blob: b2133de93ea27aed99a5974726f2e76d25011236 [file] [log] [blame]
//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements SlotIndex and related classes. The purpose of SlotIndex
// is to describe a position at which a register can become live, or cease to
// be live.
//
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
// is held is LiveIntervals and provides the real numbering. This allows
// LiveIntervals to perform largely transparent renumbering.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SLOTINDEXES_H
#define LLVM_CODEGEN_SLOTINDEXES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>
namespace llvm {
class raw_ostream;
/// This class represents an entry in the slot index list held in the
/// SlotIndexes pass. It should not be used directly. See the
/// SlotIndex & SlotIndexes classes for the public interface to this
/// information.
class IndexListEntry : public ilist_node<IndexListEntry> {
MachineInstr *mi;
unsigned index;
public:
IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
MachineInstr* getInstr() const { return mi; }
void setInstr(MachineInstr *mi) {
this->mi = mi;
}
unsigned getIndex() const { return index; }
void setIndex(unsigned index) {
this->index = index;
}
#ifdef EXPENSIVE_CHECKS
// When EXPENSIVE_CHECKS is defined, "erased" index list entries will
// actually be moved to a "graveyard" list, and have their pointers
// poisoned, so that dangling SlotIndex access can be reliably detected.
void setPoison() {
intptr_t tmp = reinterpret_cast<intptr_t>(mi);
assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
tmp |= 0x1;
mi = reinterpret_cast<MachineInstr*>(tmp);
}
bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
#endif // EXPENSIVE_CHECKS
};
template <>
struct ilist_alloc_traits<IndexListEntry>
: public ilist_noalloc_traits<IndexListEntry> {};
/// SlotIndex - An opaque wrapper around machine indexes.
class SlotIndex {
friend class SlotIndexes;
enum Slot {
/// Basic block boundary. Used for live ranges entering and leaving a
/// block without being live in the layout neighbor. Also used as the
/// def slot of PHI-defs.
Slot_Block,
/// Early-clobber register use/def slot. A live range defined at
/// Slot_EarlyClobber interferes with normal live ranges killed at
/// Slot_Register. Also used as the kill slot for live ranges tied to an
/// early-clobber def.
Slot_EarlyClobber,
/// Normal register use/def slot. Normal instructions kill and define
/// register live ranges at this slot.
Slot_Register,
/// Dead def kill point. Kill slot for a live range that is defined by
/// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
/// used anywhere.
Slot_Dead,
Slot_Count
};
PointerIntPair<IndexListEntry*, 2, unsigned> lie;
SlotIndex(IndexListEntry *entry, unsigned slot)
: lie(entry, slot) {}
IndexListEntry* listEntry() const {
assert(isValid() && "Attempt to compare reserved index.");
#ifdef EXPENSIVE_CHECKS
assert(!lie.getPointer()->isPoisoned() &&
"Attempt to access deleted list-entry.");
#endif // EXPENSIVE_CHECKS
return lie.getPointer();
}
unsigned getIndex() const {
return listEntry()->getIndex() | getSlot();
}
/// Returns the slot for this SlotIndex.
Slot getSlot() const {
return static_cast<Slot>(lie.getInt());
}
public:
enum {
/// The default distance between instructions as returned by distance().
/// This may vary as instructions are inserted and removed.
InstrDist = 4 * Slot_Count
};
/// Construct an invalid index.
SlotIndex() = default;
// Construct a new slot index from the given one, and set the slot.
SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
assert(lie.getPointer() != nullptr &&
"Attempt to construct index with 0 pointer.");
}
/// Returns true if this is a valid index. Invalid indices do
/// not point into an index table, and cannot be compared.
bool isValid() const {
return lie.getPointer();
}
/// Return true for a valid index.
explicit operator bool() const { return isValid(); }
/// Print this index to the given raw_ostream.
void print(raw_ostream &os) const;
/// Dump this index to stderr.
void dump() const;
/// Compare two SlotIndex objects for equality.
bool operator==(SlotIndex other) const {
return lie == other.lie;
}
/// Compare two SlotIndex objects for inequality.
bool operator!=(SlotIndex other) const {
return lie != other.lie;
}
/// Compare two SlotIndex objects. Return true if the first index
/// is strictly lower than the second.
bool operator<(SlotIndex other) const {
return getIndex() < other.getIndex();
}
/// Compare two SlotIndex objects. Return true if the first index
/// is lower than, or equal to, the second.
bool operator<=(SlotIndex other) const {
return getIndex() <= other.getIndex();
}
/// Compare two SlotIndex objects. Return true if the first index
/// is greater than the second.
bool operator>(SlotIndex other) const {
return getIndex() > other.getIndex();
}
/// Compare two SlotIndex objects. Return true if the first index
/// is greater than, or equal to, the second.
bool operator>=(SlotIndex other) const {
return getIndex() >= other.getIndex();
}
/// isSameInstr - Return true if A and B refer to the same instruction.
static bool isSameInstr(SlotIndex A, SlotIndex B) {
return A.lie.getPointer() == B.lie.getPointer();
}
/// isEarlierInstr - Return true if A refers to an instruction earlier than
/// B. This is equivalent to A < B && !isSameInstr(A, B).
static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
return A.listEntry()->getIndex() < B.listEntry()->getIndex();
}
/// Return true if A refers to the same instruction as B or an earlier one.
/// This is equivalent to !isEarlierInstr(B, A).
static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
return !isEarlierInstr(B, A);
}
/// Return the distance from this index to the given one.
int distance(SlotIndex other) const {
return other.getIndex() - getIndex();
}
/// Return the scaled distance from this index to the given one, where all
/// slots on the same instruction have zero distance.
int getInstrDistance(SlotIndex other) const {
return (other.listEntry()->getIndex() - listEntry()->getIndex())
/ Slot_Count;
}
/// isBlock - Returns true if this is a block boundary slot.
bool isBlock() const { return getSlot() == Slot_Block; }
/// isEarlyClobber - Returns true if this is an early-clobber slot.
bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
/// isRegister - Returns true if this is a normal register use/def slot.
/// Note that early-clobber slots may also be used for uses and defs.
bool isRegister() const { return getSlot() == Slot_Register; }
/// isDead - Returns true if this is a dead def kill slot.
bool isDead() const { return getSlot() == Slot_Dead; }
/// Returns the base index for associated with this index. The base index
/// is the one associated with the Slot_Block slot for the instruction
/// pointed to by this index.
SlotIndex getBaseIndex() const {
return SlotIndex(listEntry(), Slot_Block);
}
/// Returns the boundary index for associated with this index. The boundary
/// index is the one associated with the Slot_Block slot for the instruction
/// pointed to by this index.
SlotIndex getBoundaryIndex() const {
return SlotIndex(listEntry(), Slot_Dead);
}
/// Returns the register use/def slot in the current instruction for a
/// normal or early-clobber def.
SlotIndex getRegSlot(bool EC = false) const {
return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
}
/// Returns the dead def kill slot for the current instruction.
SlotIndex getDeadSlot() const {
return SlotIndex(listEntry(), Slot_Dead);
}
/// Returns the next slot in the index list. This could be either the
/// next slot for the instruction pointed to by this index or, if this
/// index is a STORE, the first slot for the next instruction.
/// WARNING: This method is considerably more expensive than the methods
/// that return specific slots (getUseIndex(), etc). If you can - please
/// use one of those methods.
SlotIndex getNextSlot() const {
Slot s = getSlot();
if (s == Slot_Dead) {
return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
}
return SlotIndex(listEntry(), s + 1);
}
/// Returns the next index. This is the index corresponding to the this
/// index's slot, but for the next instruction.
SlotIndex getNextIndex() const {
return SlotIndex(&*++listEntry()->getIterator(), getSlot());
}
/// Returns the previous slot in the index list. This could be either the
/// previous slot for the instruction pointed to by this index or, if this
/// index is a Slot_Block, the last slot for the previous instruction.
/// WARNING: This method is considerably more expensive than the methods
/// that return specific slots (getUseIndex(), etc). If you can - please
/// use one of those methods.
SlotIndex getPrevSlot() const {
Slot s = getSlot();
if (s == Slot_Block) {
return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
}
return SlotIndex(listEntry(), s - 1);
}
/// Returns the previous index. This is the index corresponding to this
/// index's slot, but for the previous instruction.
SlotIndex getPrevIndex() const {
return SlotIndex(&*--listEntry()->getIterator(), getSlot());
}
};
inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
li.print(os);
return os;
}
using IdxMBBPair = std::pair<SlotIndex, MachineBasicBlock *>;
/// SlotIndexes pass.
///
/// This pass assigns indexes to each instruction.
class SlotIndexes : public MachineFunctionPass {
private:
// IndexListEntry allocator.
BumpPtrAllocator ileAllocator;
using IndexList = ilist<IndexListEntry>;
IndexList indexList;
MachineFunction *mf;
using Mi2IndexMap = DenseMap<const MachineInstr *, SlotIndex>;
Mi2IndexMap mi2iMap;
/// MBBRanges - Map MBB number to (start, stop) indexes.
SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
/// Idx2MBBMap - Sorted list of pairs of index of first instruction
/// and MBB id.
SmallVector<IdxMBBPair, 8> idx2MBBMap;
IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
IndexListEntry *entry =
static_cast<IndexListEntry *>(ileAllocator.Allocate(
sizeof(IndexListEntry), alignof(IndexListEntry)));
new (entry) IndexListEntry(mi, index);
return entry;
}
/// Renumber locally after inserting curItr.
void renumberIndexes(IndexList::iterator curItr);
public:
static char ID;
SlotIndexes();
~SlotIndexes() override;
void getAnalysisUsage(AnalysisUsage &au) const override;
void releaseMemory() override;
bool runOnMachineFunction(MachineFunction &fn) override;
/// Dump the indexes.
void dump() const;
/// Repair indexes after adding and removing instructions.
void repairIndexesInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End);
/// Returns the zero index for this analysis.
SlotIndex getZeroIndex() {
assert(indexList.front().getIndex() == 0 && "First index is not 0?");
return SlotIndex(&indexList.front(), 0);
}
/// Returns the base index of the last slot in this analysis.
SlotIndex getLastIndex() {
return SlotIndex(&indexList.back(), 0);
}
/// Returns true if the given machine instr is mapped to an index,
/// otherwise returns false.
bool hasIndex(const MachineInstr &instr) const {
return mi2iMap.count(&instr);
}
/// Returns the base index for the given instruction.
SlotIndex getInstructionIndex(const MachineInstr &MI,
bool IgnoreBundle = false) const {
// Instructions inside a bundle have the same number as the bundle itself.
auto BundleStart = getBundleStart(MI.getIterator());
auto BundleEnd = getBundleEnd(MI.getIterator());
// Use the first non-debug instruction in the bundle to get SlotIndex.
const MachineInstr &BundleNonDebug =
IgnoreBundle ? MI
: *skipDebugInstructionsForward(BundleStart, BundleEnd);
assert(!BundleNonDebug.isDebugInstr() &&
"Could not use a debug instruction to query mi2iMap.");
Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleNonDebug);
assert(itr != mi2iMap.end() && "Instruction not found in maps.");
return itr->second;
}
/// Returns the instruction for the given index, or null if the given
/// index has no instruction associated with it.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return index.isValid() ? index.listEntry()->getInstr() : nullptr;
}
/// Returns the next non-null index, if one exists.
/// Otherwise returns getLastIndex().
SlotIndex getNextNonNullIndex(SlotIndex Index) {
IndexList::iterator I = Index.listEntry()->getIterator();
IndexList::iterator E = indexList.end();
while (++I != E)
if (I->getInstr())
return SlotIndex(&*I, Index.getSlot());
// We reached the end of the function.
return getLastIndex();
}
/// getIndexBefore - Returns the index of the last indexed instruction
/// before MI, or the start index of its basic block.
/// MI is not required to have an index.
SlotIndex getIndexBefore(const MachineInstr &MI) const {
const MachineBasicBlock *MBB = MI.getParent();
assert(MBB && "MI must be inserted in a basic block");
MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
while (true) {
if (I == B)
return getMBBStartIdx(MBB);
--I;
Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
if (MapItr != mi2iMap.end())
return MapItr->second;
}
}
/// getIndexAfter - Returns the index of the first indexed instruction
/// after MI, or the end index of its basic block.
/// MI is not required to have an index.
SlotIndex getIndexAfter(const MachineInstr &MI) const {
const MachineBasicBlock *MBB = MI.getParent();
assert(MBB && "MI must be inserted in a basic block");
MachineBasicBlock::const_iterator I = MI, E = MBB->end();
while (true) {
++I;
if (I == E)
return getMBBEndIdx(MBB);
Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
if (MapItr != mi2iMap.end())
return MapItr->second;
}
}
/// Return the (start,end) range of the given basic block number.
const std::pair<SlotIndex, SlotIndex> &
getMBBRange(unsigned Num) const {
return MBBRanges[Num];
}
/// Return the (start,end) range of the given basic block.
const std::pair<SlotIndex, SlotIndex> &
getMBBRange(const MachineBasicBlock *MBB) const {
return getMBBRange(MBB->getNumber());
}
/// Returns the first index in the given basic block number.
SlotIndex getMBBStartIdx(unsigned Num) const {
return getMBBRange(Num).first;
}
/// Returns the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return getMBBRange(mbb).first;
}
/// Returns the last index in the given basic block number.
SlotIndex getMBBEndIdx(unsigned Num) const {
return getMBBRange(Num).second;
}
/// Returns the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return getMBBRange(mbb).second;
}
/// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
/// begin and basic block)
using MBBIndexIterator = SmallVectorImpl<IdxMBBPair>::const_iterator;
/// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
/// equal to \p To.
MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
return std::partition_point(
I, idx2MBBMap.end(),
[=](const IdxMBBPair &IM) { return IM.first < To; });
}
/// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
/// that is greater or equal to \p Idx.
MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
return advanceMBBIndex(idx2MBBMap.begin(), Idx);
}
/// Returns an iterator for the begin of the idx2MBBMap.
MBBIndexIterator MBBIndexBegin() const {
return idx2MBBMap.begin();
}
/// Return an iterator for the end of the idx2MBBMap.
MBBIndexIterator MBBIndexEnd() const {
return idx2MBBMap.end();
}
/// Returns the basic block which the given index falls in.
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
if (MachineInstr *MI = getInstructionFromIndex(index))
return MI->getParent();
MBBIndexIterator I = findMBBIndex(index);
// Take the pair containing the index
MBBIndexIterator J =
((I != MBBIndexEnd() && I->first > index) ||
(I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
assert(J != MBBIndexEnd() && J->first <= index &&
index < getMBBEndIdx(J->second) &&
"index does not correspond to an MBB");
return J->second;
}
/// Insert the given machine instruction into the mapping. Returns the
/// assigned index.
/// If Late is set and there are null indexes between mi's neighboring
/// instructions, create the new index after the null indexes instead of
/// before them.
SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
assert(!MI.isInsideBundle() &&
"Instructions inside bundles should use bundle start's slot.");
assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.");
// Numbering debug instructions could cause code generation to be
// affected by debug information.
assert(!MI.isDebugInstr() && "Cannot number debug instructions.");
assert(MI.getParent() != nullptr && "Instr must be added to function.");
// Get the entries where MI should be inserted.
IndexList::iterator prevItr, nextItr;
if (Late) {
// Insert MI's index immediately before the following instruction.
nextItr = getIndexAfter(MI).listEntry()->getIterator();
prevItr = std::prev(nextItr);
} else {
// Insert MI's index immediately after the preceding instruction.
prevItr = getIndexBefore(MI).listEntry()->getIterator();
nextItr = std::next(prevItr);
}
// Get a number for the new instr, or 0 if there's no room currently.
// In the latter case we'll force a renumber later.
unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
unsigned newNumber = prevItr->getIndex() + dist;
// Insert a new list entry for MI.
IndexList::iterator newItr =
indexList.insert(nextItr, createEntry(&MI, newNumber));
// Renumber locally if we need to.
if (dist == 0)
renumberIndexes(newItr);
SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
mi2iMap.insert(std::make_pair(&MI, newIndex));
return newIndex;
}
/// Removes machine instruction (bundle) \p MI from the mapping.
/// This should be called before MachineInstr::eraseFromParent() is used to
/// remove a whole bundle or an unbundled instruction.
/// If \p AllowBundled is set then this can be used on a bundled
/// instruction; however, this exists to support handleMoveIntoBundle,
/// and in general removeSingleMachineInstrFromMaps should be used instead.
void removeMachineInstrFromMaps(MachineInstr &MI,
bool AllowBundled = false);
/// Removes a single machine instruction \p MI from the mapping.
/// This should be called before MachineInstr::eraseFromBundle() is used to
/// remove a single instruction (out of a bundle).
void removeSingleMachineInstrFromMaps(MachineInstr &MI);
/// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
/// maps used by register allocator. \returns the index where the new
/// instruction was inserted.
SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
if (mi2iItr == mi2iMap.end())
return SlotIndex();
SlotIndex replaceBaseIndex = mi2iItr->second;
IndexListEntry *miEntry(replaceBaseIndex.listEntry());
assert(miEntry->getInstr() == &MI &&
"Mismatched instruction in index tables.");
miEntry->setInstr(&NewMI);
mi2iMap.erase(mi2iItr);
mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
return replaceBaseIndex;
}
/// Add the given MachineBasicBlock into the maps.
/// If it contains any instructions then they must already be in the maps.
/// This is used after a block has been split by moving some suffix of its
/// instructions into a newly created block.
void insertMBBInMaps(MachineBasicBlock *mbb) {
assert(mbb != &mbb->getParent()->front() &&
"Can't insert a new block at the beginning of a function.");
auto prevMBB = std::prev(MachineFunction::iterator(mbb));
// Create a new entry to be used for the start of mbb and the end of
// prevMBB.
IndexListEntry *startEntry = createEntry(nullptr, 0);
IndexListEntry *endEntry = getMBBEndIdx(&*prevMBB).listEntry();
IndexListEntry *insEntry =
mbb->empty() ? endEntry
: getInstructionIndex(mbb->front()).listEntry();
IndexList::iterator newItr =
indexList.insert(insEntry->getIterator(), startEntry);
SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
MBBRanges[prevMBB->getNumber()].second = startIdx;
assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
"Blocks must be added in order");
MBBRanges.push_back(std::make_pair(startIdx, endIdx));
idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
renumberIndexes(newItr);
llvm::sort(idx2MBBMap, less_first());
}
};
// Specialize IntervalMapInfo for half-open slot index intervals.
template <>
struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
};
} // end namespace llvm
#endif // LLVM_CODEGEN_SLOTINDEXES_H