| //===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements utilities for interfacing with tensorflow C APIs. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Config/config.h" |
| #if defined(LLVM_HAVE_TF_API) |
| |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/JSON.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include "tensorflow/c/c_api.h" |
| #include "tensorflow/c/c_api_experimental.h" |
| |
| #include <cassert> |
| #include <numeric> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>; |
| using TFSessionOptionsPtr = |
| std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>; |
| using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>; |
| |
| struct TFInitializer { |
| TFInitializer() { |
| assert(!IsInitialized && "TFInitialized should be called only once"); |
| int Argc = 1; |
| const char *Name = ""; |
| const char **NamePtr = &Name; |
| TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr)); |
| IsInitialized = true; |
| } |
| bool IsInitialized = false; |
| }; |
| |
| llvm::ManagedStatic<TFInitializer> TFLibInitializer; |
| |
| bool ensureInitTF() { return TFLibInitializer->IsInitialized; } |
| |
| TFGraphPtr createTFGraph() { |
| return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph); |
| } |
| |
| TFStatusPtr createTFStatus() { |
| return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus); |
| } |
| |
| TFSessionOptionsPtr createTFSessionOptions() { |
| return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions); |
| } |
| |
| /// Write the values of one tensor as a list. |
| template <typename T> |
| void writeTensorValues(raw_ostream &OutFile, const char *TensorData, |
| size_t ElemCount) { |
| OutFile << "["; |
| const T *TypedData = reinterpret_cast<const T *>(TensorData); |
| ListSeparator LS; |
| for (size_t I = 0; I < ElemCount; ++I) |
| OutFile << LS << TypedData[I]; |
| OutFile << "]"; |
| } |
| |
| /// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs. |
| /// The tensors are assumed to be stored contiguously, in row-major format, |
| /// in the TensorData buffer. Each tensor has the shape given by Spec. The |
| /// feature name in the output is either the provided LoggingName, if |
| /// specified, otherwise it's the name of the tensor (as given by Spec). |
| void writeRawTensorsAsFeatureLists(raw_ostream &OutFile, |
| const LoggedFeatureSpec &LoggedSpec, |
| const char *TensorData, size_t TensorCount, |
| bool FinalReward = false) { |
| const char *FieldName = "<invalid>"; |
| std::function<void(const char *)> ValueWriter; |
| const auto &Spec = LoggedSpec.Spec; |
| // The 'Feature' protobuf only has 3 possible fields: float_list, |
| // int64_list, or bytes_list, so we capture int32 values as int64. We don't |
| // support any other types. |
| if (Spec.isElementType<int64_t>()) { |
| FieldName = "int64_list"; |
| ValueWriter = [&](const char *Data) { |
| writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount()); |
| }; |
| } else if (Spec.isElementType<int32_t>()) { |
| FieldName = "int64_list"; |
| ValueWriter = [&](const char *Data) { |
| writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount()); |
| }; |
| |
| } else if (Spec.isElementType<float>()) { |
| FieldName = "float_list"; |
| ValueWriter = [&](const char *Data) { |
| writeTensorValues<float>(OutFile, Data, Spec.getElementCount()); |
| }; |
| |
| } else { |
| llvm_unreachable("Unsupported tensor type."); |
| } |
| |
| OutFile << " feature_list: {\n"; |
| OutFile << " key: " |
| << "\"" |
| << (LoggedSpec.LoggingName ? *LoggedSpec.LoggingName : Spec.name()) |
| << "\" "; |
| OutFile << "value: {\n"; |
| size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize(); |
| |
| auto WriteFeatureProto = [&](const char *P) { |
| OutFile << " feature: { " << FieldName << ": { value: "; |
| ValueWriter(P); |
| OutFile << " } }\n"; |
| }; |
| |
| const char *CurrentTensor = TensorData; |
| static int64_t Zero = 0; |
| // Write all but the last value. If this is the final reward, don't increment |
| // the CurrentTensor, and just write 0. |
| for (size_t I = 0; I < TensorCount - 1; ++I) { |
| if (FinalReward) |
| WriteFeatureProto(reinterpret_cast<const char *>(&Zero)); |
| else { |
| WriteFeatureProto(CurrentTensor); |
| CurrentTensor += TensorByteSize; |
| } |
| } |
| |
| WriteFeatureProto(CurrentTensor); |
| |
| OutFile << " }\n"; |
| OutFile << " }\n"; |
| } |
| } // namespace |
| |
| namespace llvm { |
| class EvaluationResultImpl { |
| public: |
| EvaluationResultImpl(size_t OutputSize) |
| : OutputSize(OutputSize), Output(OutputSize){}; |
| |
| ~EvaluationResultImpl() { |
| for (auto *P : Output) |
| if (P) |
| TF_DeleteTensor(P); |
| } |
| |
| EvaluationResultImpl(const EvaluationResultImpl &) = delete; |
| EvaluationResultImpl(EvaluationResultImpl &&Other) = delete; |
| std::vector<TF_Tensor *> &getOutput() { return Output; } |
| |
| private: |
| const size_t OutputSize; |
| std::vector<TF_Tensor *> Output; |
| }; |
| |
| size_t TensorSpec::getElementByteSize() const { |
| return TF_DataTypeSize(static_cast<TF_DataType>(TypeIndex)); |
| } |
| |
| TensorSpec::TensorSpec(const std::string &Name, int Port, int TypeIndex, |
| const std::vector<int64_t> &Shape) |
| : Name(Name), Port(Port), TypeIndex(TypeIndex), Shape(Shape), |
| ElementCount(std::accumulate(Shape.begin(), Shape.end(), 1, |
| std::multiplies<int64_t>())) {} |
| |
| Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx, |
| const json::Value &Value) { |
| auto EmitError = [&](const llvm::Twine &Message) -> Optional<TensorSpec> { |
| std::string S; |
| llvm::raw_string_ostream OS(S); |
| OS << Value; |
| Ctx.emitError("Unable to parse JSON Value as spec (" + Message + "): " + S); |
| return None; |
| }; |
| // FIXME: accept a Path as a parameter, and use it for error reporting. |
| json::Path::Root Root("tensor_spec"); |
| json::ObjectMapper Mapper(Value, Root); |
| if (!Mapper) |
| return EmitError("Value is not a dict"); |
| |
| std::string TensorName; |
| int TensorPort = -1; |
| std::string TensorType; |
| std::vector<int64_t> TensorShape; |
| |
| if (!Mapper.map<std::string>("name", TensorName)) |
| return EmitError("'name' property not present or not a string"); |
| if (!Mapper.map<std::string>("type", TensorType)) |
| return EmitError("'type' property not present or not a string"); |
| if (!Mapper.map<int>("port", TensorPort)) |
| return EmitError("'port' property not present or not an int"); |
| if (!Mapper.map<std::vector<int64_t>>("shape", TensorShape)) |
| return EmitError("'shape' property not present or not an int array"); |
| |
| #define PARSE_TYPE(T, E) \ |
| if (TensorType == #T) \ |
| return TensorSpec::createSpec<T>(TensorName, TensorShape, TensorPort); |
| TFUTILS_SUPPORTED_TYPES(PARSE_TYPE) |
| #undef PARSE_TYPE |
| return None; |
| } |
| |
| Optional<std::vector<LoggedFeatureSpec>> |
| loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName, |
| StringRef ModelPath, StringRef SpecFileOverride) { |
| SmallVector<char, 128> OutputSpecsPath; |
| StringRef FileName = SpecFileOverride; |
| if (FileName.empty()) { |
| llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json"); |
| FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()}; |
| } |
| |
| auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName); |
| if (!BufferOrError) { |
| Ctx.emitError("Error opening output specs file: " + FileName + " : " + |
| BufferOrError.getError().message()); |
| return None; |
| } |
| auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer()); |
| if (!ParsedJSONValues) { |
| Ctx.emitError("Could not parse specs file: " + FileName); |
| return None; |
| } |
| auto ValuesArray = ParsedJSONValues->getAsArray(); |
| if (!ValuesArray) { |
| Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, " |
| "logging_name:<name>} dictionaries"); |
| return None; |
| } |
| std::vector<LoggedFeatureSpec> Ret; |
| for (const auto &Value : *ValuesArray) |
| if (const auto *Obj = Value.getAsObject()) |
| if (const auto *SpecPart = Obj->get("tensor_spec")) |
| if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart)) |
| if (auto LoggingName = Obj->getString("logging_name")) { |
| if (!TensorSpec->isElementType<int64_t>() && |
| !TensorSpec->isElementType<int32_t>() && |
| !TensorSpec->isElementType<float>()) { |
| Ctx.emitError( |
| "Only int64, int32, and float tensors are supported. " |
| "Found unsupported type for tensor named " + |
| TensorSpec->name()); |
| return None; |
| } |
| Ret.push_back({*TensorSpec, LoggingName->str()}); |
| } |
| |
| if (ValuesArray->size() != Ret.size()) { |
| Ctx.emitError( |
| "Unable to parse output spec. It should be a json file containing an " |
| "array of dictionaries. Each dictionary must have a 'tensor_spec' key, " |
| "with a json object describing a TensorSpec; and a 'logging_name' key, " |
| "which is a string to use as name when logging this tensor in the " |
| "training log."); |
| return None; |
| } |
| if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) { |
| Ctx.emitError("The first output spec must describe the decision tensor, " |
| "and must have the logging_name " + |
| StringRef(ExpectedDecisionName)); |
| return None; |
| } |
| return Ret; |
| } |
| |
| class TFModelEvaluatorImpl { |
| public: |
| TFModelEvaluatorImpl(StringRef SavedModelPath, |
| const std::vector<TensorSpec> &InputSpecs, |
| function_ref<TensorSpec(size_t)> GetOutputSpecs, |
| size_t OutputSpecsSize, const char *Tags); |
| |
| bool isValid() const { return IsValid; } |
| size_t OutputSize() const { return OutputFeed.size(); } |
| |
| void evaluate(TF_Tensor **Output, TF_Status *Status) { |
| TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), |
| Input.size(), OutputFeed.data(), Output, OutputFeed.size(), |
| nullptr, 0, nullptr, Status); |
| } |
| |
| void initInput(size_t Index, TF_DataType Type, |
| const std::vector<int64_t> &Dimensions); |
| const std::vector<TF_Tensor *> &getInput() const { return Input; } |
| |
| ~TFModelEvaluatorImpl(); |
| |
| private: |
| /// The objects necessary for carrying out an evaluation of the SavedModel. |
| /// They are expensive to set up, and we maintain them accross all the |
| /// evaluations of the model. |
| TF_Session *Session = nullptr; |
| TFGraphPtr Graph; |
| TFSessionOptionsPtr Options; |
| |
| /// The specification of the input nodes. |
| std::vector<TF_Output> InputFeed; |
| |
| /// The input tensors. They must match by index of the corresponding InputFeed |
| /// value. We set up the tensors once and just mutate theirs scalars before |
| /// each evaluation. The input tensors keep their value after an evaluation. |
| std::vector<TF_Tensor *> Input; |
| |
| /// The specification of the output nodes. When evaluating, the tensors in the |
| /// output tensor vector must match by index the corresponding element in the |
| /// OutputFeed. |
| std::vector<TF_Output> OutputFeed; |
| |
| void invalidate() { IsValid = false; } |
| |
| bool IsValid = true; |
| |
| /// Reusable utility for ensuring we can bind the requested Name to a node in |
| /// the SavedModel Graph. |
| bool checkReportAndInvalidate(const TF_Output &Output, |
| const TensorSpec &OutputSpec); |
| }; |
| } // namespace llvm |
| |
| TFModelEvaluatorImpl::TFModelEvaluatorImpl( |
| StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs, |
| function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize, |
| const char *Tags = "serve") |
| : Graph(createTFGraph()), Options(createTFSessionOptions()), |
| InputFeed(InputSpecs.size()), Input(InputSpecs.size()), |
| OutputFeed(OutputSpecsSize) { |
| if (!ensureInitTF()) { |
| errs() << "Tensorflow should have been initialized"; |
| return; |
| } |
| auto Status = createTFStatus(); |
| |
| Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr, |
| SavedModelPath.str().c_str(), &Tags, 1, |
| Graph.get(), nullptr, Status.get()); |
| if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { |
| errs() << TF_Message(Status.get()); |
| invalidate(); |
| } |
| for (size_t I = 0; I < InputSpecs.size(); ++I) { |
| auto &InputSpec = InputSpecs[I]; |
| InputFeed[I] = { |
| TF_GraphOperationByName(Graph.get(), (InputSpec.name()).c_str()), |
| InputSpec.port()}; |
| if (!checkReportAndInvalidate(InputFeed[I], InputSpec)) |
| return; |
| initInput(I, static_cast<TF_DataType>(InputSpec.typeIndex()), |
| InputSpec.shape()); |
| } |
| for (size_t I = 0; I < OutputSpecsSize; ++I) { |
| auto OutputSpec = GetOutputSpecs(I); |
| OutputFeed[I] = { |
| TF_GraphOperationByName(Graph.get(), (OutputSpec.name()).c_str()), |
| OutputSpec.port()}; |
| if (!checkReportAndInvalidate(OutputFeed[I], OutputSpec)) |
| return; |
| } |
| } |
| |
| TFModelEvaluator::TFModelEvaluator( |
| StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs, |
| function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize, |
| const char *Tags) |
| : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs, |
| OutputSpecsSize, Tags)) { |
| if (!Impl->isValid()) |
| Impl.reset(); |
| } |
| |
| TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath, |
| const std::vector<TensorSpec> &InputSpecs, |
| const std::vector<TensorSpec> &OutputSpecs, |
| const char *Tags) |
| : TFModelEvaluator( |
| SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; }, |
| OutputSpecs.size(), Tags) {} |
| |
| TFModelEvaluatorImpl::~TFModelEvaluatorImpl() { |
| for (auto *T : Input) { |
| TF_DeleteTensor(T); |
| } |
| if (Session == nullptr) |
| return; |
| auto Status = createTFStatus(); |
| TF_DeleteSession(Session, Status.get()); |
| Session = nullptr; |
| if (TF_GetCode(Status.get()) != TF_Code::TF_OK) |
| errs() << "Could not delete TF session"; |
| } |
| |
| bool TFModelEvaluatorImpl::checkReportAndInvalidate( |
| const TF_Output &Output, const TensorSpec &OutputSpec) { |
| if (Output.oper) |
| return true; |
| errs() << "Could not find TF_Output named: " + OutputSpec.name(); |
| IsValid = false; |
| return IsValid; |
| } |
| |
| Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() { |
| if (!isValid()) |
| return None; |
| std::unique_ptr<EvaluationResultImpl> Ret = |
| std::make_unique<EvaluationResultImpl>(Impl->OutputSize()); |
| auto Status = createTFStatus(); |
| Impl->evaluate(Ret->getOutput().data(), Status.get()); |
| if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { |
| errs() << TF_Message(Status.get()); |
| Impl.reset(); |
| return None; |
| } |
| return EvaluationResult(std::move(Ret)); |
| } |
| |
| void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type, |
| const std::vector<int64_t> &Dimensions) { |
| int64_t TotalSize = TF_DataTypeSize(Type); |
| for (auto &D : Dimensions) |
| TotalSize *= D; |
| |
| Input[Index] = |
| TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize); |
| std::memset(TF_TensorData(Input[Index]), 0, TotalSize); |
| } |
| |
| void *TFModelEvaluator::getUntypedInput(size_t Index) { |
| return TF_TensorData(Impl->getInput()[Index]); |
| } |
| |
| TFModelEvaluator::EvaluationResult::EvaluationResult( |
| std::unique_ptr<EvaluationResultImpl> Impl) |
| : Impl(std::move(Impl)) {} |
| |
| TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other) |
| : Impl(std::move(Other.Impl)) {} |
| |
| TFModelEvaluator::EvaluationResult & |
| TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) { |
| Impl = std::move(Other.Impl); |
| return *this; |
| } |
| |
| void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) { |
| return TF_TensorData(Impl->getOutput()[Index]); |
| } |
| |
| const void * |
| TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const { |
| return TF_TensorData(Impl->getOutput()[Index]); |
| } |
| |
| #define TFUTILS_GETDATATYPE_IMPL(T, E) \ |
| template <> int TensorSpec::getDataType<T>() { return E; } |
| |
| TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL) |
| |
| #undef TFUTILS_GETDATATYPE_IMPL |
| |
| TFModelEvaluator::EvaluationResult::~EvaluationResult() {} |
| TFModelEvaluator::~TFModelEvaluator() {} |
| |
| void Logger::print(raw_ostream &OS) { |
| if (RawLogData.empty()) |
| return; |
| if (RawLogData[0].empty()) |
| return; |
| size_t Tensor0Size = FeatureSpecs[0].Spec.getElementCount() * |
| FeatureSpecs[0].Spec.getElementByteSize(); |
| size_t NumberOfRecords = RawLogData[0].size() / Tensor0Size; |
| if (NumberOfRecords == 0) |
| return; |
| size_t RewardSize = |
| RewardSpec.getElementCount() * RewardSpec.getElementByteSize(); |
| size_t NumberOfRewards = RawLogData.back().size() / RewardSize; |
| |
| OS << "feature_lists: {\n"; |
| for (size_t I = 0; I < FeatureSpecs.size(); ++I) |
| writeRawTensorsAsFeatureLists(OS, FeatureSpecs[I], RawLogData[I].data(), |
| NumberOfRecords); |
| |
| if (IncludeReward) |
| writeRawTensorsAsFeatureLists(OS, {RewardSpec, None}, |
| RawLogData.back().data(), NumberOfRecords, |
| NumberOfRewards == 1); |
| |
| OS << "}\n"; |
| } |
| #endif // defined(LLVM_HAVE_TF_API) |