blob: a883daad73e724a7d62bd2120e7283901470ba73 [file] [log] [blame]
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Class definitions
//===----------------------------------------------------------------------===//
class ImmediateAsmOperand<string name>
: AsmOperandClass {
let Name = name;
let RenderMethod = "addImmOperands";
}
class ImmediateTLSAsmOperand<string name>
: AsmOperandClass {
let Name = name;
let RenderMethod = "addImmTLSOperands";
}
class ImmediateOp<ValueType vt, string asmop> : Operand<vt> {
let PrintMethod = "print"#asmop#"Operand";
let DecoderMethod = "decode"#asmop#"Operand";
let ParserMatchClass = !cast<AsmOperandClass>(asmop);
let OperandType = "OPERAND_IMMEDIATE";
}
class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform,
SDNode ImmNode = imm> :
ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>;
// class ImmediatePatLeaf<ValueType vt, code pred,
// SDNodeXForm xform, SDNode ImmNode>
// : PatLeaf<(vt ImmNode), pred, xform>;
// Constructs both a DAG pattern and instruction operand for an immediate
// of type VT. PRED returns true if a node is acceptable and XFORM returns
// the operand value associated with the node. ASMOP is the name of the
// associated asm operand, and also forms the basis of the asm print method.
multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> {
// def "" : ImmediateOp<vt, asmop>,
// PatLeaf<(vt imm), pred, xform>;
def "" : ImmOpWithPattern<vt, asmop, pred, xform>;
// def _timm : PatLeaf<(vt timm), pred, xform>;
def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>;
}
// Constructs an asm operand for a PC-relative address. SIZE says how
// many bits there are.
class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"#size> {
let PredicateMethod = "isImm";
let ParserMethod = "parsePCRel"#size;
}
class PCRelTLSAsmOperand<string size>
: ImmediateTLSAsmOperand<"PCRelTLS"#size> {
let PredicateMethod = "isImmTLS";
let ParserMethod = "parsePCRelTLS"#size;
}
// Constructs an operand for a PC-relative address with address type VT.
// ASMOP is the associated asm operand.
let OperandType = "OPERAND_PCREL" in {
class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
let PrintMethod = "printPCRelOperand";
let ParserMatchClass = asmop;
}
class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
let PrintMethod = "printPCRelTLSOperand";
let ParserMatchClass = asmop;
}
}
// Constructs both a DAG pattern and instruction operand for a PC-relative
// address with address size VT. SELF is the name of the operand and
// ASMOP is the associated asm operand.
class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
: ComplexPattern<vt, 1, "selectPCRelAddress",
[z_pcrel_wrapper, z_pcrel_offset]>,
PCRelOperand<vt, asmop> {
let MIOperandInfo = (ops !cast<Operand>(self));
}
// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
// is "".
class AddressAsmOperand<string format, string bitsize, string dispsize,
string length = "">
: AsmOperandClass {
let Name = format#bitsize#"Disp"#dispsize#length;
let ParserMethod = "parse"#format#bitsize;
let RenderMethod = "add"#format#"Operands";
}
// Constructs an instruction operand for an addressing mode. FORMAT,
// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
// AddressAsmOperand. OPERANDS is a list of individual operands
// (base register, displacement, etc.).
class AddressOperand<string bitsize, string dispsize, string length,
string format, dag operands>
: Operand<!cast<ValueType>("i"#bitsize)> {
let PrintMethod = "print"#format#"Operand";
let EncoderMethod = "get"#format#dispsize#length#"Encoding";
let DecoderMethod =
"decode"#format#bitsize#"Disp"#dispsize#length#"Operand";
let OperandType = "OPERAND_MEMORY";
let MIOperandInfo = operands;
let ParserMatchClass =
!cast<AddressAsmOperand>(format#bitsize#"Disp"#dispsize#length);
}
// Constructs both a DAG pattern and instruction operand for an addressing mode.
// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
// (base register, displacement, etc.). SELTYPE is the type of the memory
// operand for selection purposes; sometimes we want different selection
// choices for the same underlying addressing mode. SUFFIX is similarly
// a suffix appended to the displacement for selection purposes;
// e.g. we want to reject small 20-bit displacements if a 12-bit form
// also exists, but we want to accept them otherwise.
class AddressingMode<string seltype, string bitsize, string dispsize,
string suffix, string length, int numops, string format,
dag operands>
: ComplexPattern<!cast<ValueType>("i"#bitsize), numops,
"select"#seltype#dispsize#suffix#length,
[add, sub, or, frameindex, z_adjdynalloc]>,
AddressOperand<bitsize, dispsize, length, format, operands>;
// An addressing mode with a base and displacement but no index.
class BDMode<string type, string bitsize, string dispsize, string suffix>
: AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
(ops !cast<RegisterOperand>("ADDR"#bitsize),
!cast<Operand>("disp"#dispsize#"imm"#bitsize))>;
// An addressing mode with a base, displacement and index.
class BDXMode<string type, string bitsize, string dispsize, string suffix>
: AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
(ops !cast<RegisterOperand>("ADDR"#bitsize),
!cast<Operand>("disp"#dispsize#"imm"#bitsize),
!cast<RegisterOperand>("ADDR"#bitsize))>;
// A BDMode paired with an immediate length operand of LENSIZE bits.
class BDLMode<string type, string bitsize, string dispsize, string suffix,
string lensize>
: AddressingMode<type, bitsize, dispsize, suffix, "Len"#lensize, 3,
"BDLAddr",
(ops !cast<RegisterOperand>("ADDR"#bitsize),
!cast<Operand>("disp"#dispsize#"imm"#bitsize),
!cast<Operand>("imm"#bitsize))>;
// A BDMode paired with a register length operand.
class BDRMode<string type, string bitsize, string dispsize, string suffix>
: AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
(ops !cast<RegisterOperand>("ADDR"#bitsize),
!cast<Operand>("disp"#dispsize#"imm"#bitsize),
!cast<RegisterOperand>("GR"#bitsize))>;
// An addressing mode with a base, displacement and a vector index.
class BDVMode<string bitsize, string dispsize>
: AddressOperand<bitsize, dispsize, "", "BDVAddr",
(ops !cast<RegisterOperand>("ADDR"#bitsize),
!cast<Operand>("disp"#dispsize#"imm"#bitsize),
!cast<RegisterOperand>("VR128"))>;
//===----------------------------------------------------------------------===//
// Extracting immediate operands from nodes
// These all create MVT::i64 nodes to ensure the value is not sign-extended
// when converted from an SDNode to a MachineOperand later on.
//===----------------------------------------------------------------------===//
// Bits 0-15 (counting from the lsb).
def LL16 : SDNodeXForm<imm, [{
uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// Bits 16-31 (counting from the lsb).
def LH16 : SDNodeXForm<imm, [{
uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// Bits 32-47 (counting from the lsb).
def HL16 : SDNodeXForm<imm, [{
uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// Bits 48-63 (counting from the lsb).
def HH16 : SDNodeXForm<imm, [{
uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// Low 32 bits.
def LF32 : SDNodeXForm<imm, [{
uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// High 32 bits.
def HF32 : SDNodeXForm<imm, [{
uint64_t Value = N->getZExtValue() >> 32;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// Negated variants.
def NEGLH16 : SDNodeXForm<imm, [{
uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
def NEGLF32 : SDNodeXForm<imm, [{
uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;
// Truncate an immediate to a 8-bit signed quantity.
def SIMM8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 8-bit unsigned quantity.
def UIMM8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
def UIMM8EVEN : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 12-bit unsigned quantity.
def UIMM12 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 16-bit signed quantity.
def SIMM16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Negate and then truncate an immediate to a 16-bit signed quantity.
def NEGSIMM16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 16-bit unsigned quantity.
def UIMM16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 32-bit signed quantity.
def SIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGSIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 32-bit unsigned quantity.
def UIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGUIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
MVT::i64);
}]>;
// Truncate an immediate to a 48-bit unsigned quantity.
def UIMM48 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
SDLoc(N), MVT::i64);
}]>;
//===----------------------------------------------------------------------===//
// Immediate asm operands.
//===----------------------------------------------------------------------===//
def U1Imm : ImmediateAsmOperand<"U1Imm">;
def U2Imm : ImmediateAsmOperand<"U2Imm">;
def U3Imm : ImmediateAsmOperand<"U3Imm">;
def U4Imm : ImmediateAsmOperand<"U4Imm">;
def U6Imm : ImmediateAsmOperand<"U6Imm">;
def S8Imm : ImmediateAsmOperand<"S8Imm">;
def U8Imm : ImmediateAsmOperand<"U8Imm">;
def U12Imm : ImmediateAsmOperand<"U12Imm">;
def S16Imm : ImmediateAsmOperand<"S16Imm">;
def U16Imm : ImmediateAsmOperand<"U16Imm">;
def S32Imm : ImmediateAsmOperand<"S32Imm">;
def U32Imm : ImmediateAsmOperand<"U32Imm">;
def U48Imm : ImmediateAsmOperand<"U48Imm">;
//===----------------------------------------------------------------------===//
// i32 immediates
//===----------------------------------------------------------------------===//
// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being zero.
defm imm32ll16 : Immediate<i32, [{
return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;
defm imm32lh16 : Immediate<i32, [{
return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;
// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being one.
defm imm32ll16c : Immediate<i32, [{
return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
}], LL16, "U16Imm">;
defm imm32lh16c : Immediate<i32, [{
return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
}], LH16, "U16Imm">;
// Short immediates
defm imm32zx1 : Immediate<i32, [{
return isUInt<1>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U1Imm">;
defm imm32zx2 : Immediate<i32, [{
return isUInt<2>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U2Imm">;
defm imm32zx3 : Immediate<i32, [{
return isUInt<3>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U3Imm">;
defm imm32zx4 : Immediate<i32, [{
return isUInt<4>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U4Imm">;
// Note: this enforces an even value during code generation only.
// When used from the assembler, any 4-bit value is allowed.
defm imm32zx4even : Immediate<i32, [{
return isUInt<4>(N->getZExtValue());
}], UIMM8EVEN, "U4Imm">;
defm imm32zx6 : Immediate<i32, [{
return isUInt<6>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U6Imm">;
defm imm32sx8 : Immediate<i32, [{
return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;
defm imm32zx8 : Immediate<i32, [{
return isUInt<8>(N->getZExtValue());
}], UIMM8, "U8Imm">;
defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
defm imm32zx12 : Immediate<i32, [{
return isUInt<12>(N->getZExtValue());
}], UIMM12, "U12Imm">;
defm imm32sx16 : Immediate<i32, [{
return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;
defm imm32sx16n : Immediate<i32, [{
return isInt<16>(-N->getSExtValue());
}], NEGSIMM16, "S16Imm">;
defm imm32zx16 : Immediate<i32, [{
return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;
defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;
// Full 32-bit immediates. we need both signed and unsigned versions
// because the assembler is picky. E.g. AFI requires signed operands
// while NILF requires unsigned ones.
defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
defm simm32n : Immediate<i32, [{
return isInt<32>(-N->getSExtValue());
}], NEGSIMM32, "S32Imm">;
def imm32 : ImmLeaf<i32, [{}]>;
//===----------------------------------------------------------------------===//
// 64-bit immediates
//===----------------------------------------------------------------------===//
// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being zero.
defm imm64ll16 : Immediate<i64, [{
return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;
defm imm64lh16 : Immediate<i64, [{
return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;
defm imm64hl16 : Immediate<i64, [{
return SystemZ::isImmHL(N->getZExtValue());
}], HL16, "U16Imm">;
defm imm64hh16 : Immediate<i64, [{
return SystemZ::isImmHH(N->getZExtValue());
}], HH16, "U16Imm">;
// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being one.
defm imm64ll16c : Immediate<i64, [{
return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
}], LL16, "U16Imm">;
defm imm64lh16c : Immediate<i64, [{
return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
}], LH16, "U16Imm">;
defm imm64hl16c : Immediate<i64, [{
return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
}], HL16, "U16Imm">;
defm imm64hh16c : Immediate<i64, [{
return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
}], HH16, "U16Imm">;
// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being zero.
defm imm64lf32 : Immediate<i64, [{
return SystemZ::isImmLF(N->getZExtValue());
}], LF32, "U32Imm">;
defm imm64hf32 : Immediate<i64, [{
return SystemZ::isImmHF(N->getZExtValue());
}], HF32, "U32Imm">;
// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being one.
defm imm64lf32c : Immediate<i64, [{
return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
}], LF32, "U32Imm">;
defm imm64hf32c : Immediate<i64, [{
return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
}], HF32, "U32Imm">;
// Negated immediates that fit LF32 or LH16.
defm imm64lh16n : Immediate<i64, [{
return SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
}], NEGLH16, "U16Imm">;
defm imm64lf32n : Immediate<i64, [{
return SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
}], NEGLF32, "U32Imm">;
// Short immediates.
defm imm64sx8 : Immediate<i64, [{
return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;
defm imm64zx8 : Immediate<i64, [{
return isUInt<8>(N->getSExtValue());
}], UIMM8, "U8Imm">;
defm imm64sx16 : Immediate<i64, [{
return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;
defm imm64sx16n : Immediate<i64, [{
return isInt<16>(-N->getSExtValue());
}], NEGSIMM16, "S16Imm">;
defm imm64zx16 : Immediate<i64, [{
return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;
defm imm64sx32 : Immediate<i64, [{
return isInt<32>(N->getSExtValue());
}], SIMM32, "S32Imm">;
defm imm64sx32n : Immediate<i64, [{
return isInt<32>(-N->getSExtValue());
}], NEGSIMM32, "S32Imm">;
defm imm64zx32 : Immediate<i64, [{
return isUInt<32>(N->getZExtValue());
}], UIMM32, "U32Imm">;
defm imm64zx32n : Immediate<i64, [{
return isUInt<32>(-N->getSExtValue());
}], NEGUIMM32, "U32Imm">;
defm imm64zx48 : Immediate<i64, [{
return isUInt<64>(N->getZExtValue());
}], UIMM48, "U48Imm">;
let OperandType = "OPERAND_IMMEDIATE" in
def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
//===----------------------------------------------------------------------===//
// Floating-point immediates
//===----------------------------------------------------------------------===//
// Floating-point zero.
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
// Floating point negative zero.
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
//===----------------------------------------------------------------------===//
// Symbolic address operands
//===----------------------------------------------------------------------===//
// PC-relative asm operands.
def PCRel12 : PCRelAsmOperand<"12">;
def PCRel16 : PCRelAsmOperand<"16">;
def PCRel24 : PCRelAsmOperand<"24">;
def PCRel32 : PCRelAsmOperand<"32">;
def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
// PC-relative offsets of a basic block. The offset is sign-extended
// and multiplied by 2.
def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
let EncoderMethod = "getPC16DBLEncoding";
let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
let EncoderMethod = "getPC32DBLEncoding";
let DecoderMethod = "decodePC32DBLBranchOperand";
}
// Variants of brtarget for use with branch prediction preload.
def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
let EncoderMethod = "getPC12DBLBPPEncoding";
let DecoderMethod = "decodePC12DBLBranchOperand";
}
def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
let EncoderMethod = "getPC16DBLBPPEncoding";
let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
let EncoderMethod = "getPC24DBLBPPEncoding";
let DecoderMethod = "decodePC24DBLBranchOperand";
}
// Variants of brtarget16/32 with an optional additional TLS symbol.
// These are used to annotate calls to __tls_get_offset.
def tlssym : Operand<i64> { }
def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
let EncoderMethod = "getPC16DBLTLSEncoding";
let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
let EncoderMethod = "getPC32DBLTLSEncoding";
let DecoderMethod = "decodePC32DBLBranchOperand";
}
// A PC-relative offset of a global value. The offset is sign-extended
// and multiplied by 2.
def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
let EncoderMethod = "getPC32DBLEncoding";
let DecoderMethod = "decodePC32DBLOperand";
}
//===----------------------------------------------------------------------===//
// Addressing modes
//===----------------------------------------------------------------------===//
// 12-bit displacement operands.
def disp12imm32 : Operand<i32>;
def disp12imm64 : Operand<i64>;
// 20-bit displacement operands.
def disp20imm32 : Operand<i32>;
def disp20imm64 : Operand<i64>;
def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr", "64", "12", "Len4">;
def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
def BDRAddr64Disp12 : AddressAsmOperand<"BDRAddr", "64", "12">;
def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">;
// DAG patterns and operands for addressing modes. Each mode has
// the form <type><range><group>[<len>] where:
//
// <type> is one of:
// shift : base + displacement (32-bit)
// bdaddr : base + displacement
// mviaddr : like bdaddr, but reject cases with a natural index
// bdxaddr : base + displacement + index
// laaddr : like bdxaddr, but used for Load Address operations
// dynalloc : base + displacement + index + ADJDYNALLOC
// bdladdr : base + displacement with a length field
// bdvaddr : base + displacement with a vector index
//
// <range> is one of:
// 12 : the displacement is an unsigned 12-bit value
// 20 : the displacement is a signed 20-bit value
//
// <group> is one of:
// pair : used when there is an equivalent instruction with the opposite
// range value (12 or 20)
// only : used when there is no equivalent instruction with the opposite
// range value
//
// <len> is one of:
//
// <empty> : there is no length field
// len8 : the length field is 8 bits, with a range of [1, 0x100].
def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
def bdladdr12onlylen4 : BDLMode<"BDLAddr", "64", "12", "Only", "4">;
def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
def bdraddr12only : BDRMode<"BDRAddr", "64", "12", "Only">;
def bdvaddr12only : BDVMode< "64", "12">;
//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//
// A 4-bit condition-code mask.
def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>,
Operand<i32> {
let PrintMethod = "printCond4Operand";
let OperandType = "OPERAND_IMMEDIATE";
}