| saved_model_schema_version: 1 |
| meta_graphs { |
| meta_info_def { |
| stripped_op_list { |
| op { |
| name: "Const" |
| output_arg { |
| name: "output" |
| type_attr: "dtype" |
| } |
| attr { |
| name: "value" |
| type: "tensor" |
| } |
| attr { |
| name: "dtype" |
| type: "type" |
| } |
| } |
| op { |
| name: "NoOp" |
| } |
| op { |
| name: "PartitionedCall" |
| input_arg { |
| name: "args" |
| type_list_attr: "Tin" |
| } |
| output_arg { |
| name: "output" |
| type_list_attr: "Tout" |
| } |
| attr { |
| name: "Tin" |
| type: "list(type)" |
| has_minimum: true |
| } |
| attr { |
| name: "Tout" |
| type: "list(type)" |
| has_minimum: true |
| } |
| attr { |
| name: "f" |
| type: "func" |
| } |
| attr { |
| name: "config" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| attr { |
| name: "config_proto" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| attr { |
| name: "executor_type" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| } |
| op { |
| name: "Placeholder" |
| output_arg { |
| name: "output" |
| type_attr: "dtype" |
| } |
| attr { |
| name: "dtype" |
| type: "type" |
| } |
| attr { |
| name: "shape" |
| type: "shape" |
| default_value { |
| shape { |
| unknown_rank: true |
| } |
| } |
| } |
| } |
| op { |
| name: "ReadVariableOp" |
| input_arg { |
| name: "resource" |
| type: DT_RESOURCE |
| } |
| output_arg { |
| name: "value" |
| type_attr: "dtype" |
| } |
| attr { |
| name: "dtype" |
| type: "type" |
| } |
| is_stateful: true |
| } |
| op { |
| name: "StatefulPartitionedCall" |
| input_arg { |
| name: "args" |
| type_list_attr: "Tin" |
| } |
| output_arg { |
| name: "output" |
| type_list_attr: "Tout" |
| } |
| attr { |
| name: "Tin" |
| type: "list(type)" |
| has_minimum: true |
| } |
| attr { |
| name: "Tout" |
| type: "list(type)" |
| has_minimum: true |
| } |
| attr { |
| name: "f" |
| type: "func" |
| } |
| attr { |
| name: "config" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| attr { |
| name: "config_proto" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| attr { |
| name: "executor_type" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| is_stateful: true |
| } |
| op { |
| name: "VarHandleOp" |
| output_arg { |
| name: "resource" |
| type: DT_RESOURCE |
| } |
| attr { |
| name: "container" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| attr { |
| name: "shared_name" |
| type: "string" |
| default_value { |
| s: "" |
| } |
| } |
| attr { |
| name: "dtype" |
| type: "type" |
| } |
| attr { |
| name: "shape" |
| type: "shape" |
| } |
| attr { |
| name: "allowed_devices" |
| type: "list(string)" |
| default_value { |
| list { |
| } |
| } |
| } |
| is_stateful: true |
| } |
| } |
| tags: "serve" |
| tensorflow_version: "1.15.0" |
| tensorflow_git_version: "unknown" |
| stripped_default_attrs: true |
| } |
| graph_def { |
| node { |
| name: "train_step" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "train_step" |
| } |
| } |
| } |
| node { |
| name: "train_step/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "train_step" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense/kernel" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 34 |
| } |
| dim { |
| size: 100 |
| } |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "QNetwork/EncodingNetwork/dense/kernel" |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense/kernel/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense/kernel" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 34 |
| } |
| dim { |
| size: 100 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense/bias" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 100 |
| } |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "QNetwork/EncodingNetwork/dense/bias" |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense/bias/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense/bias" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 100 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense_1/kernel" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 100 |
| } |
| dim { |
| size: 40 |
| } |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "QNetwork/EncodingNetwork/dense_1/kernel" |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense_1/kernel/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense_1/kernel" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 100 |
| } |
| dim { |
| size: 40 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense_1/bias" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 40 |
| } |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "QNetwork/EncodingNetwork/dense_1/bias" |
| } |
| } |
| } |
| node { |
| name: "QNetwork/EncodingNetwork/dense_1/bias/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense_1/bias" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 40 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| } |
| node { |
| name: "QNetwork/dense_2/kernel" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 40 |
| } |
| dim { |
| size: 2 |
| } |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "QNetwork/dense_2/kernel" |
| } |
| } |
| } |
| node { |
| name: "QNetwork/dense_2/kernel/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "QNetwork/dense_2/kernel" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 40 |
| } |
| dim { |
| size: 2 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| } |
| node { |
| name: "QNetwork/dense_2/bias" |
| op: "VarHandleOp" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 2 |
| } |
| } |
| } |
| } |
| attr { |
| key: "shared_name" |
| value { |
| s: "QNetwork/dense_2/bias" |
| } |
| } |
| } |
| node { |
| name: "QNetwork/dense_2/bias/Read/ReadVariableOp" |
| op: "ReadVariableOp" |
| input: "QNetwork/dense_2/bias" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 2 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| } |
| node { |
| name: "NoOp" |
| op: "NoOp" |
| } |
| node { |
| name: "Const" |
| op: "Const" |
| device: "/device:CPU:0" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_STRING |
| } |
| } |
| attr { |
| key: "value" |
| value { |
| tensor { |
| dtype: DT_STRING |
| tensor_shape { |
| } |
| string_val: "\nu\n\023\010\001\022\017_time_step_spec\n\024\010\002\022\020_trajectory_spec\n\023\010\003\022\017_wrapped_policy\n\016\010\004\022\ntrain_step\n\023\010\005\022\017model_variables\n\016\010\006\022\nsignatures\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0013\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0011\n;\n\016\010\010\022\n_q_network\n\023\010\001\022\017_time_step_spec\n\024\010\t\022\020_trajectory_spec\nE\022C\n\016VARIABLE_VALUE\022\ntrain_step\032%train_step/.ATTRIBUTES/VARIABLE_VALUE\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\000\n\000\n\214\001\n\026\010\020\022\022_input_tensor_spec\n\014\010\021\022\010_encoder\n\022\010\022\022\016_q_value_layer\n\r\010\023\022\tvariables\n\031\010\024\022\025regularization_losses\n\027\010\025\022\023trainable_variables\n\r\010\026\022\tkeras_api\n\030\n\017\010\007\022\013observation\n\005\010\007\022\0011\ng\022e\n\016VARIABLE_VALUE\022%QNetwork/EncodingNetwork/dense/kernel\032,model_variables/0/.ATTRIBUTES/VARIABLE_VALUE\ne\022c\n\016VARIABLE_VALUE\022#QNetwork/EncodingNetwork/dense/bias\032,model_variables/1/.ATTRIBUTES/VARIABLE_VALUE\ni\022g\n\016VARIABLE_VALUE\022\'QNetwork/EncodingNetwork/dense_1/kernel\032,model_variables/2/.ATTRIBUTES/VARIABLE_VALUE\ng\022e\n\016VARIABLE_VALUE\022%QNetwork/EncodingNetwork/dense_1/bias\032,model_variables/3/.ATTRIBUTES/VARIABLE_VALUE\nY\022W\n\016VARIABLE_VALUE\022\027QNetwork/dense_2/kernel\032,model_variables/4/.ATTRIBUTES/VARIABLE_VALUE\nW\022U\n\016VARIABLE_VALUE\022\025QNetwork/dense_2/bias\032,model_variables/5/.ATTRIBUTES/VARIABLE_VALUE\n\000\n\334\001\n\026\010\027\022\022_input_tensor_spec\n\027\010\030\022\023_preprocessing_nest\n\036\010\031\022\032_flat_preprocessing_layers\n\033\010\032\022\027_preprocessing_combiner\n\032\010\033\022\026_postprocessing_layers\n\r\010\034\022\tvariables\n\031\010\035\022\025regularization_losses\n\027\010\036\022\023trainable_variables\n\r\010\037\022\tkeras_api\nh\n\n\010\016\022\006kernel\n\010\010\017\022\004bias\n\r\010 \022\tvariables\n\031\010!\022\025regularization_losses\n\027\010\"\022\023trainable_variables\n\r\010#\022\tkeras_api\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\000\n*\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\005\010\016\022\0014\n\005\010\017\022\0015\n\255\001\n\021\010$\022\rlayer_metrics\n\r\010\023\022\tvariables\n\037\010%\022\033layer_regularization_losses\n\013\010&\022\007metrics\n\n\010\'\022\006layers\n\031\010\024\022\025regularization_losses\n\033\010(\022\027non_trainable_variables\n\027\010\025\022\023trainable_variables\n\000\n\000\nV\n\005\010)\022\0010\n\005\010*\022\0011\n\005\010+\022\0012\n\005\010,\022\0013\n\005\010-\022\0014\n\005\010.\022\0015\n\005\010/\022\0016\n\005\0100\022\0017\n\005\0101\022\0018\n\005\0102\022\0019\n\006\0103\022\00210\n\006\0104\022\00211\nR\n\r\0105\022\tvariables\n\031\0106\022\025regularization_losses\n\027\0107\022\023trainable_variables\n\r\0108\022\tkeras_api\n\025\n\005\0109\022\0010\n\005\010:\022\0011\n\005\010;\022\0012\n\034\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\000\n\034\n\005\010\n\022\0010\n\005\010\013\022\0011\n\005\010\014\022\0012\n\005\010\r\022\0013\n\255\001\n\021\010<\022\rlayer_metrics\n\r\010\034\022\tvariables\n\037\010=\022\033layer_regularization_losses\n\013\010>\022\007metrics\n\n\010?\022\006layers\n\031\010\035\022\025regularization_losses\n\033\010@\022\027non_trainable_variables\n\027\010\036\022\023trainable_variables\n\016\n\005\010\016\022\0010\n\005\010\017\022\0011\n\000\n\016\n\005\010\016\022\0010\n\005\010\017\022\0011\n\255\001\n\021\010A\022\rlayer_metrics\n\r\010 \022\tvariables\n\037\010B\022\033layer_regularization_losses\n\013\010C\022\007metrics\n\n\010D\022\006layers\n\031\010!\022\025regularization_losses\n\033\010E\022\027non_trainable_variables\n\027\010\"\022\023trainable_variables\n\000\n\000\n\000\n\016\n\005\010\021\022\0010\n\005\010\022\022\0011\n\000\nR\n\r\010F\022\tvariables\n\031\010G\022\025regularization_losses\n\027\010H\022\023trainable_variables\n\r\010I\022\tkeras_api\nR\n\r\010J\022\tvariables\n\031\010K\022\025regularization_losses\n\027\010L\022\023trainable_variables\n\r\010M\022\tkeras_api\nR\n\r\010N\022\tvariables\n\031\010O\022\025regularization_losses\n\027\010P\022\023trainable_variables\n\r\010Q\022\tkeras_api\nR\n\r\010R\022\tvariables\n\031\010S\022\025regularization_losses\n\027\010T\022\023trainable_variables\n\r\010U\022\tkeras_api\nR\n\r\010V\022\tvariables\n\031\010W\022\025regularization_losses\n\027\010X\022\023trainable_variables\n\r\010Y\022\tkeras_api\nR\n\r\010Z\022\tvariables\n\031\010[\022\025regularization_losses\n\027\010\\\022\023trainable_variables\n\r\010]\022\tkeras_api\nR\n\r\010^\022\tvariables\n\031\010_\022\025regularization_losses\n\027\010`\022\023trainable_variables\n\r\010a\022\tkeras_api\nR\n\r\010b\022\tvariables\n\031\010c\022\025regularization_losses\n\027\010d\022\023trainable_variables\n\r\010e\022\tkeras_api\nR\n\r\010f\022\tvariables\n\031\010g\022\025regularization_losses\n\027\010h\022\023trainable_variables\n\r\010i\022\tkeras_api\nR\n\r\010j\022\tvariables\n\031\010k\022\025regularization_losses\n\027\010l\022\023trainable_variables\n\r\010m\022\tkeras_api\nR\n\r\010n\022\tvariables\n\031\010o\022\025regularization_losses\n\027\010p\022\023trainable_variables\n\r\010q\022\tkeras_api\nR\n\r\010r\022\tvariables\n\031\010s\022\025regularization_losses\n\027\010t\022\023trainable_variables\n\r\010u\022\tkeras_api\n\000\n\000\n\000\n\255\001\n\021\010v\022\rlayer_metrics\n\r\0105\022\tvariables\n\037\010w\022\033layer_regularization_losses\n\013\010x\022\007metrics\n\n\010y\022\006layers\n\031\0106\022\025regularization_losses\n\033\010z\022\027non_trainable_variables\n\027\0107\022\023trainable_variables\nR\n\r\010{\022\tvariables\n\031\010|\022\025regularization_losses\n\027\010}\022\023trainable_variables\n\r\010~\022\tkeras_api\nk\n\n\010\n\022\006kernel\n\010\010\013\022\004bias\n\r\010\177\022\tvariables\n\032\010\200\001\022\025regularization_losses\n\030\010\201\001\022\023trainable_variables\n\016\010\202\001\022\tkeras_api\nl\n\n\010\014\022\006kernel\n\010\010\r\022\004bias\n\016\010\203\001\022\tvariables\n\032\010\204\001\022\025regularization_losses\n\030\010\205\001\022\023trainable_variables\n\016\010\206\001\022\tkeras_api\n\000\n\000\n\000\nv\n\005\010)\022\0010\n\005\010*\022\0011\n\005\010+\022\0012\n\005\010,\022\0013\n\005\010-\022\0014\n\005\010.\022\0015\n\005\010/\022\0016\n\005\0100\022\0017\n\005\0101\022\0018\n\005\0102\022\0019\n\006\0103\022\00210\n\006\0104\022\00211\n\006\010\032\022\00212\n\006\0109\022\00213\n\006\010:\022\00214\n\006\010;\022\00215\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\262\001\n\022\010\207\001\022\rlayer_metrics\n\r\010F\022\tvariables\n \010\210\001\022\033layer_regularization_losses\n\014\010\211\001\022\007metrics\n\013\010\212\001\022\006layers\n\031\010G\022\025regularization_losses\n\034\010\213\001\022\027non_trainable_variables\n\027\010H\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\214\001\022\rlayer_metrics\n\r\010J\022\tvariables\n \010\215\001\022\033layer_regularization_losses\n\014\010\216\001\022\007metrics\n\013\010\217\001\022\006layers\n\031\010K\022\025regularization_losses\n\034\010\220\001\022\027non_trainable_variables\n\027\010L\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\221\001\022\rlayer_metrics\n\r\010N\022\tvariables\n \010\222\001\022\033layer_regularization_losses\n\014\010\223\001\022\007metrics\n\013\010\224\001\022\006layers\n\031\010O\022\025regularization_losses\n\034\010\225\001\022\027non_trainable_variables\n\027\010P\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\226\001\022\rlayer_metrics\n\r\010R\022\tvariables\n \010\227\001\022\033layer_regularization_losses\n\014\010\230\001\022\007metrics\n\013\010\231\001\022\006layers\n\031\010S\022\025regularization_losses\n\034\010\232\001\022\027non_trainable_variables\n\027\010T\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\233\001\022\rlayer_metrics\n\r\010V\022\tvariables\n \010\234\001\022\033layer_regularization_losses\n\014\010\235\001\022\007metrics\n\013\010\236\001\022\006layers\n\031\010W\022\025regularization_losses\n\034\010\237\001\022\027non_trainable_variables\n\027\010X\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\240\001\022\rlayer_metrics\n\r\010Z\022\tvariables\n \010\241\001\022\033layer_regularization_losses\n\014\010\242\001\022\007metrics\n\013\010\243\001\022\006layers\n\031\010[\022\025regularization_losses\n\034\010\244\001\022\027non_trainable_variables\n\027\010\\\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\245\001\022\rlayer_metrics\n\r\010^\022\tvariables\n \010\246\001\022\033layer_regularization_losses\n\014\010\247\001\022\007metrics\n\013\010\250\001\022\006layers\n\031\010_\022\025regularization_losses\n\034\010\251\001\022\027non_trainable_variables\n\027\010`\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\252\001\022\rlayer_metrics\n\r\010b\022\tvariables\n \010\253\001\022\033layer_regularization_losses\n\014\010\254\001\022\007metrics\n\013\010\255\001\022\006layers\n\031\010c\022\025regularization_losses\n\034\010\256\001\022\027non_trainable_variables\n\027\010d\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\257\001\022\rlayer_metrics\n\r\010f\022\tvariables\n \010\260\001\022\033layer_regularization_losses\n\014\010\261\001\022\007metrics\n\013\010\262\001\022\006layers\n\031\010g\022\025regularization_losses\n\034\010\263\001\022\027non_trainable_variables\n\027\010h\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\264\001\022\rlayer_metrics\n\r\010j\022\tvariables\n \010\265\001\022\033layer_regularization_losses\n\014\010\266\001\022\007metrics\n\013\010\267\001\022\006layers\n\031\010k\022\025regularization_losses\n\034\010\270\001\022\027non_trainable_variables\n\027\010l\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\271\001\022\rlayer_metrics\n\r\010n\022\tvariables\n \010\272\001\022\033layer_regularization_losses\n\014\010\273\001\022\007metrics\n\013\010\274\001\022\006layers\n\031\010o\022\025regularization_losses\n\034\010\275\001\022\027non_trainable_variables\n\027\010p\022\023trainable_variables\n\000\n\000\n\000\n\262\001\n\022\010\276\001\022\rlayer_metrics\n\r\010r\022\tvariables\n \010\277\001\022\033layer_regularization_losses\n\014\010\300\001\022\007metrics\n\013\010\301\001\022\006layers\n\031\010s\022\025regularization_losses\n\034\010\302\001\022\027non_trainable_variables\n\027\010t\022\023trainable_variables\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\262\001\n\022\010\303\001\022\rlayer_metrics\n\r\010{\022\tvariables\n \010\304\001\022\033layer_regularization_losses\n\014\010\305\001\022\007metrics\n\013\010\306\001\022\006layers\n\031\010|\022\025regularization_losses\n\034\010\307\001\022\027non_trainable_variables\n\027\010}\022\023trainable_variables\n\016\n\005\010\n\022\0010\n\005\010\013\022\0011\n\000\n\016\n\005\010\n\022\0010\n\005\010\013\022\0011\n\264\001\n\022\010\310\001\022\rlayer_metrics\n\r\010\177\022\tvariables\n \010\311\001\022\033layer_regularization_losses\n\014\010\312\001\022\007metrics\n\013\010\313\001\022\006layers\n\032\010\200\001\022\025regularization_losses\n\034\010\314\001\022\027non_trainable_variables\n\030\010\201\001\022\023trainable_variables\n\016\n\005\010\014\022\0010\n\005\010\r\022\0011\n\000\n\016\n\005\010\014\022\0010\n\005\010\r\022\0011\n\265\001\n\022\010\315\001\022\rlayer_metrics\n\016\010\203\001\022\tvariables\n \010\316\001\022\033layer_regularization_losses\n\014\010\317\001\022\007metrics\n\013\010\320\001\022\006layers\n\032\010\204\001\022\025regularization_losses\n\034\010\321\001\022\027non_trainable_variables\n\030\010\205\001\022\023trainable_variables\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000\n\000" |
| } |
| } |
| } |
| } |
| node { |
| name: "action_callee_basic_block_count" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_callee_conditionally_executed_blocks" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_callee_users" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_caller_basic_block_count" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_caller_conditionally_executed_blocks" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_caller_users" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_callsite_height" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_cost_estimate" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_discount" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_edge_count" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_inlining_default" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_node_count" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_nr_ctant_params" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_reward" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "action_step_type" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT32 |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| node { |
| name: "StatefulPartitionedCall" |
| op: "StatefulPartitionedCall" |
| input: "action_callee_basic_block_count" |
| input: "action_callee_conditionally_executed_blocks" |
| input: "action_callee_users" |
| input: "action_caller_basic_block_count" |
| input: "action_caller_conditionally_executed_blocks" |
| input: "action_caller_users" |
| input: "action_callsite_height" |
| input: "action_cost_estimate" |
| input: "action_discount" |
| input: "action_edge_count" |
| input: "action_inlining_default" |
| input: "action_node_count" |
| input: "action_nr_ctant_params" |
| input: "action_reward" |
| input: "action_step_type" |
| input: "QNetwork/EncodingNetwork/dense/kernel" |
| input: "QNetwork/EncodingNetwork/dense/bias" |
| input: "QNetwork/EncodingNetwork/dense_1/kernel" |
| input: "QNetwork/EncodingNetwork/dense_1/bias" |
| input: "QNetwork/dense_2/kernel" |
| input: "QNetwork/dense_2/bias" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_FLOAT |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_INT64 |
| type: DT_FLOAT |
| type: DT_INT32 |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| type: DT_INT64 |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| i: 15 |
| i: 16 |
| i: 17 |
| i: 18 |
| i: 19 |
| i: 20 |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference_signature_wrapper_4619026" |
| } |
| } |
| } |
| } |
| node { |
| name: "PartitionedCall" |
| op: "PartitionedCall" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference_signature_wrapper_4619033" |
| } |
| } |
| } |
| } |
| node { |
| name: "StatefulPartitionedCall_1" |
| op: "StatefulPartitionedCall" |
| input: "train_step" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| type: DT_RESOURCE |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| type: DT_INT64 |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| i: 0 |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference_signature_wrapper_4619048" |
| } |
| } |
| } |
| } |
| node { |
| name: "saver_filename" |
| op: "Placeholder" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_STRING |
| } |
| } |
| attr { |
| key: "shape" |
| value { |
| shape { |
| } |
| } |
| } |
| } |
| node { |
| name: "StatefulPartitionedCall_2" |
| op: "StatefulPartitionedCall" |
| input: "saver_filename" |
| input: "train_step/Read/ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense/kernel/Read/ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense/bias/Read/ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense_1/kernel/Read/ReadVariableOp" |
| input: "QNetwork/EncodingNetwork/dense_1/bias/Read/ReadVariableOp" |
| input: "QNetwork/dense_2/kernel/Read/ReadVariableOp" |
| input: "QNetwork/dense_2/bias/Read/ReadVariableOp" |
| input: "Const" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| type: DT_STRING |
| type: DT_INT64 |
| type: DT_FLOAT |
| type: DT_FLOAT |
| type: DT_FLOAT |
| type: DT_FLOAT |
| type: DT_FLOAT |
| type: DT_FLOAT |
| type: DT_STRING |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| type: DT_STRING |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference__traced_save_4619143" |
| } |
| } |
| } |
| } |
| node { |
| name: "StatefulPartitionedCall_3" |
| op: "StatefulPartitionedCall" |
| input: "saver_filename" |
| input: "train_step" |
| input: "QNetwork/EncodingNetwork/dense/kernel" |
| input: "QNetwork/EncodingNetwork/dense/bias" |
| input: "QNetwork/EncodingNetwork/dense_1/kernel" |
| input: "QNetwork/EncodingNetwork/dense_1/bias" |
| input: "QNetwork/dense_2/kernel" |
| input: "QNetwork/dense_2/bias" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| type: DT_STRING |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| type: DT_RESOURCE |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| type: DT_STRING |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference__traced_restore_4619176" |
| } |
| } |
| } |
| } |
| library { |
| function { |
| signature { |
| name: "__inference_signature_wrapper_4619048" |
| input_arg { |
| name: "unknown" |
| type: DT_RESOURCE |
| } |
| output_arg { |
| name: "identity" |
| type: DT_INT64 |
| } |
| is_stateful: true |
| control_output: "StatefulPartitionedCall" |
| } |
| node_def { |
| name: "StatefulPartitionedCall" |
| op: "StatefulPartitionedCall" |
| input: "unknown" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| type: DT_RESOURCE |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| type: DT_INT64 |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| i: 0 |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference_function_with_signature_4619040" |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "StatefulPartitionedCall" |
| } |
| } |
| node_def { |
| name: "Identity" |
| op: "Identity" |
| input: "StatefulPartitionedCall:output:0" |
| input: "^StatefulPartitionedCall" |
| attr { |
| key: "T" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "Identity" |
| } |
| } |
| ret { |
| key: "identity" |
| value: "Identity:output:0" |
| } |
| attr { |
| key: "_input_shapes" |
| value { |
| list { |
| shape { |
| unknown_rank: true |
| } |
| } |
| } |
| } |
| control_ret { |
| key: "StatefulPartitionedCall" |
| value: "StatefulPartitionedCall" |
| } |
| arg_attr { |
| key: 0 |
| value { |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| function { |
| signature { |
| name: "__inference_function_with_signature_4619029" |
| } |
| node_def { |
| name: "PartitionedCall" |
| op: "PartitionedCall" |
| attr { |
| key: "Tin" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "Tout" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_collective_manager_ids" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "_read_only_resource_inputs" |
| value { |
| list { |
| } |
| } |
| } |
| attr { |
| key: "config_proto" |
| value { |
| s: "\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0012\005*\0010J\0008\001" |
| } |
| } |
| attr { |
| key: "f" |
| value { |
| func { |
| name: "__inference_function_722" |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "PartitionedCall" |
| } |
| } |
| attr { |
| key: "_input_shapes" |
| value { |
| } |
| } |
| } |
| function { |
| signature { |
| name: "__inference_action_931" |
| input_arg { |
| name: "time_step" |
| type: DT_INT32 |
| } |
| input_arg { |
| name: "time_step_1" |
| type: DT_FLOAT |
| } |
| input_arg { |
| name: "time_step_2" |
| type: DT_FLOAT |
| } |
| input_arg { |
| name: "time_step_3" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_4" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_5" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_6" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_7" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_8" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_9" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_10" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_11" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_12" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_13" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "time_step_14" |
| type: DT_INT64 |
| } |
| input_arg { |
| name: "qnetwork_encodingnetwork_dense_matmul_readvariableop_resource" |
| type: DT_RESOURCE |
| } |
| input_arg { |
| name: "qnetwork_encodingnetwork_dense_biasadd_readvariableop_resource" |
| type: DT_RESOURCE |
| } |
| input_arg { |
| name: "qnetwork_encodingnetwork_dense_1_matmul_readvariableop_resource" |
| type: DT_RESOURCE |
| } |
| input_arg { |
| name: "qnetwork_encodingnetwork_dense_1_biasadd_readvariableop_resource" |
| type: DT_RESOURCE |
| } |
| input_arg { |
| name: "qnetwork_dense_2_matmul_readvariableop_resource" |
| type: DT_RESOURCE |
| } |
| input_arg { |
| name: "qnetwork_dense_2_biasadd_readvariableop_resource" |
| type: DT_RESOURCE |
| } |
| output_arg { |
| name: "identity" |
| type: DT_INT64 |
| } |
| is_stateful: true |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim" |
| op: "Const" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT32 |
| } |
| } |
| attr { |
| key: "value" |
| value { |
| tensor { |
| dtype: DT_INT32 |
| tensor_shape { |
| } |
| int_val: -1 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims" |
| op: "ExpandDims" |
| input: "time_step_3" |
| input: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims/dim:output:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/Bucketize" |
| op: "Bucketize" |
| input: "QNetwork/EncodingNetwork/lambda/expand_dims/ExpandDims:output:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "boundaries" |
| value { |
| list { |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 1 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 3 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 5 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 7 |
| f: 7 |
| f: 7 |
| f: 7 |
| f: 7 |
| f: 7 |
| f: 7 |
| f: 7 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 9 |
| f: 9 |
| f: 9 |
| f: 9 |
| f: 10 |
| f: 10 |
| f: 11 |
| f: 12 |
| f: 13 |
| f: 14 |
| f: 14 |
| f: 14 |
| f: 16 |
| f: 17 |
| f: 19 |
| f: 23 |
| f: 27 |
| f: 39 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/Bucketize" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/Cast" |
| op: "Cast" |
| input: "QNetwork/EncodingNetwork/lambda/Bucketize:output:0" |
| attr { |
| key: "DstT" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "SrcT" |
| value { |
| type: DT_INT32 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/Cast" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/truediv/y" |
| op: "Const" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "value" |
| value { |
| tensor { |
| dtype: DT_FLOAT |
| tensor_shape { |
| } |
| float_val: 999 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/truediv/y" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/truediv" |
| op: "RealDiv" |
| input: "QNetwork/EncodingNetwork/lambda/Cast:y:0" |
| input: "QNetwork/EncodingNetwork/lambda/truediv/y:output:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/truediv" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/Sqrt" |
| op: "Sqrt" |
| input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/Sqrt" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/mul" |
| op: "Mul" |
| input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" |
| input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/mul" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/concat/axis" |
| op: "Const" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT32 |
| } |
| } |
| attr { |
| key: "value" |
| value { |
| tensor { |
| dtype: DT_INT32 |
| tensor_shape { |
| } |
| int_val: -1 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/concat/axis" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda/concat" |
| op: "ConcatV2" |
| input: "QNetwork/EncodingNetwork/lambda/truediv:z:0" |
| input: "QNetwork/EncodingNetwork/lambda/Sqrt:y:0" |
| input: "QNetwork/EncodingNetwork/lambda/mul:z:0" |
| input: "QNetwork/EncodingNetwork/lambda/concat/axis:output:0" |
| attr { |
| key: "N" |
| value { |
| i: 3 |
| } |
| } |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 3 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda/concat" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim" |
| op: "Const" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT32 |
| } |
| } |
| attr { |
| key: "value" |
| value { |
| tensor { |
| dtype: DT_INT32 |
| tensor_shape { |
| } |
| int_val: -1 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims" |
| op: "ExpandDims" |
| input: "time_step_4" |
| input: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims/dim:output:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/Bucketize" |
| op: "Bucketize" |
| input: "QNetwork/EncodingNetwork/lambda_1/expand_dims/ExpandDims:output:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_INT64 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| attr { |
| key: "boundaries" |
| value { |
| list { |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 0 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 2 |
| f: 3 |
| f: 3 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 4 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 6 |
| f: 7 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 8 |
| f: 9 |
| f: 10 |
| f: 10 |
| f: 10 |
| f: 12 |
| f: 12 |
| f: 12 |
| f: 14 |
| f: 14 |
| f: 18 |
| f: 20 |
| f: 23 |
| f: 30 |
| f: 41 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/Bucketize" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/Cast" |
| op: "Cast" |
| input: "QNetwork/EncodingNetwork/lambda_1/Bucketize:output:0" |
| attr { |
| key: "DstT" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "SrcT" |
| value { |
| type: DT_INT32 |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/Cast" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/truediv/y" |
| op: "Const" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "value" |
| value { |
| tensor { |
| dtype: DT_FLOAT |
| tensor_shape { |
| } |
| float_val: 999 |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/truediv/y" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/truediv" |
| op: "RealDiv" |
| input: "QNetwork/EncodingNetwork/lambda_1/Cast:y:0" |
| input: "QNetwork/EncodingNetwork/lambda_1/truediv/y:output:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/truediv" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/Sqrt" |
| op: "Sqrt" |
| input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/Sqrt" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/mul" |
| op: "Mul" |
| input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" |
| input: "QNetwork/EncodingNetwork/lambda_1/truediv:z:0" |
| attr { |
| key: "T" |
| value { |
| type: DT_FLOAT |
| } |
| } |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| dim { |
| size: 1 |
| } |
| dim { |
| size: 1 |
| } |
| } |
| } |
| } |
| } |
| experimental_debug_info { |
| original_node_names: "QNetwork/EncodingNetwork/lambda_1/mul" |
| } |
| } |
| node_def { |
| name: "QNetwork/EncodingNetwork/lambda_1/concat/axis" |
| op: "Const" |
| attr { |
| key: "_output_shapes" |
| value { |
| list { |
| shape { |
| } |
| } |
| } |
| } |
| attr { |
| key: "dtype" |
| value { |
| type: DT_INT32 |
| } |
|
|