blob: 278dd05b049c209d68d6d0431ebf7a63e30ad940 [file] [log] [blame]
//===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// SI Machine Scheduler interface
//
//===----------------------------------------------------------------------===//
#include "SIMachineScheduler.h"
#include "SIInstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "machine-scheduler"
// This scheduler implements a different scheduling algorithm than
// GenericScheduler.
//
// There are several specific architecture behaviours that can't be modelled
// for GenericScheduler:
// . When accessing the result of an SGPR load instruction, you have to wait
// for all the SGPR load instructions before your current instruction to
// have finished.
// . When accessing the result of an VGPR load instruction, you have to wait
// for all the VGPR load instructions previous to the VGPR load instruction
// you are interested in to finish.
// . The less the register pressure, the best load latencies are hidden
//
// Moreover some specifities (like the fact a lot of instructions in the shader
// have few dependencies) makes the generic scheduler have some unpredictable
// behaviours. For example when register pressure becomes high, it can either
// manage to prevent register pressure from going too high, or it can
// increase register pressure even more than if it hadn't taken register
// pressure into account.
//
// Also some other bad behaviours are generated, like loading at the beginning
// of the shader a constant in VGPR you won't need until the end of the shader.
//
// The scheduling problem for SI can distinguish three main parts:
// . Hiding high latencies (texture sampling, etc)
// . Hiding low latencies (SGPR constant loading, etc)
// . Keeping register usage low for better latency hiding and general
// performance
//
// Some other things can also affect performance, but are hard to predict
// (cache usage, the fact the HW can issue several instructions from different
// wavefronts if different types, etc)
//
// This scheduler tries to solve the scheduling problem by dividing it into
// simpler sub-problems. It divides the instructions into blocks, schedules
// locally inside the blocks where it takes care of low latencies, and then
// chooses the order of the blocks by taking care of high latencies.
// Dividing the instructions into blocks helps control keeping register
// usage low.
//
// First the instructions are put into blocks.
// We want the blocks help control register usage and hide high latencies
// later. To help control register usage, we typically want all local
// computations, when for example you create a result that can be comsummed
// right away, to be contained in a block. Block inputs and outputs would
// typically be important results that are needed in several locations of
// the shader. Since we do want blocks to help hide high latencies, we want
// the instructions inside the block to have a minimal set of dependencies
// on high latencies. It will make it easy to pick blocks to hide specific
// high latencies.
// The block creation algorithm is divided into several steps, and several
// variants can be tried during the scheduling process.
//
// Second the order of the instructions inside the blocks is chosen.
// At that step we do take into account only register usage and hiding
// low latency instructions
//
// Third the block order is chosen, there we try to hide high latencies
// and keep register usage low.
//
// After the third step, a pass is done to improve the hiding of low
// latencies.
//
// Actually when talking about 'low latency' or 'high latency' it includes
// both the latency to get the cache (or global mem) data go to the register,
// and the bandwidth limitations.
// Increasing the number of active wavefronts helps hide the former, but it
// doesn't solve the latter, thus why even if wavefront count is high, we have
// to try have as many instructions hiding high latencies as possible.
// The OpenCL doc says for example latency of 400 cycles for a global mem access,
// which is hidden by 10 instructions if the wavefront count is 10.
// Some figures taken from AMD docs:
// Both texture and constant L1 caches are 4-way associative with 64 bytes
// lines.
// Constant cache is shared with 4 CUs.
// For texture sampling, the address generation unit receives 4 texture
// addresses per cycle, thus we could expect texture sampling latency to be
// equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
// instructions in a wavefront group are executed every 4 cycles),
// or 16 instructions if the other wavefronts associated to the 3 other VALUs
// of the CU do texture sampling too. (Don't take these figures too seriously,
// as I'm not 100% sure of the computation)
// Data exports should get similar latency.
// For constant loading, the cache is shader with 4 CUs.
// The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
// I guess if the other CU don't read the cache, it can go up to 64B/cycle.
// It means a simple s_buffer_load should take one instruction to hide, as
// well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
// cache line.
//
// As of today the driver doesn't preload the constants in cache, thus the
// first loads get extra latency. The doc says global memory access can be
// 300-600 cycles. We do not specially take that into account when scheduling
// As we expect the driver to be able to preload the constants soon.
// common code //
#ifndef NDEBUG
static const char *getReasonStr(SIScheduleCandReason Reason) {
switch (Reason) {
case NoCand: return "NOCAND";
case RegUsage: return "REGUSAGE";
case Latency: return "LATENCY";
case Successor: return "SUCCESSOR";
case Depth: return "DEPTH";
case NodeOrder: return "ORDER";
}
llvm_unreachable("Unknown reason!");
}
#endif
namespace llvm {
namespace SISched {
static bool tryLess(int TryVal, int CandVal,
SISchedulerCandidate &TryCand,
SISchedulerCandidate &Cand,
SIScheduleCandReason Reason) {
if (TryVal < CandVal) {
TryCand.Reason = Reason;
return true;
}
if (TryVal > CandVal) {
if (Cand.Reason > Reason)
Cand.Reason = Reason;
return true;
}
Cand.setRepeat(Reason);
return false;
}
static bool tryGreater(int TryVal, int CandVal,
SISchedulerCandidate &TryCand,
SISchedulerCandidate &Cand,
SIScheduleCandReason Reason) {
if (TryVal > CandVal) {
TryCand.Reason = Reason;
return true;
}
if (TryVal < CandVal) {
if (Cand.Reason > Reason)
Cand.Reason = Reason;
return true;
}
Cand.setRepeat(Reason);
return false;
}
} // end namespace SISched
} // end namespace llvm
// SIScheduleBlock //
void SIScheduleBlock::addUnit(SUnit *SU) {
NodeNum2Index[SU->NodeNum] = SUnits.size();
SUnits.push_back(SU);
}
#ifndef NDEBUG
void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
dbgs() << '\n';
}
#endif
void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
SISchedCandidate &TryCand) {
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return;
}
if (Cand.SGPRUsage > 60 &&
SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
TryCand, Cand, RegUsage))
return;
// Schedule low latency instructions as top as possible.
// Order of priority is:
// . Low latency instructions which do not depend on other low latency
// instructions we haven't waited for
// . Other instructions which do not depend on low latency instructions
// we haven't waited for
// . Low latencies
// . All other instructions
// Goal is to get: low latency instructions - independent instructions
// - (eventually some more low latency instructions)
// - instructions that depend on the first low latency instructions.
// If in the block there is a lot of constant loads, the SGPR usage
// could go quite high, thus above the arbitrary limit of 60 will encourage
// use the already loaded constants (in order to release some SGPRs) before
// loading more.
if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
Cand.HasLowLatencyNonWaitedParent,
TryCand, Cand, SIScheduleCandReason::Depth))
return;
if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
TryCand, Cand, SIScheduleCandReason::Depth))
return;
if (TryCand.IsLowLatency &&
SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
TryCand, Cand, SIScheduleCandReason::Depth))
return;
if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
TryCand, Cand, RegUsage))
return;
// Fall through to original instruction order.
if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
TryCand.Reason = NodeOrder;
}
}
SUnit* SIScheduleBlock::pickNode() {
SISchedCandidate TopCand;
for (SUnit* SU : TopReadySUs) {
SISchedCandidate TryCand;
std::vector<unsigned> pressure;
std::vector<unsigned> MaxPressure;
// Predict register usage after this instruction.
TryCand.SU = SU;
TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
TryCand.HasLowLatencyNonWaitedParent =
HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
tryCandidateTopDown(TopCand, TryCand);
if (TryCand.Reason != NoCand)
TopCand.setBest(TryCand);
}
return TopCand.SU;
}
// Schedule something valid.
void SIScheduleBlock::fastSchedule() {
TopReadySUs.clear();
if (Scheduled)
undoSchedule();
for (SUnit* SU : SUnits) {
if (!SU->NumPredsLeft)
TopReadySUs.push_back(SU);
}
while (!TopReadySUs.empty()) {
SUnit *SU = TopReadySUs[0];
ScheduledSUnits.push_back(SU);
nodeScheduled(SU);
}
Scheduled = true;
}
// Returns if the register was set between first and last.
static bool isDefBetween(unsigned Reg,
SlotIndex First, SlotIndex Last,
const MachineRegisterInfo *MRI,
const LiveIntervals *LIS) {
for (MachineRegisterInfo::def_instr_iterator
UI = MRI->def_instr_begin(Reg),
UE = MRI->def_instr_end(); UI != UE; ++UI) {
const MachineInstr* MI = &*UI;
if (MI->isDebugValue())
continue;
SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
if (InstSlot >= First && InstSlot <= Last)
return true;
}
return false;
}
void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
MachineBasicBlock::iterator EndBlock) {
IntervalPressure Pressure, BotPressure;
RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
LiveIntervals *LIS = DAG->getLIS();
MachineRegisterInfo *MRI = DAG->getMRI();
DAG->initRPTracker(TopRPTracker);
DAG->initRPTracker(BotRPTracker);
DAG->initRPTracker(RPTracker);
// Goes though all SU. RPTracker captures what had to be alive for the SUs
// to execute, and what is still alive at the end.
for (SUnit* SU : ScheduledSUnits) {
RPTracker.setPos(SU->getInstr());
RPTracker.advance();
}
// Close the RPTracker to finalize live ins/outs.
RPTracker.closeRegion();
// Initialize the live ins and live outs.
TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
// Do not Track Physical Registers, because it messes up.
for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
if (Register::isVirtualRegister(RegMaskPair.RegUnit))
LiveInRegs.insert(RegMaskPair.RegUnit);
}
LiveOutRegs.clear();
// There is several possibilities to distinguish:
// 1) Reg is not input to any instruction in the block, but is output of one
// 2) 1) + read in the block and not needed after it
// 3) 1) + read in the block but needed in another block
// 4) Reg is input of an instruction but another block will read it too
// 5) Reg is input of an instruction and then rewritten in the block.
// result is not read in the block (implies used in another block)
// 6) Reg is input of an instruction and then rewritten in the block.
// result is read in the block and not needed in another block
// 7) Reg is input of an instruction and then rewritten in the block.
// result is read in the block but also needed in another block
// LiveInRegs will contains all the regs in situation 4, 5, 6, 7
// We want LiveOutRegs to contain only Regs whose content will be read after
// in another block, and whose content was written in the current block,
// that is we want it to get 1, 3, 5, 7
// Since we made the MIs of a block to be packed all together before
// scheduling, then the LiveIntervals were correct, and the RPTracker was
// able to correctly handle 5 vs 6, 2 vs 3.
// (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
// The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
// Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
// The use of findDefBetween removes the case 4.
for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
Register Reg = RegMaskPair.RegUnit;
if (Reg.isVirtual() &&
isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
LIS)) {
LiveOutRegs.insert(Reg);
}
}
// Pressure = sum_alive_registers register size
// Internally llvm will represent some registers as big 128 bits registers
// for example, but they actually correspond to 4 actual 32 bits registers.
// Thus Pressure is not equal to num_alive_registers * constant.
LiveInPressure = TopPressure.MaxSetPressure;
LiveOutPressure = BotPressure.MaxSetPressure;
// Prepares TopRPTracker for top down scheduling.
TopRPTracker.closeTop();
}
void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
MachineBasicBlock::iterator EndBlock) {
if (!Scheduled)
fastSchedule();
// PreScheduling phase to set LiveIn and LiveOut.
initRegPressure(BeginBlock, EndBlock);
undoSchedule();
// Schedule for real now.
TopReadySUs.clear();
for (SUnit* SU : SUnits) {
if (!SU->NumPredsLeft)
TopReadySUs.push_back(SU);
}
while (!TopReadySUs.empty()) {
SUnit *SU = pickNode();
ScheduledSUnits.push_back(SU);
TopRPTracker.setPos(SU->getInstr());
TopRPTracker.advance();
nodeScheduled(SU);
}
// TODO: compute InternalAdditionnalPressure.
InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
// Check everything is right.
#ifndef NDEBUG
assert(SUnits.size() == ScheduledSUnits.size() &&
TopReadySUs.empty());
for (SUnit* SU : SUnits) {
assert(SU->isScheduled &&
SU->NumPredsLeft == 0);
}
#endif
Scheduled = true;
}
void SIScheduleBlock::undoSchedule() {
for (SUnit* SU : SUnits) {
SU->isScheduled = false;
for (SDep& Succ : SU->Succs) {
if (BC->isSUInBlock(Succ.getSUnit(), ID))
undoReleaseSucc(SU, &Succ);
}
}
HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
ScheduledSUnits.clear();
Scheduled = false;
}
void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
if (SuccEdge->isWeak()) {
++SuccSU->WeakPredsLeft;
return;
}
++SuccSU->NumPredsLeft;
}
void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
if (SuccEdge->isWeak()) {
--SuccSU->WeakPredsLeft;
return;
}
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
DAG->dumpNode(*SuccSU);
dbgs() << " has been released too many times!\n";
llvm_unreachable(nullptr);
}
#endif
--SuccSU->NumPredsLeft;
}
/// Release Successors of the SU that are in the block or not.
void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
for (SDep& Succ : SU->Succs) {
SUnit *SuccSU = Succ.getSUnit();
if (SuccSU->NodeNum >= DAG->SUnits.size())
continue;
if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
continue;
releaseSucc(SU, &Succ);
if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
TopReadySUs.push_back(SuccSU);
}
}
void SIScheduleBlock::nodeScheduled(SUnit *SU) {
// Is in TopReadySUs
assert (!SU->NumPredsLeft);
std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
if (I == TopReadySUs.end()) {
dbgs() << "Data Structure Bug in SI Scheduler\n";
llvm_unreachable(nullptr);
}
TopReadySUs.erase(I);
releaseSuccessors(SU, true);
// Scheduling this node will trigger a wait,
// thus propagate to other instructions that they do not need to wait either.
if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
if (DAG->IsLowLatencySU[SU->NodeNum]) {
for (SDep& Succ : SU->Succs) {
std::map<unsigned, unsigned>::iterator I =
NodeNum2Index.find(Succ.getSUnit()->NodeNum);
if (I != NodeNum2Index.end())
HasLowLatencyNonWaitedParent[I->second] = 1;
}
}
SU->isScheduled = true;
}
void SIScheduleBlock::finalizeUnits() {
// We remove links from outside blocks to enable scheduling inside the block.
for (SUnit* SU : SUnits) {
releaseSuccessors(SU, false);
if (DAG->IsHighLatencySU[SU->NodeNum])
HighLatencyBlock = true;
}
HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
}
// we maintain ascending order of IDs
void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
unsigned PredID = Pred->getID();
// Check if not already predecessor.
for (SIScheduleBlock* P : Preds) {
if (PredID == P->getID())
return;
}
Preds.push_back(Pred);
assert(none_of(Succs,
[=](std::pair<SIScheduleBlock*,
SIScheduleBlockLinkKind> S) {
return PredID == S.first->getID();
}) &&
"Loop in the Block Graph!");
}
void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
SIScheduleBlockLinkKind Kind) {
unsigned SuccID = Succ->getID();
// Check if not already predecessor.
for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
if (SuccID == S.first->getID()) {
if (S.second == SIScheduleBlockLinkKind::NoData &&
Kind == SIScheduleBlockLinkKind::Data)
S.second = Kind;
return;
}
}
if (Succ->isHighLatencyBlock())
++NumHighLatencySuccessors;
Succs.push_back(std::make_pair(Succ, Kind));
assert(none_of(Preds,
[=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
"Loop in the Block Graph!");
}
#ifndef NDEBUG
void SIScheduleBlock::printDebug(bool full) {
dbgs() << "Block (" << ID << ")\n";
if (!full)
return;
dbgs() << "\nContains High Latency Instruction: "
<< HighLatencyBlock << '\n';
dbgs() << "\nDepends On:\n";
for (SIScheduleBlock* P : Preds) {
P->printDebug(false);
}
dbgs() << "\nSuccessors:\n";
for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
if (S.second == SIScheduleBlockLinkKind::Data)
dbgs() << "(Data Dep) ";
S.first->printDebug(false);
}
if (Scheduled) {
dbgs() << "LiveInPressure "
<< LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
<< LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
dbgs() << "LiveOutPressure "
<< LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
<< LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
dbgs() << "LiveIns:\n";
for (unsigned Reg : LiveInRegs)
dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
dbgs() << "\nLiveOuts:\n";
for (unsigned Reg : LiveOutRegs)
dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
}
dbgs() << "\nInstructions:\n";
for (const SUnit* SU : SUnits)
DAG->dumpNode(*SU);
dbgs() << "///////////////////////\n";
}
#endif
// SIScheduleBlockCreator //
SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
: DAG(DAG) {}
SIScheduleBlocks
SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
Blocks.find(BlockVariant);
if (B == Blocks.end()) {
SIScheduleBlocks Res;
createBlocksForVariant(BlockVariant);
topologicalSort();
scheduleInsideBlocks();
fillStats();
Res.Blocks = CurrentBlocks;
Res.TopDownIndex2Block = TopDownIndex2Block;
Res.TopDownBlock2Index = TopDownBlock2Index;
Blocks[BlockVariant] = Res;
return Res;
} else {
return B->second;
}
}
bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
if (SU->NodeNum >= DAG->SUnits.size())
return false;
return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
}
void SIScheduleBlockCreator::colorHighLatenciesAlone() {
unsigned DAGSize = DAG->SUnits.size();
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SUnit *SU = &DAG->SUnits[i];
if (DAG->IsHighLatencySU[SU->NodeNum]) {
CurrentColoring[SU->NodeNum] = NextReservedID++;
}
}
}
static bool
hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
for (const auto &PredDep : SU.Preds) {
if (PredDep.getSUnit() == &FromSU &&
PredDep.getKind() == llvm::SDep::Data)
return true;
}
return false;
}
void SIScheduleBlockCreator::colorHighLatenciesGroups() {
unsigned DAGSize = DAG->SUnits.size();
unsigned NumHighLatencies = 0;
unsigned GroupSize;
int Color = NextReservedID;
unsigned Count = 0;
std::set<unsigned> FormingGroup;
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SUnit *SU = &DAG->SUnits[i];
if (DAG->IsHighLatencySU[SU->NodeNum])
++NumHighLatencies;
}
if (NumHighLatencies == 0)
return;
if (NumHighLatencies <= 6)
GroupSize = 2;
else if (NumHighLatencies <= 12)
GroupSize = 3;
else
GroupSize = 4;
for (unsigned SUNum : DAG->TopDownIndex2SU) {
const SUnit &SU = DAG->SUnits[SUNum];
if (DAG->IsHighLatencySU[SU.NodeNum]) {
unsigned CompatibleGroup = true;
int ProposedColor = Color;
std::vector<int> AdditionalElements;
// We don't want to put in the same block
// two high latency instructions that depend
// on each other.
// One way would be to check canAddEdge
// in both directions, but that currently is not
// enough because there the high latency order is
// enforced (via links).
// Instead, look at the dependencies between the
// high latency instructions and deduce if it is
// a data dependency or not.
for (unsigned j : FormingGroup) {
bool HasSubGraph;
std::vector<int> SubGraph;
// By construction (topological order), if SU and
// DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
// in the parent graph of SU.
#ifndef NDEBUG
SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
HasSubGraph);
assert(!HasSubGraph);
#endif
SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
HasSubGraph);
if (!HasSubGraph)
continue; // No dependencies between each other
else if (SubGraph.size() > 5) {
// Too many elements would be required to be added to the block.
CompatibleGroup = false;
break;
}
else {
// Check the type of dependency
for (unsigned k : SubGraph) {
// If in the path to join the two instructions,
// there is another high latency instruction,
// or instructions colored for another block
// abort the merge.
if (DAG->IsHighLatencySU[k] ||
(CurrentColoring[k] != ProposedColor &&
CurrentColoring[k] != 0)) {
CompatibleGroup = false;
break;
}
// If one of the SU in the subgraph depends on the result of SU j,
// there'll be a data dependency.
if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
CompatibleGroup = false;
break;
}
}
if (!CompatibleGroup)
break;
// Same check for the SU
if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
CompatibleGroup = false;
break;
}
// Add all the required instructions to the block
// These cannot live in another block (because they
// depend (order dependency) on one of the
// instruction in the block, and are required for the
// high latency instruction we add.
llvm::append_range(AdditionalElements, SubGraph);
}
}
if (CompatibleGroup) {
FormingGroup.insert(SU.NodeNum);
for (unsigned j : AdditionalElements)
CurrentColoring[j] = ProposedColor;
CurrentColoring[SU.NodeNum] = ProposedColor;
++Count;
}
// Found one incompatible instruction,
// or has filled a big enough group.
// -> start a new one.
if (!CompatibleGroup) {
FormingGroup.clear();
Color = ++NextReservedID;
ProposedColor = Color;
FormingGroup.insert(SU.NodeNum);
CurrentColoring[SU.NodeNum] = ProposedColor;
Count = 0;
} else if (Count == GroupSize) {
FormingGroup.clear();
Color = ++NextReservedID;
ProposedColor = Color;
Count = 0;
}
}
}
}
void SIScheduleBlockCreator::colorComputeReservedDependencies() {
unsigned DAGSize = DAG->SUnits.size();
std::map<std::set<unsigned>, unsigned> ColorCombinations;
CurrentTopDownReservedDependencyColoring.clear();
CurrentBottomUpReservedDependencyColoring.clear();
CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
// Traverse TopDown, and give different colors to SUs depending
// on which combination of High Latencies they depend on.
for (unsigned SUNum : DAG->TopDownIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
std::set<unsigned> SUColors;
// Already given.
if (CurrentColoring[SU->NodeNum]) {
CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
CurrentColoring[SU->NodeNum];
continue;
}
for (SDep& PredDep : SU->Preds) {
SUnit *Pred = PredDep.getSUnit();
if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
continue;
if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
}
// Color 0 by default.
if (SUColors.empty())
continue;
// Same color than parents.
if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
*SUColors.begin();
else {
std::map<std::set<unsigned>, unsigned>::iterator Pos =
ColorCombinations.find(SUColors);
if (Pos != ColorCombinations.end()) {
CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
} else {
CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
NextNonReservedID;
ColorCombinations[SUColors] = NextNonReservedID++;
}
}
}
ColorCombinations.clear();
// Same as before, but BottomUp.
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
std::set<unsigned> SUColors;
// Already given.
if (CurrentColoring[SU->NodeNum]) {
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
CurrentColoring[SU->NodeNum];
continue;
}
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
}
// Keep color 0.
if (SUColors.empty())
continue;
// Same color than parents.
if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
*SUColors.begin();
else {
std::map<std::set<unsigned>, unsigned>::iterator Pos =
ColorCombinations.find(SUColors);
if (Pos != ColorCombinations.end()) {
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
} else {
CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
NextNonReservedID;
ColorCombinations[SUColors] = NextNonReservedID++;
}
}
}
}
void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
unsigned DAGSize = DAG->SUnits.size();
std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
// Every combination of colors given by the top down
// and bottom up Reserved node dependency
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SUnit *SU = &DAG->SUnits[i];
std::pair<unsigned, unsigned> SUColors;
// High latency instructions: already given.
if (CurrentColoring[SU->NodeNum])
continue;
SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
ColorCombinations.find(SUColors);
if (Pos != ColorCombinations.end()) {
CurrentColoring[SU->NodeNum] = Pos->second;
} else {
CurrentColoring[SU->NodeNum] = NextNonReservedID;
ColorCombinations[SUColors] = NextNonReservedID++;
}
}
}
void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
unsigned DAGSize = DAG->SUnits.size();
std::vector<int> PendingColoring = CurrentColoring;
assert(DAGSize >= 1 &&
CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
CurrentTopDownReservedDependencyColoring.size() == DAGSize);
// If there is no reserved block at all, do nothing. We don't want
// everything in one block.
if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
*std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
CurrentTopDownReservedDependencyColoring.end()) == 0)
return;
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
std::set<unsigned> SUColors;
std::set<unsigned> SUColorsPending;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
continue;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
SUColors.insert(CurrentColoring[Succ->NodeNum]);
SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
}
// If there is only one child/parent block, and that block
// is not among the ones we are removing in this path, then
// merge the instruction to that block
if (SUColors.size() == 1 && SUColorsPending.size() == 1)
PendingColoring[SU->NodeNum] = *SUColors.begin();
else // TODO: Attribute new colors depending on color
// combination of children.
PendingColoring[SU->NodeNum] = NextNonReservedID++;
}
CurrentColoring = PendingColoring;
}
void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
unsigned DAGSize = DAG->SUnits.size();
unsigned PreviousColor;
std::set<unsigned> SeenColors;
if (DAGSize <= 1)
return;
PreviousColor = CurrentColoring[0];
for (unsigned i = 1, e = DAGSize; i != e; ++i) {
SUnit *SU = &DAG->SUnits[i];
unsigned CurrentColor = CurrentColoring[i];
unsigned PreviousColorSave = PreviousColor;
assert(i == SU->NodeNum);
if (CurrentColor != PreviousColor)
SeenColors.insert(PreviousColor);
PreviousColor = CurrentColor;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
if (SeenColors.find(CurrentColor) == SeenColors.end())
continue;
if (PreviousColorSave != CurrentColor)
CurrentColoring[i] = NextNonReservedID++;
else
CurrentColoring[i] = CurrentColoring[i-1];
}
}
void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
unsigned DAGSize = DAG->SUnits.size();
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
std::set<unsigned> SUColors;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
// No predecessor: Vgpr constant loading.
// Low latency instructions usually have a predecessor (the address)
if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
continue;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
SUColors.insert(CurrentColoring[Succ->NodeNum]);
}
if (SUColors.size() == 1)
CurrentColoring[SU->NodeNum] = *SUColors.begin();
}
}
void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
unsigned DAGSize = DAG->SUnits.size();
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
std::set<unsigned> SUColors;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
SUColors.insert(CurrentColoring[Succ->NodeNum]);
}
if (SUColors.size() == 1)
CurrentColoring[SU->NodeNum] = *SUColors.begin();
}
}
void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
unsigned DAGSize = DAG->SUnits.size();
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
std::set<unsigned> SUColors;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
SUColors.insert(CurrentColoring[Succ->NodeNum]);
}
if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
CurrentColoring[SU->NodeNum] = *SUColors.begin();
}
}
void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
unsigned DAGSize = DAG->SUnits.size();
std::map<unsigned, unsigned> ColorCount;
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
unsigned color = CurrentColoring[SU->NodeNum];
++ColorCount[color];
}
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
unsigned color = CurrentColoring[SU->NodeNum];
std::set<unsigned> SUColors;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
if (ColorCount[color] > 1)
continue;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
SUColors.insert(CurrentColoring[Succ->NodeNum]);
}
if (SUColors.size() == 1 && *SUColors.begin() != color) {
--ColorCount[color];
CurrentColoring[SU->NodeNum] = *SUColors.begin();
++ColorCount[*SUColors.begin()];
}
}
}
void SIScheduleBlockCreator::cutHugeBlocks() {
// TODO
}
void SIScheduleBlockCreator::regroupNoUserInstructions() {
unsigned DAGSize = DAG->SUnits.size();
int GroupID = NextNonReservedID++;
for (unsigned SUNum : DAG->BottomUpIndex2SU) {
SUnit *SU = &DAG->SUnits[SUNum];
bool hasSuccessor = false;
if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
continue;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
hasSuccessor = true;
}
if (!hasSuccessor)
CurrentColoring[SU->NodeNum] = GroupID;
}
}
void SIScheduleBlockCreator::colorExports() {
unsigned ExportColor = NextNonReservedID++;
SmallVector<unsigned, 8> ExpGroup;
// Put all exports together in a block.
// The block will naturally end up being scheduled last,
// thus putting exports at the end of the schedule, which
// is better for performance.
// However we must ensure, for safety, the exports can be put
// together in the same block without any other instruction.
// This could happen, for example, when scheduling after regalloc
// if reloading a spilled register from memory using the same
// register than used in a previous export.
// If that happens, do not regroup the exports.
for (unsigned SUNum : DAG->TopDownIndex2SU) {
const SUnit &SU = DAG->SUnits[SUNum];
if (SIInstrInfo::isEXP(*SU.getInstr())) {
// Check the EXP can be added to the group safely,
// ie without needing any other instruction.
// The EXP is allowed to depend on other EXP
// (they will be in the same group).
for (unsigned j : ExpGroup) {
bool HasSubGraph;
std::vector<int> SubGraph;
// By construction (topological order), if SU and
// DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
// in the parent graph of SU.
#ifndef NDEBUG
SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
HasSubGraph);
assert(!HasSubGraph);
#endif
SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
HasSubGraph);
if (!HasSubGraph)
continue; // No dependencies between each other
// SubGraph contains all the instructions required
// between EXP SUnits[j] and EXP SU.
for (unsigned k : SubGraph) {
if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
// Other instructions than EXP would be required in the group.
// Abort the groupping.
return;
}
}
ExpGroup.push_back(SUNum);
}
}
// The group can be formed. Give the color.
for (unsigned j : ExpGroup)
CurrentColoring[j] = ExportColor;
}
void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
unsigned DAGSize = DAG->SUnits.size();
std::map<unsigned,unsigned> RealID;
CurrentBlocks.clear();
CurrentColoring.clear();
CurrentColoring.resize(DAGSize, 0);
Node2CurrentBlock.clear();
// Restore links previous scheduling variant has overridden.
DAG->restoreSULinksLeft();
NextReservedID = 1;
NextNonReservedID = DAGSize + 1;
LLVM_DEBUG(dbgs() << "Coloring the graph\n");
if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
colorHighLatenciesGroups();
else
colorHighLatenciesAlone();
colorComputeReservedDependencies();
colorAccordingToReservedDependencies();
colorEndsAccordingToDependencies();
if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
colorForceConsecutiveOrderInGroup();
regroupNoUserInstructions();
colorMergeConstantLoadsNextGroup();
colorMergeIfPossibleNextGroupOnlyForReserved();
colorExports();
// Put SUs of same color into same block
Node2CurrentBlock.resize(DAGSize, -1);
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SUnit *SU = &DAG->SUnits[i];
unsigned Color = CurrentColoring[SU->NodeNum];
if (RealID.find(Color) == RealID.end()) {
int ID = CurrentBlocks.size();
BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
RealID[Color] = ID;
}
CurrentBlocks[RealID[Color]]->addUnit(SU);
Node2CurrentBlock[SU->NodeNum] = RealID[Color];
}
// Build dependencies between blocks.
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SUnit *SU = &DAG->SUnits[i];
int SUID = Node2CurrentBlock[i];
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
if (Node2CurrentBlock[Succ->NodeNum] != SUID)
CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
SuccDep.isCtrl() ? NoData : Data);
}
for (SDep& PredDep : SU->Preds) {
SUnit *Pred = PredDep.getSUnit();
if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
continue;
if (Node2CurrentBlock[Pred->NodeNum] != SUID)
CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
}
}
// Free root and leafs of all blocks to enable scheduling inside them.
for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
Block->finalizeUnits();
}
LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
Block->printDebug(true);
});
}
// Two functions taken from Codegen/MachineScheduler.cpp
/// Non-const version.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,
MachineBasicBlock::const_iterator End) {
for (; I != End; ++I) {
if (!I->isDebugInstr())
break;
}
return I;
}
void SIScheduleBlockCreator::topologicalSort() {
unsigned DAGSize = CurrentBlocks.size();
std::vector<int> WorkList;
LLVM_DEBUG(dbgs() << "Topological Sort\n");
WorkList.reserve(DAGSize);
TopDownIndex2Block.resize(DAGSize);
TopDownBlock2Index.resize(DAGSize);
BottomUpIndex2Block.resize(DAGSize);
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
unsigned Degree = Block->getSuccs().size();
TopDownBlock2Index[i] = Degree;
if (Degree == 0) {
WorkList.push_back(i);
}
}
int Id = DAGSize;
while (!WorkList.empty()) {
int i = WorkList.back();
SIScheduleBlock *Block = CurrentBlocks[i];
WorkList.pop_back();
TopDownBlock2Index[i] = --Id;
TopDownIndex2Block[Id] = i;
for (SIScheduleBlock* Pred : Block->getPreds()) {
if (!--TopDownBlock2Index[Pred->getID()])
WorkList.push_back(Pred->getID());
}
}
#ifndef NDEBUG
// Check correctness of the ordering.
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
for (SIScheduleBlock* Pred : Block->getPreds()) {
assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
"Wrong Top Down topological sorting");
}
}
#endif
BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
TopDownIndex2Block.rend());
}
void SIScheduleBlockCreator::scheduleInsideBlocks() {
unsigned DAGSize = CurrentBlocks.size();
LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
// We do schedule a valid scheduling such that a Block corresponds
// to a range of instructions.
LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
Block->fastSchedule();
}
// Note: the following code, and the part restoring previous position
// is by far the most expensive operation of the Scheduler.
// Do not update CurrentTop.
MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
std::vector<MachineBasicBlock::iterator> PosOld;
std::vector<MachineBasicBlock::iterator> PosNew;
PosOld.reserve(DAG->SUnits.size());
PosNew.reserve(DAG->SUnits.size());
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
int BlockIndice = TopDownIndex2Block[i];
SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
std::vector<SUnit*> SUs = Block->getScheduledUnits();
for (SUnit* SU : SUs) {
MachineInstr *MI = SU->getInstr();
MachineBasicBlock::iterator Pos = MI;
PosOld.push_back(Pos);
if (&*CurrentTopFastSched == MI) {
PosNew.push_back(Pos);
CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
DAG->getCurrentBottom());
} else {
// Update the instruction stream.
DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
// Update LiveIntervals.
// Note: Moving all instructions and calling handleMove every time
// is the most cpu intensive operation of the scheduler.
// It would gain a lot if there was a way to recompute the
// LiveIntervals for the entire scheduling region.
DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
PosNew.push_back(CurrentTopFastSched);
}
}
}
// Now we have Block of SUs == Block of MI.
// We do the final schedule for the instructions inside the block.
// The property that all the SUs of the Block are grouped together as MI
// is used for correct reg usage tracking.
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
std::vector<SUnit*> SUs = Block->getScheduledUnits();
Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
}
LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
// Restore old ordering (which prevents a LIS->handleMove bug).
for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
MachineBasicBlock::iterator POld = PosOld[i-1];
MachineBasicBlock::iterator PNew = PosNew[i-1];
if (PNew != POld) {
// Update the instruction stream.
DAG->getBB()->splice(POld, DAG->getBB(), PNew);
// Update LiveIntervals.
DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
}
}
LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
SIScheduleBlock *Block = CurrentBlocks[i];
Block->printDebug(true);
});
}
void SIScheduleBlockCreator::fillStats() {
unsigned DAGSize = CurrentBlocks.size();
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
int BlockIndice = TopDownIndex2Block[i];
SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
if (Block->getPreds().empty())
Block->Depth = 0;
else {
unsigned Depth = 0;
for (SIScheduleBlock *Pred : Block->getPreds()) {
if (Depth < Pred->Depth + Pred->getCost())
Depth = Pred->Depth + Pred->getCost();
}
Block->Depth = Depth;
}
}
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
int BlockIndice = BottomUpIndex2Block[i];
SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
if (Block->getSuccs().empty())
Block->Height = 0;
else {
unsigned Height = 0;
for (const auto &Succ : Block->getSuccs())
Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
Block->Height = Height;
}
}
}
// SIScheduleBlockScheduler //
SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
SISchedulerBlockSchedulerVariant Variant,
SIScheduleBlocks BlocksStruct) :
DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
// Fill the usage of every output
// Warning: while by construction we always have a link between two blocks
// when one needs a result from the other, the number of users of an output
// is not the sum of child blocks having as input the same virtual register.
// Here is an example. A produces x and y. B eats x and produces x'.
// C eats x' and y. The register coalescer may have attributed the same
// virtual register to x and x'.
// To count accurately, we do a topological sort. In case the register is
// found for several parents, we increment the usage of the one with the
// highest topological index.
LiveOutRegsNumUsages.resize(Blocks.size());
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
SIScheduleBlock *Block = Blocks[i];
for (unsigned Reg : Block->getInRegs()) {
bool Found = false;
int topoInd = -1;
for (SIScheduleBlock* Pred: Block->getPreds()) {
std::set<unsigned> PredOutRegs = Pred->getOutRegs();
std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
if (RegPos != PredOutRegs.end()) {
Found = true;
if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
}
}
}
if (!Found)
continue;
int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
++LiveOutRegsNumUsages[PredID][Reg];
}
}
LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
BlockNumPredsLeft.resize(Blocks.size());
BlockNumSuccsLeft.resize(Blocks.size());
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
SIScheduleBlock *Block = Blocks[i];
BlockNumPredsLeft[i] = Block->getPreds().size();
BlockNumSuccsLeft[i] = Block->getSuccs().size();
}
#ifndef NDEBUG
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
SIScheduleBlock *Block = Blocks[i];
assert(Block->getID() == i);
}
#endif
std::set<unsigned> InRegs = DAG->getInRegs();
addLiveRegs(InRegs);
// Increase LiveOutRegsNumUsages for blocks
// producing registers consumed in another
// scheduling region.
for (unsigned Reg : DAG->getOutRegs()) {
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
// Do reverse traversal
int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
SIScheduleBlock *Block = Blocks[ID];
const std::set<unsigned> &OutRegs = Block->getOutRegs();
if (OutRegs.find(Reg) == OutRegs.end())
continue;
++LiveOutRegsNumUsages[ID][Reg];
break;
}
}
// Fill LiveRegsConsumers for regs that were already
// defined before scheduling.
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
SIScheduleBlock *Block = Blocks[i];
for (unsigned Reg : Block->getInRegs()) {
bool Found = false;
for (SIScheduleBlock* Pred: Block->getPreds()) {
std::set<unsigned> PredOutRegs = Pred->getOutRegs();
std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
if (RegPos != PredOutRegs.end()) {
Found = true;
break;
}
}
if (!Found)
++LiveRegsConsumers[Reg];
}
}
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
SIScheduleBlock *Block = Blocks[i];
if (BlockNumPredsLeft[i] == 0) {
ReadyBlocks.push_back(Block);
}
}
while (SIScheduleBlock *Block = pickBlock()) {
BlocksScheduled.push_back(Block);
blockScheduled(Block);
}
LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
: BlocksScheduled) {
dbgs() << ' ' << Block->getID();
} dbgs() << '\n';);
}
bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
SIBlockSchedCandidate &TryCand) {
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return true;
}
// Try to hide high latencies.
if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
return true;
// Schedule high latencies early so you can hide them better.
if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
TryCand, Cand, Latency))
return true;
if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
TryCand, Cand, Depth))
return true;
if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
Cand.NumHighLatencySuccessors,
TryCand, Cand, Successor))
return true;
return false;
}
bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
SIBlockSchedCandidate &TryCand) {
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return true;
}
if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
TryCand, Cand, RegUsage))
return true;
if (SISched::tryGreater(TryCand.NumSuccessors > 0,
Cand.NumSuccessors > 0,
TryCand, Cand, Successor))
return true;
if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
return true;
if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
TryCand, Cand, RegUsage))
return true;
return false;
}
SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
SIBlockSchedCandidate Cand;
std::vector<SIScheduleBlock*>::iterator Best;
SIScheduleBlock *Block;
if (ReadyBlocks.empty())
return nullptr;
DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
VregCurrentUsage, SregCurrentUsage);
if (VregCurrentUsage > maxVregUsage)
maxVregUsage = VregCurrentUsage;
if (SregCurrentUsage > maxSregUsage)
maxSregUsage = SregCurrentUsage;
LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
for (SIScheduleBlock *Block
: ReadyBlocks) dbgs()
<< Block->getID() << ' ';
dbgs() << "\nCurrent Live:\n";
for (unsigned Reg
: LiveRegs) dbgs()
<< printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
dbgs() << '\n';
dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
Cand.Block = nullptr;
for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
E = ReadyBlocks.end(); I != E; ++I) {
SIBlockSchedCandidate TryCand;
TryCand.Block = *I;
TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
TryCand.VGPRUsageDiff =
checkRegUsageImpact(TryCand.Block->getInRegs(),
TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
TryCand.NumHighLatencySuccessors =
TryCand.Block->getNumHighLatencySuccessors();
TryCand.LastPosHighLatParentScheduled =
(unsigned int) std::max<int> (0,
LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
LastPosWaitedHighLatency);
TryCand.Height = TryCand.Block->Height;
// Try not to increase VGPR usage too much, else we may spill.
if (VregCurrentUsage > 120 ||
Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
if (!tryCandidateRegUsage(Cand, TryCand) &&
Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
tryCandidateLatency(Cand, TryCand);
} else {
if (!tryCandidateLatency(Cand, TryCand))
tryCandidateRegUsage(Cand, TryCand);
}
if (TryCand.Reason != NoCand) {
Cand.setBest(TryCand);
Best = I;
LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
<< getReasonStr(Cand.Reason) << '\n');
}
}
LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
dbgs() << "Is a block with high latency instruction: "
<< (Cand.IsHighLatency ? "yes\n" : "no\n");
dbgs() << "Position of last high latency dependency: "
<< Cand.LastPosHighLatParentScheduled << '\n';
dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
dbgs() << '\n';);
Block = Cand.Block;
ReadyBlocks.erase(Best);
return Block;
}
// Tracking of currently alive registers to determine VGPR Usage.
void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
for (Register Reg : Regs) {
// For now only track virtual registers.
if (!Reg.isVirtual())
continue;
// If not already in the live set, then add it.
(void) LiveRegs.insert(Reg);
}
}
void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
std::set<unsigned> &Regs) {
for (unsigned Reg : Regs) {
// For now only track virtual registers.
std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
assert (Pos != LiveRegs.end() && // Reg must be live.
LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
LiveRegsConsumers[Reg] >= 1);
--LiveRegsConsumers[Reg];
if (LiveRegsConsumers[Reg] == 0)
LiveRegs.erase(Pos);
}
}
void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
for (const auto &Block : Parent->getSuccs()) {
if (--BlockNumPredsLeft[Block.first->getID()] == 0)
ReadyBlocks.push_back(Block.first);
if (Parent->isHighLatencyBlock() &&
Block.second == SIScheduleBlockLinkKind::Data)
LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
}
}
void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
decreaseLiveRegs(Block, Block->getInRegs());
addLiveRegs(Block->getOutRegs());
releaseBlockSuccs(Block);
for (std::map<unsigned, unsigned>::iterator RegI =
LiveOutRegsNumUsages[Block->getID()].begin(),
E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
std::pair<unsigned, unsigned> RegP = *RegI;
// We produce this register, thus it must not be previously alive.
assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
LiveRegsConsumers[RegP.first] == 0);
LiveRegsConsumers[RegP.first] += RegP.second;
}
if (LastPosHighLatencyParentScheduled[Block->getID()] >
(unsigned)LastPosWaitedHighLatency)
LastPosWaitedHighLatency =
LastPosHighLatencyParentScheduled[Block->getID()];
++NumBlockScheduled;
}
std::vector<int>
SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
std::set<unsigned> &OutRegs) {
std::vector<int> DiffSetPressure;
DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
for (Register Reg : InRegs) {
// For now only track virtual registers.
if (!Reg.isVirtual())
continue;
if (LiveRegsConsumers[Reg] > 1)
continue;
PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
for (; PSetI.isValid(); ++PSetI) {
DiffSetPressure[*PSetI] -= PSetI.getWeight();
}
}
for (Register Reg : OutRegs) {
// For now only track virtual registers.
if (!Reg.isVirtual())
continue;
PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
for (; PSetI.isValid(); ++PSetI) {
DiffSetPressure[*PSetI] += PSetI.getWeight();
}
}
return DiffSetPressure;
}
// SIScheduler //
struct SIScheduleBlockResult
SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
SISchedulerBlockSchedulerVariant ScheduleVariant) {
SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
std::vector<SIScheduleBlock*> ScheduledBlocks;
struct SIScheduleBlockResult Res;
ScheduledBlocks = Scheduler.getBlocks();
for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
SIScheduleBlock *Block = ScheduledBlocks[b];
std::vector<SUnit*> SUs = Block->getScheduledUnits();
for (SUnit* SU : SUs)
Res.SUs.push_back(SU->NodeNum);
}
Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
return Res;
}
// SIScheduleDAGMI //
SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
SITII = static_cast<const SIInstrInfo*>(TII);
SITRI = static_cast<const SIRegisterInfo*>(TRI);
}
SIScheduleDAGMI::~SIScheduleDAGMI() = default;
// Code adapted from scheduleDAG.cpp
// Does a topological sort over the SUs.
// Both TopDown and BottomUp
void SIScheduleDAGMI::topologicalSort() {
Topo.InitDAGTopologicalSorting();
TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
}
// Move low latencies further from their user without
// increasing SGPR usage (in general)
// This is to be replaced by a better pass that would
// take into account SGPR usage (based on VGPR Usage
// and the corresponding wavefront count), that would
// try to merge groups of loads if it make sense, etc
void SIScheduleDAGMI::moveLowLatencies() {
unsigned DAGSize = SUnits.size();
int LastLowLatencyUser = -1;
int LastLowLatencyPos = -1;
for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
SUnit *SU = &SUnits[ScheduledSUnits[i]];
bool IsLowLatencyUser = false;
unsigned MinPos = 0;
for (SDep& PredDep : SU->Preds) {
SUnit *Pred = PredDep.getSUnit();
if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
IsLowLatencyUser = true;
}
if (Pred->NodeNum >= DAGSize)
continue;
unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
if (PredPos >= MinPos)
MinPos = PredPos + 1;
}
if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
unsigned BestPos = LastLowLatencyUser + 1;
if ((int)BestPos <= LastLowLatencyPos)
BestPos = LastLowLatencyPos + 1;
if (BestPos < MinPos)
BestPos = MinPos;
if (BestPos < i) {
for (unsigned u = i; u > BestPos; --u) {
++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
ScheduledSUnits[u] = ScheduledSUnits[u-1];
}
ScheduledSUnits[BestPos] = SU->NodeNum;
ScheduledSUnitsInv[SU->NodeNum] = BestPos;
}
LastLowLatencyPos = BestPos;
if (IsLowLatencyUser)
LastLowLatencyUser = BestPos;
} else if (IsLowLatencyUser) {
LastLowLatencyUser = i;
// Moves COPY instructions on which depends
// the low latency instructions too.
} else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
bool CopyForLowLat = false;
for (SDep& SuccDep : SU->Succs) {
SUnit *Succ = SuccDep.getSUnit();
if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
continue;
if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
CopyForLowLat = true;
}
}
if (!CopyForLowLat)
continue;
if (MinPos < i) {
for (unsigned u = i; u > MinPos; --u) {
++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
ScheduledSUnits[u] = ScheduledSUnits[u-1];
}
ScheduledSUnits[MinPos] = SU->NodeNum;
ScheduledSUnitsInv[SU->NodeNum] = MinPos;
}
}
}
}
void SIScheduleDAGMI::restoreSULinksLeft() {
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
SUnits[i].isScheduled = false;
SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
}
}
// Return the Vgpr and Sgpr usage corresponding to some virtual registers.
template<typename _Iterator> void
SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
unsigned &VgprUsage, unsigned &SgprUsage) {
VgprUsage = 0;
SgprUsage = 0;
for (_Iterator RegI = First; RegI != End; ++RegI) {
Register Reg = *RegI;
// For now only track virtual registers
if (!Reg.isVirtual())
continue;
PSetIterator PSetI = MRI.getPressureSets(Reg);
for (; PSetI.isValid(); ++PSetI) {
if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
VgprUsage += PSetI.getWeight();
else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
SgprUsage += PSetI.getWeight();
}
}
}
void SIScheduleDAGMI::schedule()
{
SmallVector<SUnit*, 8> TopRoots, BotRoots;
SIScheduleBlockResult Best, Temp;
LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
buildDAGWithRegPressure();
LLVM_DEBUG(dump());
topologicalSort();
findRootsAndBiasEdges(TopRoots, BotRoots);
// We reuse several ScheduleDAGMI and ScheduleDAGMILive
// functions, but to make them happy we must initialize
// the default Scheduler implementation (even if we do not
// run it)
SchedImpl->initialize(this);
initQueues(TopRoots, BotRoots);
// Fill some stats to help scheduling.
SUnitsLinksBackup = SUnits;
IsLowLatencySU.clear();
LowLatencyOffset.clear();
IsHighLatencySU.clear();
IsLowLatencySU.resize(SUnits.size(), 0);
LowLatencyOffset.resize(SUnits.size(), 0);
IsHighLatencySU.resize(SUnits.size(), 0);
for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
SUnit *SU = &SUnits[i];
const MachineOperand *BaseLatOp;
int64_t OffLatReg;
if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
IsLowLatencySU[i] = 1;
bool OffsetIsScalable;
if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
OffsetIsScalable, TRI))
LowLatencyOffset[i] = OffLatReg;
} else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
IsHighLatencySU[i] = 1;
}
SIScheduler Scheduler(this);
Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
// if VGPR usage is extremely high, try other good performing variants
// which could lead to lower VGPR usage
if (Best.MaxVGPRUsage > 180) {
static const std::pair<SISchedulerBlockCreatorVariant,
SISchedulerBlockSchedulerVariant>
Variants[] = {
{ LatenciesAlone, BlockRegUsageLatency },
// { LatenciesAlone, BlockRegUsage },
{ LatenciesGrouped, BlockLatencyRegUsage },
// { LatenciesGrouped, BlockRegUsageLatency },
// { LatenciesGrouped, BlockRegUsage },
{ LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
// { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
// { LatenciesAlonePlusConsecutive, BlockRegUsage }
};
for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
Temp = Scheduler.scheduleVariant(v.first, v.second);
if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
Best = Temp;
}
}
// if VGPR usage is still extremely high, we may spill. Try other variants
// which are less performing, but that could lead to lower VGPR usage.
if (Best.MaxVGPRUsage > 200) {
static const std::pair<SISchedulerBlockCreatorVariant,
SISchedulerBlockSchedulerVariant>
Variants[] = {
// { LatenciesAlone, BlockRegUsageLatency },
{ LatenciesAlone, BlockRegUsage },
// { LatenciesGrouped, BlockLatencyRegUsage },
{ LatenciesGrouped, BlockRegUsageLatency },
{ LatenciesGrouped, BlockRegUsage },
// { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
{ LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
{ LatenciesAlonePlusConsecutive, BlockRegUsage }
};
for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
Temp = Scheduler.scheduleVariant(v.first, v.second);
if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
Best = Temp;
}
}
ScheduledSUnits = Best.SUs;
ScheduledSUnitsInv.resize(SUnits.size());
for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
}
moveLowLatencies();
// Tell the outside world about the result of the scheduling.
assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
TopRPTracker.setPos(CurrentTop);
for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
E = ScheduledSUnits.end(); I != E; ++I) {
SUnit *SU = &SUnits[*I];
scheduleMI(SU, true);
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
<< *SU->getInstr());
}
assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
placeDebugValues();
LLVM_DEBUG({
dbgs() << "*** Final schedule for "
<< printMBBReference(*begin()->getParent()) << " ***\n";
dumpSchedule();
dbgs() << '\n';
});
}