blob: 874aa32acdc0c5c979e0320c2db3e151c3a29f35 [file] [log] [blame]
//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file declares classes for handling the YAML representation
/// of ELF.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECTYAML_ELFYAML_H
#define LLVM_OBJECTYAML_ELFYAML_H
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/ObjectYAML/DWARFYAML.h"
#include "llvm/ObjectYAML/YAML.h"
#include "llvm/Support/YAMLTraits.h"
#include <cstdint>
#include <memory>
#include <vector>
namespace llvm {
namespace ELFYAML {
StringRef dropUniqueSuffix(StringRef S);
std::string appendUniqueSuffix(StringRef Name, const Twine& Msg);
// These types are invariant across 32/64-bit ELF, so for simplicity just
// directly give them their exact sizes. We don't need to worry about
// endianness because these are just the types in the YAMLIO structures,
// and are appropriately converted to the necessary endianness when
// reading/generating binary object files.
// The naming of these types is intended to be ELF_PREFIX, where PREFIX is
// the common prefix of the respective constants. E.g. ELF_EM corresponds
// to the `e_machine` constants, like `EM_X86_64`.
// In the future, these would probably be better suited by C++11 enum
// class's with appropriate fixed underlying type.
LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI)
// Just use 64, since it can hold 32-bit values too.
LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF)
// Just use 64, since it can hold 32-bit values too.
LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_DYNTAG)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS)
// Just use 64, since it can hold 32-bit values too.
LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF)
LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STB)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_NT)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG)
LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA)
LLVM_YAML_STRONG_TYPEDEF(StringRef, YAMLFlowString)
LLVM_YAML_STRONG_TYPEDEF(int64_t, YAMLIntUInt)
template <class ELFT>
unsigned getDefaultShEntSize(unsigned EMachine, ELF_SHT SecType,
StringRef SecName) {
if (EMachine == ELF::EM_MIPS && SecType == ELF::SHT_MIPS_ABIFLAGS)
return sizeof(object::Elf_Mips_ABIFlags<ELFT>);
switch (SecType) {
case ELF::SHT_SYMTAB:
case ELF::SHT_DYNSYM:
return sizeof(typename ELFT::Sym);
case ELF::SHT_GROUP:
return sizeof(typename ELFT::Word);
case ELF::SHT_REL:
return sizeof(typename ELFT::Rel);
case ELF::SHT_RELA:
return sizeof(typename ELFT::Rela);
case ELF::SHT_RELR:
return sizeof(typename ELFT::Relr);
case ELF::SHT_DYNAMIC:
return sizeof(typename ELFT::Dyn);
case ELF::SHT_HASH:
return sizeof(typename ELFT::Word);
case ELF::SHT_SYMTAB_SHNDX:
return sizeof(typename ELFT::Word);
case ELF::SHT_GNU_versym:
return sizeof(typename ELFT::Half);
case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
return sizeof(object::Elf_CGProfile_Impl<ELFT>);
default:
if (SecName == ".debug_str")
return 1;
return 0;
}
}
// For now, hardcode 64 bits everywhere that 32 or 64 would be needed
// since 64-bit can hold 32-bit values too.
struct FileHeader {
ELF_ELFCLASS Class;
ELF_ELFDATA Data;
ELF_ELFOSABI OSABI;
llvm::yaml::Hex8 ABIVersion;
ELF_ET Type;
Optional<ELF_EM> Machine;
ELF_EF Flags;
llvm::yaml::Hex64 Entry;
Optional<llvm::yaml::Hex64> EPhOff;
Optional<llvm::yaml::Hex16> EPhEntSize;
Optional<llvm::yaml::Hex16> EPhNum;
Optional<llvm::yaml::Hex16> EShEntSize;
Optional<llvm::yaml::Hex64> EShOff;
Optional<llvm::yaml::Hex16> EShNum;
Optional<llvm::yaml::Hex16> EShStrNdx;
};
struct SectionHeader {
StringRef Name;
};
struct Symbol {
StringRef Name;
ELF_STT Type;
Optional<StringRef> Section;
Optional<ELF_SHN> Index;
ELF_STB Binding;
Optional<llvm::yaml::Hex64> Value;
Optional<llvm::yaml::Hex64> Size;
Optional<uint8_t> Other;
Optional<uint32_t> StName;
};
struct SectionOrType {
StringRef sectionNameOrType;
};
struct DynamicEntry {
ELF_DYNTAG Tag;
llvm::yaml::Hex64 Val;
};
struct BBAddrMapEntry {
struct BBEntry {
llvm::yaml::Hex64 AddressOffset;
llvm::yaml::Hex64 Size;
llvm::yaml::Hex64 Metadata;
};
llvm::yaml::Hex64 Address;
Optional<uint64_t> NumBlocks;
Optional<std::vector<BBEntry>> BBEntries;
};
struct StackSizeEntry {
llvm::yaml::Hex64 Address;
llvm::yaml::Hex64 Size;
};
struct NoteEntry {
StringRef Name;
yaml::BinaryRef Desc;
ELF_NT Type;
};
struct Chunk {
enum class ChunkKind {
Dynamic,
Group,
RawContent,
Relocation,
Relr,
NoBits,
Note,
Hash,
GnuHash,
Verdef,
Verneed,
StackSizes,
SymtabShndxSection,
Symver,
ARMIndexTable,
MipsABIFlags,
Addrsig,
LinkerOptions,
DependentLibraries,
CallGraphProfile,
BBAddrMap,
// Special chunks.
SpecialChunksStart,
Fill = SpecialChunksStart,
SectionHeaderTable,
};
ChunkKind Kind;
StringRef Name;
Optional<llvm::yaml::Hex64> Offset;
// Usually chunks are not created implicitly, but rather loaded from YAML.
// This flag is used to signal whether this is the case or not.
bool IsImplicit;
Chunk(ChunkKind K, bool Implicit) : Kind(K), IsImplicit(Implicit) {}
virtual ~Chunk();
};
struct Section : public Chunk {
ELF_SHT Type;
Optional<ELF_SHF> Flags;
Optional<llvm::yaml::Hex64> Address;
Optional<StringRef> Link;
llvm::yaml::Hex64 AddressAlign;
Optional<llvm::yaml::Hex64> EntSize;
Optional<yaml::BinaryRef> Content;
Optional<llvm::yaml::Hex64> Size;
// Holds the original section index.
unsigned OriginalSecNdx;
Section(ChunkKind Kind, bool IsImplicit = false) : Chunk(Kind, IsImplicit) {}
static bool classof(const Chunk *S) {
return S->Kind < ChunkKind::SpecialChunksStart;
}
// Some derived sections might have their own special entries. This method
// returns a vector of <entry name, is used> pairs. It is used for section
// validation.
virtual std::vector<std::pair<StringRef, bool>> getEntries() const {
return {};
};
// The following members are used to override section fields which is
// useful for creating invalid objects.
// This can be used to override the sh_addralign field.
Optional<llvm::yaml::Hex64> ShAddrAlign;
// This can be used to override the offset stored in the sh_name field.
// It does not affect the name stored in the string table.
Optional<llvm::yaml::Hex64> ShName;
// This can be used to override the sh_offset field. It does not place the
// section data at the offset specified.
Optional<llvm::yaml::Hex64> ShOffset;
// This can be used to override the sh_size field. It does not affect the
// content written.
Optional<llvm::yaml::Hex64> ShSize;
// This can be used to override the sh_flags field.
Optional<llvm::yaml::Hex64> ShFlags;
// This can be used to override the sh_type field. It is useful when we
// want to use specific YAML keys for a section of a particular type to
// describe the content, but still want to have a different final type
// for the section.
Optional<ELF_SHT> ShType;
};
// Fill is a block of data which is placed outside of sections. It is
// not present in the sections header table, but it might affect the output file
// size and program headers produced.
struct Fill : Chunk {
Optional<yaml::BinaryRef> Pattern;
llvm::yaml::Hex64 Size;
Fill() : Chunk(ChunkKind::Fill, /*Implicit=*/false) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Fill; }
};
struct SectionHeaderTable : Chunk {
SectionHeaderTable(bool IsImplicit)
: Chunk(ChunkKind::SectionHeaderTable, IsImplicit) {}
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::SectionHeaderTable;
}
Optional<std::vector<SectionHeader>> Sections;
Optional<std::vector<SectionHeader>> Excluded;
Optional<bool> NoHeaders;
size_t getNumHeaders(size_t SectionsNum) const {
if (IsImplicit || isDefault())
return SectionsNum;
if (NoHeaders)
return (*NoHeaders) ? 0 : SectionsNum;
return (Sections ? Sections->size() : 0) + /*Null section*/ 1;
}
bool isDefault() const { return !Sections && !Excluded && !NoHeaders; }
static constexpr StringRef TypeStr = "SectionHeaderTable";
};
struct BBAddrMapSection : Section {
Optional<std::vector<BBAddrMapEntry>> Entries;
BBAddrMapSection() : Section(ChunkKind::BBAddrMap) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::BBAddrMap;
}
};
struct StackSizesSection : Section {
Optional<std::vector<StackSizeEntry>> Entries;
StackSizesSection() : Section(ChunkKind::StackSizes) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::StackSizes;
}
static bool nameMatches(StringRef Name) {
return Name == ".stack_sizes";
}
};
struct DynamicSection : Section {
Optional<std::vector<DynamicEntry>> Entries;
DynamicSection() : Section(ChunkKind::Dynamic) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Dynamic; }
};
struct RawContentSection : Section {
Optional<llvm::yaml::Hex64> Info;
RawContentSection() : Section(ChunkKind::RawContent) {}
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::RawContent;
}
// Is used when a content is read as an array of bytes.
Optional<std::vector<uint8_t>> ContentBuf;
};
struct NoBitsSection : Section {
NoBitsSection() : Section(ChunkKind::NoBits) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::NoBits; }
};
struct NoteSection : Section {
Optional<std::vector<ELFYAML::NoteEntry>> Notes;
NoteSection() : Section(ChunkKind::Note) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Notes", Notes.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Note; }
};
struct HashSection : Section {
Optional<std::vector<uint32_t>> Bucket;
Optional<std::vector<uint32_t>> Chain;
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Bucket", Bucket.hasValue()}, {"Chain", Chain.hasValue()}};
};
// The following members are used to override section fields.
// This is useful for creating invalid objects.
Optional<llvm::yaml::Hex64> NBucket;
Optional<llvm::yaml::Hex64> NChain;
HashSection() : Section(ChunkKind::Hash) {}
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Hash; }
};
struct GnuHashHeader {
// The number of hash buckets.
// Not used when dumping the object, but can be used to override
// the real number of buckets when emiting an object from a YAML document.
Optional<llvm::yaml::Hex32> NBuckets;
// Index of the first symbol in the dynamic symbol table
// included in the hash table.
llvm::yaml::Hex32 SymNdx;
// The number of words in the Bloom filter.
// Not used when dumping the object, but can be used to override the real
// number of words in the Bloom filter when emiting an object from a YAML
// document.
Optional<llvm::yaml::Hex32> MaskWords;
// A shift constant used by the Bloom filter.
llvm::yaml::Hex32 Shift2;
};
struct GnuHashSection : Section {
Optional<GnuHashHeader> Header;
Optional<std::vector<llvm::yaml::Hex64>> BloomFilter;
Optional<std::vector<llvm::yaml::Hex32>> HashBuckets;
Optional<std::vector<llvm::yaml::Hex32>> HashValues;
GnuHashSection() : Section(ChunkKind::GnuHash) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Header", Header.hasValue()},
{"BloomFilter", BloomFilter.hasValue()},
{"HashBuckets", HashBuckets.hasValue()},
{"HashValues", HashValues.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::GnuHash; }
};
struct VernauxEntry {
uint32_t Hash;
uint16_t Flags;
uint16_t Other;
StringRef Name;
};
struct VerneedEntry {
uint16_t Version;
StringRef File;
std::vector<VernauxEntry> AuxV;
};
struct VerneedSection : Section {
Optional<std::vector<VerneedEntry>> VerneedV;
Optional<llvm::yaml::Hex64> Info;
VerneedSection() : Section(ChunkKind::Verneed) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Dependencies", VerneedV.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::Verneed;
}
};
struct AddrsigSection : Section {
Optional<std::vector<YAMLFlowString>> Symbols;
AddrsigSection() : Section(ChunkKind::Addrsig) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Symbols", Symbols.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Addrsig; }
};
struct LinkerOption {
StringRef Key;
StringRef Value;
};
struct LinkerOptionsSection : Section {
Optional<std::vector<LinkerOption>> Options;
LinkerOptionsSection() : Section(ChunkKind::LinkerOptions) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Options", Options.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::LinkerOptions;
}
};
struct DependentLibrariesSection : Section {
Optional<std::vector<YAMLFlowString>> Libs;
DependentLibrariesSection() : Section(ChunkKind::DependentLibraries) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Libraries", Libs.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::DependentLibraries;
}
};
// Represents the call graph profile section entry.
struct CallGraphEntry {
// The symbol of the source of the edge.
StringRef From;
// The symbol index of the destination of the edge.
StringRef To;
// The weight of the edge.
uint64_t Weight;
};
struct CallGraphProfileSection : Section {
Optional<std::vector<CallGraphEntry>> Entries;
CallGraphProfileSection() : Section(ChunkKind::CallGraphProfile) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::CallGraphProfile;
}
};
struct SymverSection : Section {
Optional<std::vector<uint16_t>> Entries;
SymverSection() : Section(ChunkKind::Symver) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Symver; }
};
struct VerdefEntry {
Optional<uint16_t> Version;
Optional<uint16_t> Flags;
Optional<uint16_t> VersionNdx;
Optional<uint32_t> Hash;
std::vector<StringRef> VerNames;
};
struct VerdefSection : Section {
Optional<std::vector<VerdefEntry>> Entries;
Optional<llvm::yaml::Hex64> Info;
VerdefSection() : Section(ChunkKind::Verdef) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verdef; }
};
struct GroupSection : Section {
// Members of a group contain a flag and a list of section indices
// that are part of the group.
Optional<std::vector<SectionOrType>> Members;
Optional<StringRef> Signature; /* Info */
GroupSection() : Section(ChunkKind::Group) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Members", Members.hasValue()}};
};
static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Group; }
};
struct Relocation {
llvm::yaml::Hex64 Offset;
YAMLIntUInt Addend;
ELF_REL Type;
Optional<StringRef> Symbol;
};
struct RelocationSection : Section {
Optional<std::vector<Relocation>> Relocations;
StringRef RelocatableSec; /* Info */
RelocationSection() : Section(ChunkKind::Relocation) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Relocations", Relocations.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::Relocation;
}
};
struct RelrSection : Section {
Optional<std::vector<llvm::yaml::Hex64>> Entries;
RelrSection() : Section(ChunkKind::Relr) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::Relr;
}
};
struct SymtabShndxSection : Section {
Optional<std::vector<uint32_t>> Entries;
SymtabShndxSection() : Section(ChunkKind::SymtabShndxSection) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::SymtabShndxSection;
}
};
struct ARMIndexTableEntry {
llvm::yaml::Hex32 Offset;
llvm::yaml::Hex32 Value;
};
struct ARMIndexTableSection : Section {
Optional<std::vector<ARMIndexTableEntry>> Entries;
ARMIndexTableSection() : Section(ChunkKind::ARMIndexTable) {}
std::vector<std::pair<StringRef, bool>> getEntries() const override {
return {{"Entries", Entries.hasValue()}};
};
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::ARMIndexTable;
}
};
// Represents .MIPS.abiflags section
struct MipsABIFlags : Section {
llvm::yaml::Hex16 Version;
MIPS_ISA ISALevel;
llvm::yaml::Hex8 ISARevision;
MIPS_AFL_REG GPRSize;
MIPS_AFL_REG CPR1Size;
MIPS_AFL_REG CPR2Size;
MIPS_ABI_FP FpABI;
MIPS_AFL_EXT ISAExtension;
MIPS_AFL_ASE ASEs;
MIPS_AFL_FLAGS1 Flags1;
llvm::yaml::Hex32 Flags2;
MipsABIFlags() : Section(ChunkKind::MipsABIFlags) {}
static bool classof(const Chunk *S) {
return S->Kind == ChunkKind::MipsABIFlags;
}
};
struct ProgramHeader {
ELF_PT Type;
ELF_PF Flags;
llvm::yaml::Hex64 VAddr;
llvm::yaml::Hex64 PAddr;
Optional<llvm::yaml::Hex64> Align;
Optional<llvm::yaml::Hex64> FileSize;
Optional<llvm::yaml::Hex64> MemSize;
Optional<llvm::yaml::Hex64> Offset;
Optional<StringRef> FirstSec;
Optional<StringRef> LastSec;
// This vector contains all chunks from [FirstSec, LastSec].
std::vector<Chunk *> Chunks;
};
struct Object {
FileHeader Header;
std::vector<ProgramHeader> ProgramHeaders;
// An object might contain output section descriptions as well as
// custom data that does not belong to any section.
std::vector<std::unique_ptr<Chunk>> Chunks;
// Although in reality the symbols reside in a section, it is a lot
// cleaner and nicer if we read them from the YAML as a separate
// top-level key, which automatically ensures that invariants like there
// being a single SHT_SYMTAB section are upheld.
Optional<std::vector<Symbol>> Symbols;
Optional<std::vector<Symbol>> DynamicSymbols;
Optional<DWARFYAML::Data> DWARF;
std::vector<Section *> getSections() {
std::vector<Section *> Ret;
for (const std::unique_ptr<Chunk> &Sec : Chunks)
if (auto S = dyn_cast<ELFYAML::Section>(Sec.get()))
Ret.push_back(S);
return Ret;
}
const SectionHeaderTable &getSectionHeaderTable() const {
for (const std::unique_ptr<Chunk> &C : Chunks)
if (auto *S = dyn_cast<ELFYAML::SectionHeaderTable>(C.get()))
return *S;
llvm_unreachable("the section header table chunk must always be present");
}
unsigned getMachine() const;
};
bool shouldAllocateFileSpace(ArrayRef<ProgramHeader> Phdrs,
const NoBitsSection &S);
} // end namespace ELFYAML
} // end namespace llvm
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::StackSizeEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::BBAddrMapEntry::BBEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::DynamicEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::LinkerOption)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::CallGraphEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::NoteEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionHeader)
LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr<llvm::ELFYAML::Chunk>)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerdefEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VernauxEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerneedEntry)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ARMIndexTableEntry)
namespace llvm {
namespace yaml {
template <> struct ScalarTraits<ELFYAML::YAMLIntUInt> {
static void output(const ELFYAML::YAMLIntUInt &Val, void *Ctx,
raw_ostream &Out);
static StringRef input(StringRef Scalar, void *Ctx,
ELFYAML::YAMLIntUInt &Val);
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_ET> {
static void enumeration(IO &IO, ELFYAML::ELF_ET &Value);
};
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_PT> {
static void enumeration(IO &IO, ELFYAML::ELF_PT &Value);
};
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_NT> {
static void enumeration(IO &IO, ELFYAML::ELF_NT &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_EM> {
static void enumeration(IO &IO, ELFYAML::ELF_EM &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS> {
static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA> {
static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI> {
static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value);
};
template <>
struct ScalarBitSetTraits<ELFYAML::ELF_EF> {
static void bitset(IO &IO, ELFYAML::ELF_EF &Value);
};
template <> struct ScalarBitSetTraits<ELFYAML::ELF_PF> {
static void bitset(IO &IO, ELFYAML::ELF_PF &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_SHT> {
static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value);
};
template <>
struct ScalarBitSetTraits<ELFYAML::ELF_SHF> {
static void bitset(IO &IO, ELFYAML::ELF_SHF &Value);
};
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHN> {
static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value);
};
template <> struct ScalarEnumerationTraits<ELFYAML::ELF_STB> {
static void enumeration(IO &IO, ELFYAML::ELF_STB &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_STT> {
static void enumeration(IO &IO, ELFYAML::ELF_STT &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_REL> {
static void enumeration(IO &IO, ELFYAML::ELF_REL &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_DYNTAG> {
static void enumeration(IO &IO, ELFYAML::ELF_DYNTAG &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::ELF_RSS> {
static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG> {
static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP> {
static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT> {
static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value);
};
template <>
struct ScalarEnumerationTraits<ELFYAML::MIPS_ISA> {
static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value);
};
template <>
struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE> {
static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value);
};
template <>
struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1> {
static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value);
};
template <>
struct MappingTraits<ELFYAML::FileHeader> {
static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr);
};
template <> struct MappingTraits<ELFYAML::SectionHeader> {
static void mapping(IO &IO, ELFYAML::SectionHeader &SHdr);
};
template <> struct MappingTraits<ELFYAML::ProgramHeader> {
static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr);
static std::string validate(IO &IO, ELFYAML::ProgramHeader &FileHdr);
};
template <>
struct MappingTraits<ELFYAML::Symbol> {
static void mapping(IO &IO, ELFYAML::Symbol &Symbol);
static std::string validate(IO &IO, ELFYAML::Symbol &Symbol);
};
template <> struct MappingTraits<ELFYAML::StackSizeEntry> {
static void mapping(IO &IO, ELFYAML::StackSizeEntry &Rel);
};
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry> {
static void mapping(IO &IO, ELFYAML::BBAddrMapEntry &Rel);
};
template <> struct MappingTraits<ELFYAML::BBAddrMapEntry::BBEntry> {
static void mapping(IO &IO, ELFYAML::BBAddrMapEntry::BBEntry &Rel);
};
template <> struct MappingTraits<ELFYAML::GnuHashHeader> {
static void mapping(IO &IO, ELFYAML::GnuHashHeader &Rel);
};
template <> struct MappingTraits<ELFYAML::DynamicEntry> {
static void mapping(IO &IO, ELFYAML::DynamicEntry &Rel);
};
template <> struct MappingTraits<ELFYAML::NoteEntry> {
static void mapping(IO &IO, ELFYAML::NoteEntry &N);
};
template <> struct MappingTraits<ELFYAML::VerdefEntry> {
static void mapping(IO &IO, ELFYAML::VerdefEntry &E);
};
template <> struct MappingTraits<ELFYAML::VerneedEntry> {
static void mapping(IO &IO, ELFYAML::VerneedEntry &E);
};
template <> struct MappingTraits<ELFYAML::VernauxEntry> {
static void mapping(IO &IO, ELFYAML::VernauxEntry &E);
};
template <> struct MappingTraits<ELFYAML::LinkerOption> {
static void mapping(IO &IO, ELFYAML::LinkerOption &Sym);
};
template <> struct MappingTraits<ELFYAML::CallGraphEntry> {
static void mapping(IO &IO, ELFYAML::CallGraphEntry &E);
};
template <> struct MappingTraits<ELFYAML::Relocation> {
static void mapping(IO &IO, ELFYAML::Relocation &Rel);
};
template <> struct MappingTraits<ELFYAML::ARMIndexTableEntry> {
static void mapping(IO &IO, ELFYAML::ARMIndexTableEntry &E);
};
template <> struct MappingTraits<std::unique_ptr<ELFYAML::Chunk>> {
static void mapping(IO &IO, std::unique_ptr<ELFYAML::Chunk> &C);
static std::string validate(IO &io, std::unique_ptr<ELFYAML::Chunk> &C);
};
template <>
struct MappingTraits<ELFYAML::Object> {
static void mapping(IO &IO, ELFYAML::Object &Object);
};
template <> struct MappingTraits<ELFYAML::SectionOrType> {
static void mapping(IO &IO, ELFYAML::SectionOrType &sectionOrType);
};
} // end namespace yaml
} // end namespace llvm
#endif // LLVM_OBJECTYAML_ELFYAML_H