4.15 - CPS (Compare Single)
defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>;
let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32>;
// Section 8.4.16 - CPX (Compare)
defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64>;
// Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single)
// cx: sx/zx, cw: max/min
defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32>;
let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>;
let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32>;
let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>;
// Section 8.4.18 - CMX (Compare and Select Maximum/Minimum)
defm MAXSL : RRm<"maxs.l", 0x68, I64, i64>;
let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64>;
} // isReMaterializable, isAsCheapAsAMove
//-----------------------------------------------------------------------------
// Section 8.5 - Logical Operation Instructions
//-----------------------------------------------------------------------------
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// Section 8.5.1 - AND (AND)
defm AND : RRm<"and", 0x44, I64, i64, and>;
// Section 8.5.2 - OR (OR)
defm OR : RRm<"or", 0x45, I64, i64, or, simm7, mimm, /* MoveImm */ 1>;
// Section 8.5.3 - XOR (Exclusive OR)
defm XOR : RRm<"xor", 0x46, I64, i64, xor>;
// Section 8.5.4 - EQV (Equivalence)
defm EQV : RRm<"eqv", 0x47, I64, i64>;
} // isReMaterializable, isAsCheapAsAMove
// Section 8.5.5 - NND (Negate AND)
def and_not : PatFrags<(ops node:$x, node:$y),
[(and (not node:$x), node:$y)]>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>;
// Section 8.5.6 - MRG (Merge)
defm MRG : RRMRGm<"mrg", 0x56, I64, i64>;
// Section 8.5.7 - LDZ (Leading Zero Count)
def ctlz_pat : PatFrags<(ops node:$src),
[(ctlz node:$src),
(ctlz_zero_undef node:$src)]>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz_pat>;
// Section 8.5.8 - PCNT (Population Count)
defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>;
// Section 8.5.9 - BRV (Bit Reverse)
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>;
// Section 8.5.10 - BSWP (Byte Swap)
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>;
def : Pat<(i64 (bswap i64:$src)),
(BSWPri $src, 0)>;
def : Pat<(i64 (bswap (i64 mimm:$src))),
(BSWPmi (MIMM $src), 0)>;
def : Pat<(i32 (bswap i32:$src)),
(EXTRACT_SUBREG
(BSWPri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub_i32), 1),
sub_i32)>;
def : Pat<(i32 (bswap (i32 mimm:$src))),
(EXTRACT_SUBREG (BSWPmi (MIMM $src), 1), sub_i32)>;
// Section 8.5.11 - CMOV (Conditional Move)
let cw = 0, cw2 = 0 in defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64>;
let cw = 1, cw2 = 0 in defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32>;
let cw = 0, cw2 = 1 in defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64>;
let cw = 1, cw2 = 1 in defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32>;
def : MnemonicAlias<"cmov.l", "cmov.l.at">;
def : MnemonicAlias<"cmov.w", "cmov.w.at">;
def : MnemonicAlias<"cmov.d", "cmov.d.at">;
def : MnemonicAlias<"cmov.s", "cmov.s.at">;
//-----------------------------------------------------------------------------
// Section 8.6 - Shift Operation Instructions
//-----------------------------------------------------------------------------
// Section 8.6.1 - SLL (Shift Left Logical)
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm SLL : RRIm<"sll", 0x65, I64, i64, shl>;
// Section 8.6.2 - SLD (Shift Left Double)
defm SLD : RRILDm<"sld", 0x64, I64, i64>;
// Section 8.6.3 - SRL (Shift Right Logical)
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm SRL : RRIm<"srl", 0x75, I64, i64, srl>;
// Section 8.6.4 - SRD (Shift Right Double)
defm SRD : RRIRDm<"srd", 0x74, I64, i64>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// Section 8.6.5 - SLA (Shift Left Arithmetic)
defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>;
let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>;
// Section 8.6.6 - SLAX (Shift Left Arithmetic)
defm SLAL : RRIm<"sla.l", 0x57, I64, i64>;
// Section 8.6.7 - SRA (Shift Right Arithmetic)
defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>;
let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>;
// Section 8.6.8 - SRAX (Shift Right Arithmetic)
defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>;
} // isReMaterializable, isAsCheapAsAMove
def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))),
(EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>;
def : Pat<(i32 (srl i32:$src, i32:$val)),
(EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
$src, sub_i32), !add(32, 64)), $val), sub_i32)>;
//-----------------------------------------------------------------------------
// Section 8.7 - Floating-point Arithmetic Instructions
//-----------------------------------------------------------------------------
// Section 8.7.1 - FAD (Floating Add)
defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>;
let cx = 1 in
defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>;
// Section 8.7.2 - FSB (Floating Subtract)
defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>;
let cx = 1 in
defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>;
// Section 8.7.3 - FMP (Floating Multiply)
defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>;
let cx = 1 in
defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>;
// Section 8.7.4 - FDV (Floating Divide)
defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>;
let cx = 1 in
defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>;
// Section 8.7.5 - FCP (Floating Compare)
defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64>;
let cx = 1 in
defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, null_frag, simm7fp, mimmfp32>;
// Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single)
// cx: double/float, cw: max/min
let cw = 0, cx = 0 in
defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>;
let cw = 0, cx = 1 in
defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>;
let cw = 1, cx = 0 in
defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>;
let cw = 1, cx = 1 in
defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>;
// Section 8.7.7 - FAQ (Floating Add Quadruple)
defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128, fadd>;
// Section 8.7.8 - FSQ (Floating Subtract Quadruple)
defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128, fsub>;
// Section 8.7.9 - FMQ (Floating Subtract Quadruple)
defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128, fmul>;
// Section 8.7.10 - FCQ (Floating Compare Quadruple)
defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, null_frag, simm7fp,
mimmfp>;
// Section 8.7.11 - FIX (Convert to Fixed Point)
// cx: double/float, cw: sx/zx, sz{0-3} = round
let cx = 0, cw = 0 /* sign extend */ in
defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, i32, I64, f64>;
let cx = 0, cw = 1 /* zero extend */ in
defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, i32, I64, f64>;
let cx = 1, cw = 0 /* sign extend */ in
defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, i32, F32, f32>;
let cx = 1, cw = 1 /* zero extend */ in
defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, i32, F32, f32>;
// Section 8.7.12 - FIXX (Convert to Fixed Point)
defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, i64, I64, f64>;
// Section 8.7.13 - FLT (Convert to Floating Point)
defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>;
let cx = 1 in
defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>;
// Section 8.7.14 - FLTX (Convert to Floating Point)
defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>;
// Section 8.7.15 - CVS (Convert to Single-format)
defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>;
let cx = 1 in
defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128, fpround>;
// Section 8.7.16 - CVD (Convert to Double-format)
defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>;
let cx = 1 in
defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128, fpround>;
// Section 8.7.17 - CVQ (Convert to Single-format)
defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64, fpextend>;
let cx = 1 in
defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32, fpextend>;
//-----------------------------------------------------------------------------
// Section 8.8 - Branch instructions
//-----------------------------------------------------------------------------
// Section 8.8.1 - BC (Branch on Codition)
defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>;
// Indirect branch aliases
def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>;
def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>;
// Return instruction is a special case of jump.
let Uses = [SX10], bpf = 3 /* TAKEN */, cf = 15 /* AT */, cy = 0, sy = 0,
sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1,
isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retflag)]>;
// Section 8.8.2 - BCS (Branch on Condition Single)
defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>;
// Section 8.8.3 - BCF (Branch on Condition Floating Point)
defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>;
let cx = 1 in
defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>;
// Section 8.8.4 - BCR (Branch on Condition Relative)
let cx = 0, cx2 = 0 in
defm BRCFL : BCRm<"br${cf}.l", "br.l", "braf.l", 0x18, I64, simm7, zero>;
let cx = 1, cx2 = 0 in
defm BRCFW : BCRm<"br${cf}.w", "br.w", "braf.w", 0x18, I32, simm7, zero>;
let cx = 0, cx2 = 1 in
defm BRCFD : BCRm<"br${cf}.d", "br.d", "braf.d", 0x18, I64, simm7fp, zerofp>;
let cx = 1, cx2 = 1 in
defm BRCFS : BCRm<"br${cf}.s", "br.s", "braf.s", 0x18, F32, simm7fp, zerofp>;
// Section 8.8.5 - BSIC (Branch and Save IC)
let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in
defm BSIC : RMm<"bsic", 0x08, I64>;
// Call instruction is a special case of BSIC.
let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0,
isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops),
"bsic %s10, (, $sz)", [(call i64:$sz)]>;
//-----------------------------------------------------------------------------
// Section 8.19 - Control Instructions
//-----------------------------------------------------------------------------
// Section 8.19.1 - SIC (Save Instruction Counter)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in
def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">;
// Section 8.19.2 - LPM (Load Program Mode Flags)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in
def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">;
// Section 8.19.3 - SPM (Save Program Mode Flags)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">;
// Section 8.19.4 - LFR (Load Flag Register)
let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in {
def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">;
let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">;
}
// Section 8.19.5 - SFR (Save Flag Register)
let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in
def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">;
// Section 8.19.6 - SMIR (Save Miscellaneous Register)
let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">;
}
// Section 8.19.7 - NOP (No Operation)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in
def NOP : RR<0x79, (outs), (ins), "nop">;
// Section 8.19.8 - MONC (Monitor Call)
let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in {
def MONC : RR<0x3F, (outs), (ins), "monc">;
let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">;
}
// Section 8.19.9 - LCR (Load Communication Register)
defm LCR : LOADCRm<"lcr", 0x40, I64>;
// Section 8.19.10 - SCR (Save Communication Register)
defm SCR : STORECRm<"scr", 0x50, I64>;
// Section 8.19.11 - TSCR (Test & Set Communication Register)
defm TSCR : LOADCRm<"tscr", 0x41, I64>;
// Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR)
defm FIDCR : FIDCRm<"fidcr", 0x51, I64>;
//-----------------------------------------------------------------------------
// Section 8.20 - Host Memory Access Instructions
//-----------------------------------------------------------------------------
// Section 8.20.1 - LHM (Load Host Memory)
let ry = 3, DecoderMethod = "DecodeLoadASI64" in
defm LHML : LHMm<"lhm.l", 0x21, I64>;
let ry = 2, DecoderMethod = "DecodeLoadASI64" in
defm LHMW : LHMm<"lhm.w", 0x21, I64>;
let ry = 1, DecoderMethod = "DecodeLoadASI64" in
defm LHMH : LHMm<"lhm.h", 0x21, I64>;
let ry = 0, DecoderMethod = "DecodeLoadASI64" in
defm LHMB : LHMm<"lhm.b", 0x21, I64>;
// Section 8.20.2 - SHM (Store Host Memory)
let ry = 3, DecoderMethod = "DecodeStoreASI64" in
defm SHML : SHMm<"shm.l", 0x31, I64>;
let ry = 2, DecoderMethod = "DecodeStoreASI64" in
defm SHMW : SHMm<"shm.w", 0x31, I64>;
let ry = 1, DecoderMethod = "DecodeStoreASI64" in
defm SHMH : SHMm<"shm.h", 0x31, I64>;
let ry = 0, DecoderMethod = "DecodeStoreASI64" in
defm SHMB : SHMm<"shm.b", 0x31, I64>;
//===----------------------------------------------------------------------===//
// Instructions for CodeGenOnly
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Pattern Matchings
//===----------------------------------------------------------------------===//
// Basic cast between registers. This is often used in ISel patterns, so make
// them as OutPatFrag.
def i2l : OutPatFrag<(ops node:$exp),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_i32)>;
def l2i : OutPatFrag<(ops node:$exp),
(EXTRACT_SUBREG $exp, sub_i32)>;
def f2l : OutPatFrag<(ops node:$exp),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_f32)>;
def l2f : OutPatFrag<(ops node:$exp),
(EXTRACT_SUBREG $exp, sub_f32)>;
// Small immediates.
def : Pat<(i32 simm7:$val), (EXTRACT_SUBREG (ORim (LO7 $val), 0), sub_i32)>;
def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>;
// Medium immediates.
def : Pat<(i32 simm32:$val),
(EXTRACT_SUBREG (LEAzii 0, 0, (LO32 $val)), sub_i32)>;
def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>;
def : Pat<(i64 uimm32:$val), (ANDrm (LEAzii 0, 0, (LO32 $val)), !add(32, 64))>;
// Arbitrary immediates.
def : Pat<(i64 lozero:$val),
(LEASLzii 0, 0, (HI32 imm:$val))>;
def : Pat<(i64 lomsbzero:$val),
(LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>;
def : Pat<(i64 imm:$val),
(LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0,
(HI32 imm:$val))>;
// LEA patterns
def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp),
[(add (add node:$base, node:$idx), node:$disp),
(add (add node:$base, node:$disp), node:$idx),
(add node:$base, (add $idx, $disp))]>;
def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp),
(LEArii $base, (LO7 $idx), (LO32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp),
(LEArri $base, $idx, (LO32 $disp))>;
def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp),
(LEASLrii $base, (LO7 $idx), (HI32 $disp))>;
def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp),
(LEASLrri $base, $idx, (HI32 $disp))>;
// Address calculation patterns and optimizations
//
// Generate following instructions:
// 1. LEA %reg, label@LO32
// AND %reg, %reg, (32)0
// 2. LEASL %reg, label@HI32
// 3. (LEA %reg, label@LO32)
// (AND %reg, %reg, (32)0)
// LEASL %reg, label@HI32(, %reg)
// 4. (LEA %reg, label@LO32)
// (AND %reg, %reg, (32)0)
// LEASL %reg, label@HI32(%reg, %got)
//
def velo_only : OutPatFrag<(ops node:$lo),
(ANDrm (LEAzii 0, 0, $lo), !add(32, 64))>;
def vehi_only : OutPatFrag<(ops node:$hi),
(LEASLzii 0, 0, $hi)>;
def vehi_lo : OutPatFrag<(ops node:$hi, node:$lo),
(LEASLrii $lo, 0, $hi)>;
def vehi_lo_imm : OutPatFrag<(ops node:$hi, node:$lo, node:$idx),
(LEASLrii $lo, $idx, $hi)>;
def vehi_baselo : OutPatFrag<(ops node:$base, node:$hi, node:$lo),
(LEASLrri $base, $lo, $hi)>;
foreach type = [ "tblockaddress", "tconstpool", "texternalsym", "tglobaladdr",
"tglobaltlsaddr", "tjumptable" ] in {
def : Pat<(VElo !cast<SDNode>(type):$lo), (velo_only $lo)>;
def : Pat<(VEhi !cast<SDNode>(type):$hi), (vehi_only $hi)>;
def : Pat<(add (VEhi !cast<SDNode>(type):$hi), I64:$lo), (vehi_lo $hi, $lo)>;
def : Pat<(add (add (VEhi !cast<SDNode>(type):$hi), I64:$lo), simm7:$val),
(vehi_lo_imm $hi, $lo, (LO7 $val))>;
def : Pat<(add I64:$base, (add (VEhi !cast<SDNode>(type):$hi), I64:$lo)),
(vehi_baselo $base, $hi, $lo)>;
}
// floating point
def : Pat<(f32 fpimm:$val),
(EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>;
def : Pat<(f64 fplozero:$val),
(LEASLzii 0, 0, (HIFP32 $val))>;
def : Pat<(f64 fplomsbzero:$val),
(LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>;
def : Pat<(f64 fpimm:$val),
(LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0,
(HIFP32 $val))>;
// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are unused.
// TODO Use standard expansion for shift-based lowering of sext_inreg
// Cast to i1
def : Pat<(sext_inreg I32:$src, i1),
(SRAWSXri (SLAWSXri $src, 31), 31)>;
def : Pat<(sext_inreg I64:$src, i1),
(SRALri (SLLri $src, 63), 63)>;
// Cast to i8
def : Pat<(sext_inreg I32:$src, i8),
(SRAWSXri (SLAWSXri $src, 24), 24)>;
def : Pat<(sext_inreg I64:$src, i8),
(SRALri (SLLri $src, 56), 56)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8),
(EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>;
def : Pat<(i32 (and (trunc i64:$src), 0xff)),
(EXTRACT_SUBREG (ANDrm $src, !add(56, 64)), sub_i32)>;
// Cast to i16
def : Pat<(sext_inreg I32:$src, i16),
(SRAWSXri (SLAWSXri $src, 16), 16)>;
def : Pat<(sext_inreg I64:$src, i16),
(SRALri (SLLri $src, 48), 48)>;
def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16),
(EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>;
def : Pat<(i32 (and (trunc i64:$src), 0xffff)),
(EXTRACT_SUBREG (ANDrm $src, !add(48, 64)), sub_i32)>;
// Cast to i32
def : Pat<(i32 (trunc i64:$src)),
(EXTRACT_SUBREG (ANDrm $src, !add(32, 64)), sub_i32)>;
def : Pat<(i32 (fp_to_sint f32:$src)), (CVTWSSXr RD_RZ, $src)>;
def : Pat<(i32 (fp_to_sint f64:$src)), (CVTWDSXr RD_RZ, $src)>;
def : Pat<(i32 (fp_to_sint f128:$src)), (CVTWDSXr RD_RZ, (CVTDQr $src))>;
// Cast to i64
def : Pat<(sext_inreg i64:$src, i32),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)),
(ADDSWSXrm (EXTRACT_SUBREG $src, sub_i32), 0), sub_i32)>;
def : Pat<(i64 (sext i32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWSXrm $src, 0), sub_i32)>;
def : Pat<(i64 (zext i32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (ADDSWZXrm $src, 0), sub_i32)>;
def : Pat<(i64 (fp_to_sint f32:$src)), (CVTLDr RD_RZ, (CVTDSr $src))>;
def : Pat<(i64 (fp_to_sint f64:$src)), (CVTLDr RD_RZ, $src)>;
def : Pat<(i64 (fp_to_sint f128:$src)), (CVTLDr RD_RZ, (CVTDQr $src))>;
// Cast to f32
def : Pat<(f32 (sint_to_fp i64:$src)), (CVTSDr (CVTDLr i64:$src))>;
// Cast to f128
def : Pat<(f128 (sint_to_fp i32:$src)), (CVTQDr (CVTDWr $src))>;
def : Pat<(f128 (sint_to_fp i64:$src)), (CVTQDr (CVTDLr $src))>;
def : Pat<(i64 (anyext i32:$sy)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $sy, sub_i32)>;
// extload, sextload and zextload stuff
multiclass EXT64m<SDPatternOperator from,
RM torri,
RM torii,
RM tozri,
RM tozii> {
def : Pat<(i64 (from ADDRrri:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torri MEMrri:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRrii:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (torii MEMrii:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRzri:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozri MEMzri:$addr),
sub_i32)>;
def : Pat<(i64 (from ADDRzii:$addr)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (tozii MEMzii:$addr),
sub_i32)>;
}
defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>;
defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
// anyextload
multiclass EXT32m<SDPatternOperator from,
RM torri,
RM torii,
RM tozri,
RM tozii> {
def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
}
defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
// truncstore
multiclass TRUNC64m<SDPatternOperator from,
RM torri,
RM torii,
RM tozri,
RM tozii> {
def : Pat<(from i64:$src, ADDRrri:$addr),
(torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRrii:$addr),
(torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRzri:$addr),
(tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from i64:$src, ADDRzii:$addr),
(tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
}
defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>;
// Atomic loads
multiclass ATMLDm<SDPatternOperator from,
RM torri, RM torii,
RM tozri, RM tozii> {
def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>;
def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>;
def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>;
def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>;
}
defm : ATMLDm<atomic_load_8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>;
defm : ATMLDm<atomic_load_16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>;
defm : ATMLDm<atomic_load_32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>;
defm : ATMLDm<atomic_load_64, LDrri, LDrii, LDzri, LDzii>;
// Optimized atomic loads with sext
multiclass SXATMLDm<SDPatternOperator from, ValueType TY,
RM torri, RM torii,
RM tozri, RM tozii> {
def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrri:$addr))), TY)),
(i2l (torri MEMrri:$addr))>;
def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrii:$addr))), TY)),
(i2l (torii MEMrii:$addr))>;
def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzri:$addr))), TY)),
(i2l (tozri MEMzri:$addr))>;
def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzii:$addr))), TY)),
(i2l (tozii MEMzii:$addr))>;
}
multiclass SXATMLD32m<SDPatternOperator from,
RM torri, RM torii,
RM tozri, RM tozii> {
def : Pat<(i64 (sext (from ADDRrri:$addr))),
(i2l (torri MEMrri:$addr))>;
def : Pat<(i64 (sext (from ADDRrii:$addr))),
(i2l (torii MEMrii:$addr))>;
def : Pat<(i64 (sext (from ADDRzri:$addr))),
(i2l (tozri MEMzri:$addr))>;
def : Pat<(i64 (sext (from ADDRzii:$addr))),
(i2l (tozii MEMzii:$addr))>;
}
defm : SXATMLDm<atomic_load_8, i8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>;
defm : SXATMLDm<atomic_load_16, i16, LD2BSXrri, LD2BSXrii, LD2BSXzri,
LD2BSXzii>;
defm : SXATMLD32m<atomic_load_32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>;
// Optimized atomic loads with zext
multiclass ZXATMLDm<SDPatternOperator from, int VAL,
RM torri, RM torii,
RM tozri, RM tozii> {
def : Pat<(i64 (and (anyext (from ADDRrri:$addr)), VAL)),
(i2l (torri MEMrri:$addr))>;
def : Pat<(i64 (and (anyext (from ADDRrii:$addr)), VAL)),
(i2l (torii MEMrii:$addr))>;
def : Pat<(i64 (and (anyext (from ADDRzri:$addr)), VAL)),
(i2l (tozri MEMzri:$addr))>;
def : Pat<(i64 (and (anyext (from ADDRzii:$addr)), VAL)),
(i2l (tozii MEMzii:$addr))>;
}
multiclass ZXATMLD32m<SDPatternOperator from, int VAL,
RM torri, RM torii,
RM tozri, RM tozii> {
def : Pat<(i64 (zext (from ADDRrri:$addr))),
(i2l (torri MEMrri:$addr))>;
def : Pat<(i64 (zext (from ADDRrii:$addr))),
(i2l (torii MEMrii:$addr))>;
def : Pat<(i64 (zext (from ADDRzri:$addr))),
(i2l (tozri MEMzri:$addr))>;
def : Pat<(i64 (zext (from ADDRzii:$addr))),
(i2l (tozii MEMzii:$addr))>;
}
defm : ZXATMLDm<atomic_load_8, 0xFF, LD1BZXrri, LD1BZXrii, LD1BZXzri,
LD1BZXzii>;
defm : ZXATMLDm<atomic_load_16, 0xFFFF, LD2BZXrri, LD2BZXrii, LD2BZXzri,
LD2BZXzii>;
defm : ZXATMLD32m<atomic_load_32, 0xFFFFFFFF, LDLZXrri, LDLZXrii, LDLZXzri,
LDLZXzii>;
// Atomic stores
multiclass ATMSTm<SDPatternOperator from, ValueType ty,
RM torri, RM torii,
RM tozri, RM tozii> {
def : Pat<(from ADDRrri:$addr, ty:$src), (torri MEMrri:$addr, $src)>;
def : Pat<(from ADDRrii:$addr, ty:$src), (torii MEMrii:$addr, $src)>;
def : Pat<(from ADDRzri:$addr, ty:$src), (tozri MEMzri:$addr, $src)>;
def : Pat<(from ADDRzii:$addr, ty:$src), (tozii MEMzii:$addr, $src)>;
}
defm : ATMSTm<atomic_store_8, i32, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : ATMSTm<atomic_store_16, i32, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : ATMSTm<atomic_store_32, i32, STLrri, STLrii, STLzri, STLzii>;
defm : ATMSTm<atomic_store_64, i64, STrri, STrii, STzri, STzii>;
// Optimized atomic stores with truncate
multiclass TRATMSTm<SDPatternOperator from,
ValueType ty,
RM torri,
RM torii,
RM tozri,
RM tozii> {
def : Pat<(from ADDRrri:$addr, (i32 (trunc i64:$src))),
(torri MEMrri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from ADDRrii:$addr, (i32 (trunc i64:$src))),
(torii MEMrii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from ADDRzri:$addr, (i32 (trunc i64:$src))),
(tozri MEMzri:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
def : Pat<(from ADDRzii:$addr, (i32 (trunc i64:$src))),
(tozii MEMzii:$addr, (EXTRACT_SUBREG $src, sub_i32))>;
}
defm : TRATMSTm<atomic_store_8, i32, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>;
defm : TRATMSTm<atomic_store_16, i32, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>;
defm : TRATMSTm<atomic_store_32, i32, STLrri, STLrii, STLzri, STLzii>;
// Atomic swaps
def : Pat<(i32 (ts1am i64:$src, i32:$flag, i32:$new)),
(TS1AMWrir $src, 0, $flag, $new)>;
def : Pat<(i32 (atomic_swap_32 ADDRri:$src, i32:$new)),
(TS1AMWrii MEMriRRM:$src, 15, $new)>;
def : Pat<(i64 (atomic_swap_64 ADDRri:$src, i64:$new)),
(TS1AMLrir MEMriRRM:$src, (LEAzii 0, 0, 255), i64:$new)>;
//===----------------------------------------------------------------------===//
// SJLJ Exception handling patterns
//===----------------------------------------------------------------------===//
let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
usesCustomInserter = 1 in {
let isTerminator = 1 in
def EH_SjLj_LongJmp : Pseudo<(outs), (ins I64:$buf),
"# EH_SJLJ_LONGJMP",
[(VEeh_sjlj_longjmp I64:$buf)]>;
def EH_SjLj_SetJmp : Pseudo<(outs I32:$dst), (ins I64:$buf),
"# EH_SJLJ_SETJMP",
[(set I32:$dst, (VEeh_sjlj_setjmp I64:$buf))]>;
def EH_SjLj_Setup_Dispatch : Pseudo<(outs), (ins), "# EH_SJLJ_SETUP_DISPATCH",
[(VEeh_sjlj_setup_dispatch)]>;
}
let isTerminator = 1, isBranch = 1, isCodeGenOnly = 1 in
def EH_SjLj_Setup : Pseudo<(outs), (ins brtarget32:$dst),
"# EH_SJlJ_SETUP $dst">;
//===----------------------------------------------------------------------===//
// Branch related patterns
//===----------------------------------------------------------------------===//
// Branches
def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>;
// brcc
// integer brcc
multiclass BRCCIm<ValueType ty, CF BrOpNode1,
CF BrOpNode2,
RR CmpOpNode1,
RR CmpOpNode2> {
def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr),
(BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>;
def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr),
(BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>;
def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr),
(BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l),
bb:$addr)>;
def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr),
(BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>;
}
defm : BRCCIm<i32, BRCFWrr, BRCFWir, CMPUWrr, CMPUWir>;
defm : BRCCIm<i64, BRCFLrr, BRCFLir, CMPULrr, CMPULir>;
// floating point brcc
multiclass BRCCFm<ValueType ty, CF BrOpNode1, CF BrOpNode2> {
def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr),
(BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>;
def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr),
(BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>;
}
defm : BRCCFm<f32, BRCFSrr, BRCFSir>;
defm : BRCCFm<f64, BRCFDrr, BRCFDir>;
def : Pat<(brcc cond:$cond, f128:$l, f128:$r, bb:$addr),
(BRCFDir (fcond2cc $cond), 0, (FCMPQrr $r, $l), bb:$addr)>;
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
// GETGOT for PIC
let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in {
def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">;
}
// GETFUNPLT for PIC
let hasSideEffects = 0 in
def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr),
"$dst, $addr",
[(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >;
def : Pat<(GetFunPLT tglobaladdr:$dst),
(GETFUNPLT tglobaladdr:$dst)>;
def : Pat<(GetFunPLT texternalsym:$dst),
(GETFUNPLT texternalsym:$dst)>;
// GETTLSADDR for TLS
let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in
def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr),
"# GETTLSADDR $addr",
[(GetTLSAddr tglobaltlsaddr:$addr)] >;
def : Pat<(GetTLSAddr tglobaltlsaddr:$dst),
(GETTLSADDR tglobaltlsaddr:$dst)>;
let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2),
"# ADJCALLSTACKDOWN $amt, $amt2",
[(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
"# ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in
def EXTEND_STACK : Pseudo<(outs), (ins),
"# EXTEND STACK",
[]>;
let hasSideEffects = 0 in
def EXTEND_STACK_GUARD : Pseudo<(outs), (ins),
"# EXTEND STACK GUARD",
[]>;
// Dynamic stack allocation yields a __llvm_grow_stack for VE targets.
// These calls are needed to probe the stack when allocating more over
// %s8 (%sl - stack limit).
let Uses = [SX11], hasSideEffects = 1 in
def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins),
"# GET STACK TOP",
[(set iPTR:$dst, (GetStackTop))]>;
// MEMBARRIER
let hasSideEffects = 1 in
def MEMBARRIER : Pseudo<(outs), (ins), "# MEMBARRIER", [(MemBarrier)] >;
//===----------------------------------------------------------------------===//
// Other patterns
//===----------------------------------------------------------------------===//
// SETCC pattern matches
//
// CMP %tmp, lhs, rhs ; compare lhs and rhs
// or %res, 0, (0)1 ; initialize by 0
// CMOV %res, (63)0, %tmp ; set 1 if %tmp is true
class setccrr<Instruction INSN> :
OutPatFrag<(ops node:$cond, node:$comp),
(EXTRACT_SUBREG
(INSN $cond, $comp,
!add(63, 64), // means (63)0 == 1
(ORim 0, 0)), sub_i32)>;
def : Pat<(i32 (setcc i32:$l, i32:$r, CCSIOp:$cond)),
(setccrr<CMOVWrm> (icond2cc $cond), (CMPSWSXrr $l, $r))>;
def : Pat<(i32 (setcc i32:$l, i32:$r, CCUIOp:$cond)),
(setccrr<CMOVWrm> (icond2cc $cond), (CMPUWrr $l, $r))>;
def : Pat<(i32 (setcc i64:$l, i64:$r, CCSIOp:$cond)),
(setccrr<CMOVLrm> (icond2cc $cond), (CMPSLrr $l, $r))>;
def : Pat<(i32 (setcc i64:$l, i64:$r, CCUIOp:$cond)),
(setccrr<CMOVLrm> (icond2cc $cond), (CMPULrr $l, $r))>;
def : Pat<(i32 (setcc f32:$l, f32:$r, cond:$cond)),
(setccrr<CMOVSrm> (fcond2cc $cond), (FCMPSrr $l, $r))>;
def : Pat<(i32 (setcc f64:$l, f64:$r, cond:$cond)),
(setccrr<CMOVDrm> (fcond2cc $cond), (FCMPDrr $l, $r))>;
def : Pat<(i32 (setcc f128:$l, f128:$r, cond:$cond)),
(setccrr<CMOVDrm> (fcond2cc $cond), (FCMPQrr $l, $r))>;
// Special SELECTCC pattern matches
// Use min/max for better performance.
//
// MAX/MIN %res, %lhs, %rhs
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGT)),
(FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGT)),
(FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGT)),
(MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGT)),
(MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOGE)),
(FMAXDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOGE)),
(FMAXSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETGE)),
(MAXSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETGE)),
(MAXSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLT)),
(FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLT)),
(FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLT)),
(MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLT)),
(MINSWSXrr $LHS, $RHS)>;
def : Pat<(f64 (selectcc f64:$LHS, f64:$RHS, f64:$LHS, f64:$RHS, SETOLE)),
(FMINDrr $LHS, $RHS)>;
def : Pat<(f32 (selectcc f32:$LHS, f32:$RHS, f32:$LHS, f32:$RHS, SETOLE)),
(FMINSrr $LHS, $RHS)>;
def : Pat<(i64 (selectcc i64:$LHS, i64:$RHS, i64:$LHS, i64:$RHS, SETLE)),
(MINSLrr $LHS, $RHS)>;
def : Pat<(i32 (selectcc i32:$LHS, i32:$RHS, i32:$LHS, i32:$RHS, SETLE)),
(MINSWSXrr $LHS, $RHS)>;
// Helper classes to construct cmov patterns for the ease.
//