blob: dc2d61a6e4740e37c202114d90fade50c8a04df5 [file] [log] [blame]
//===-- LoongArchFrameLowering.cpp - LoongArch Frame Information -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the LoongArch implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "LoongArchFrameLowering.h"
#include "LoongArchMachineFunctionInfo.h"
#include "LoongArchSubtarget.h"
#include "MCTargetDesc/LoongArchBaseInfo.h"
#include "MCTargetDesc/LoongArchMCTargetDesc.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"
using namespace llvm;
#define DEBUG_TYPE "loongarch-frame-lowering"
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if frame pointer elimination is
// disabled, if it needs dynamic stack realignment, if the function has
// variable sized allocas, or if the frame address is taken.
bool LoongArchFrameLowering::hasFP(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool LoongArchFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
return MFI.hasVarSizedObjects() && TRI->hasStackRealignment(MF);
}
void LoongArchFrameLowering::adjustReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, Register DestReg,
Register SrcReg, int64_t Val,
MachineInstr::MIFlag Flag) const {
const LoongArchInstrInfo *TII = STI.getInstrInfo();
bool IsLA64 = STI.is64Bit();
unsigned Addi = IsLA64 ? LoongArch::ADDI_D : LoongArch::ADDI_W;
if (DestReg == SrcReg && Val == 0)
return;
if (isInt<12>(Val)) {
// addi.w/d $DstReg, $SrcReg, Val
BuildMI(MBB, MBBI, DL, TII->get(Addi), DestReg)
.addReg(SrcReg)
.addImm(Val)
.setMIFlag(Flag);
return;
}
// Try to split the offset across two ADDIs. We need to keep the stack pointer
// aligned after each ADDI. We need to determine the maximum value we can put
// in each ADDI. In the negative direction, we can use -2048 which is always
// sufficiently aligned. In the positive direction, we need to find the
// largest 12-bit immediate that is aligned. Exclude -4096 since it can be
// created with LU12I.W.
assert(getStackAlign().value() < 2048 && "Stack alignment too large");
int64_t MaxPosAdjStep = 2048 - getStackAlign().value();
if (Val > -4096 && Val <= (2 * MaxPosAdjStep)) {
int64_t FirstAdj = Val < 0 ? -2048 : MaxPosAdjStep;
Val -= FirstAdj;
BuildMI(MBB, MBBI, DL, TII->get(Addi), DestReg)
.addReg(SrcReg)
.addImm(FirstAdj)
.setMIFlag(Flag);
BuildMI(MBB, MBBI, DL, TII->get(Addi), DestReg)
.addReg(DestReg, RegState::Kill)
.addImm(Val)
.setMIFlag(Flag);
return;
}
unsigned Opc = IsLA64 ? LoongArch::ADD_D : LoongArch::ADD_W;
if (Val < 0) {
Val = -Val;
Opc = IsLA64 ? LoongArch::SUB_D : LoongArch::SUB_W;
}
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
Register ScratchReg = MRI.createVirtualRegister(&LoongArch::GPRRegClass);
TII->movImm(MBB, MBBI, DL, ScratchReg, Val, Flag);
BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
.addReg(SrcReg)
.addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
}
// Determine the size of the frame and maximum call frame size.
void LoongArchFrameLowering::determineFrameLayout(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Get the number of bytes to allocate from the FrameInfo.
uint64_t FrameSize = MFI.getStackSize();
// Make sure the frame is aligned.
FrameSize = alignTo(FrameSize, getStackAlign());
// Update frame info.
MFI.setStackSize(FrameSize);
}
static uint64_t estimateFunctionSizeInBytes(const LoongArchInstrInfo *TII,
const MachineFunction &MF) {
uint64_t FuncSize = 0;
for (auto &MBB : MF)
for (auto &MI : MBB)
FuncSize += TII->getInstSizeInBytes(MI);
return FuncSize;
}
static bool needScavSlotForCFR(MachineFunction &MF) {
if (!MF.getSubtarget<LoongArchSubtarget>().hasBasicF())
return false;
for (auto &MBB : MF)
for (auto &MI : MBB)
if (MI.getOpcode() == LoongArch::PseudoST_CFR)
return true;
return false;
}
void LoongArchFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
const LoongArchRegisterInfo *RI = STI.getRegisterInfo();
const TargetRegisterClass &RC = LoongArch::GPRRegClass;
const LoongArchInstrInfo *TII = STI.getInstrInfo();
LoongArchMachineFunctionInfo *LAFI =
MF.getInfo<LoongArchMachineFunctionInfo>();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned ScavSlotsNum = 0;
// Far branches beyond 27-bit offset require a spill slot for scratch register.
bool IsLargeFunction = !isInt<27>(estimateFunctionSizeInBytes(TII, MF));
if (IsLargeFunction)
ScavSlotsNum = 1;
// estimateStackSize has been observed to under-estimate the final stack
// size, so give ourselves wiggle-room by checking for stack size
// representable an 11-bit signed field rather than 12-bits.
if (!isInt<11>(MFI.estimateStackSize(MF)))
ScavSlotsNum = std::max(ScavSlotsNum, 1u);
// For CFR spill.
if (needScavSlotForCFR(MF))
++ScavSlotsNum;
// Create emergency spill slots.
for (unsigned i = 0; i < ScavSlotsNum; ++i) {
int FI = MFI.CreateStackObject(RI->getSpillSize(RC), RI->getSpillAlign(RC),
false);
RS->addScavengingFrameIndex(FI);
if (IsLargeFunction && LAFI->getBranchRelaxationSpillFrameIndex() == -1)
LAFI->setBranchRelaxationSpillFrameIndex(FI);
LLVM_DEBUG(dbgs() << "Allocated FI(" << FI
<< ") as the emergency spill slot.\n");
}
}
void LoongArchFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>();
const LoongArchRegisterInfo *RI = STI.getRegisterInfo();
const LoongArchInstrInfo *TII = STI.getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
bool IsLA64 = STI.is64Bit();
Register SPReg = LoongArch::R3;
Register FPReg = LoongArch::R22;
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Determine the correct frame layout
determineFrameLayout(MF);
// First, compute final stack size.
uint64_t StackSize = MFI.getStackSize();
uint64_t RealStackSize = StackSize;
// Early exit if there is no need to allocate space in the stack.
if (StackSize == 0 && !MFI.adjustsStack())
return;
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF, true);
uint64_t SecondSPAdjustAmount = RealStackSize - FirstSPAdjustAmount;
// Split the SP adjustment to reduce the offsets of callee saved spill.
if (FirstSPAdjustAmount)
StackSize = FirstSPAdjustAmount;
// Adjust stack.
adjustReg(MBB, MBBI, DL, SPReg, SPReg, -StackSize, MachineInstr::FrameSetup);
if (FirstSPAdjustAmount != 2048 || SecondSPAdjustAmount == 0) {
// Emit ".cfi_def_cfa_offset StackSize".
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
const auto &CSI = MFI.getCalleeSavedInfo();
// The frame pointer is callee-saved, and code has been generated for us to
// save it to the stack. We need to skip over the storing of callee-saved
// registers as the frame pointer must be modified after it has been saved
// to the stack, not before.
std::advance(MBBI, CSI.size());
// Iterate over list of callee-saved registers and emit .cfi_offset
// directives.
for (const auto &Entry : CSI) {
int64_t Offset = MFI.getObjectOffset(Entry.getFrameIdx());
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, RI->getDwarfRegNum(Entry.getReg(), true), Offset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
// Generate new FP.
if (hasFP(MF)) {
adjustReg(MBB, MBBI, DL, FPReg, SPReg,
StackSize - LoongArchFI->getVarArgsSaveSize(),
MachineInstr::FrameSetup);
// Emit ".cfi_def_cfa $fp, LoongArchFI->getVarArgsSaveSize()"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfa(nullptr, RI->getDwarfRegNum(FPReg, true),
LoongArchFI->getVarArgsSaveSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
// Emit the second SP adjustment after saving callee saved registers.
if (FirstSPAdjustAmount && SecondSPAdjustAmount) {
if (hasFP(MF)) {
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
adjustReg(MBB, MBBI, DL, SPReg, SPReg, -SecondSPAdjustAmount,
MachineInstr::FrameSetup);
} else {
// FIXME: RegScavenger will place the spill instruction before the
// prologue if a VReg is created in the prologue. This will pollute the
// caller's stack data. Therefore, until there is better way, we just use
// the `addi.w/d` instruction for stack adjustment to ensure that VReg
// will not be created.
for (int Val = SecondSPAdjustAmount; Val > 0; Val -= 2048)
BuildMI(MBB, MBBI, DL,
TII->get(IsLA64 ? LoongArch::ADDI_D : LoongArch::ADDI_W), SPReg)
.addReg(SPReg)
.addImm(Val < 2048 ? -Val : -2048)
.setMIFlag(MachineInstr::FrameSetup);
// If we are using a frame-pointer, and thus emitted ".cfi_def_cfa fp, 0",
// don't emit an sp-based .cfi_def_cfa_offset
// Emit ".cfi_def_cfa_offset RealStackSize"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
}
if (hasFP(MF)) {
// Realign stack.
if (RI->hasStackRealignment(MF)) {
unsigned Align = Log2(MFI.getMaxAlign());
assert(Align > 0 && "The stack realignment size is invalid!");
BuildMI(MBB, MBBI, DL,
TII->get(IsLA64 ? LoongArch::BSTRINS_D : LoongArch::BSTRINS_W),
SPReg)
.addReg(SPReg)
.addReg(LoongArch::R0)
.addImm(Align - 1)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
// FP will be used to restore the frame in the epilogue, so we need
// another base register BP to record SP after re-alignment. SP will
// track the current stack after allocating variable sized objects.
if (hasBP(MF)) {
// move BP, $sp
BuildMI(MBB, MBBI, DL, TII->get(LoongArch::OR),
LoongArchABI::getBPReg())
.addReg(SPReg)
.addReg(LoongArch::R0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
void LoongArchFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const LoongArchRegisterInfo *RI = STI.getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>();
Register SPReg = LoongArch::R3;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the restores of callee-saved registers.
auto LastFrameDestroy = MBBI;
if (!CSI.empty())
LastFrameDestroy = std::prev(MBBI, CSI.size());
// Get the number of bytes from FrameInfo.
uint64_t StackSize = MFI.getStackSize();
// Restore the stack pointer.
if (RI->hasStackRealignment(MF) || MFI.hasVarSizedObjects()) {
assert(hasFP(MF) && "frame pointer should not have been eliminated");
adjustReg(MBB, LastFrameDestroy, DL, SPReg, LoongArch::R22,
-StackSize + LoongArchFI->getVarArgsSaveSize(),
MachineInstr::FrameDestroy);
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount = StackSize - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
adjustReg(MBB, LastFrameDestroy, DL, SPReg, SPReg, SecondSPAdjustAmount,
MachineInstr::FrameDestroy);
StackSize = FirstSPAdjustAmount;
}
// Deallocate stack
adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackSize, MachineInstr::FrameDestroy);
}
// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store.
// e.g.
// addi.d $sp, $sp, -2032
// st.d $ra, $sp, 2024
// st.d $fp, $sp, 2016
// addi.d $sp, $sp, -16
uint64_t
LoongArchFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF,
bool IsPrologue) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
// Return the FirstSPAdjustAmount if the StackSize can not fit in a signed
// 12-bit and there exists a callee-saved register needing to be pushed.
if (!isInt<12>(MFI.getStackSize())) {
// FirstSPAdjustAmount is chosen as (2048 - StackAlign) because 2048 will
// cause sp = sp + 2048 in the epilogue to be split into multiple
// instructions. Offsets smaller than 2048 can fit in a single load/store
// instruction, and we have to stick with the stack alignment.
// So (2048 - StackAlign) will satisfy the stack alignment.
//
// FIXME: This place may seem odd. When using multiple ADDI instructions to
// adjust the stack in Prologue, and there are no callee-saved registers, we
// can take advantage of the logic of split sp ajustment to reduce code
// changes.
return CSI.size() > 0 ? 2048 - getStackAlign().value()
: (IsPrologue ? 2048 : 0);
}
return 0;
}
void LoongArchFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Unconditionally spill RA and FP only if the function uses a frame
// pointer.
if (hasFP(MF)) {
SavedRegs.set(LoongArch::R1);
SavedRegs.set(LoongArch::R22);
}
// Mark BP as used if function has dedicated base pointer.
if (hasBP(MF))
SavedRegs.set(LoongArchABI::getBPReg());
}
// Do not preserve stack space within prologue for outgoing variables if the
// function contains variable size objects.
// Let eliminateCallFramePseudoInstr preserve stack space for it.
bool LoongArchFrameLowering::hasReservedCallFrame(
const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects();
}
// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator
LoongArchFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
Register SPReg = LoongArch::R3;
DebugLoc DL = MI->getDebugLoc();
if (!hasReservedCallFrame(MF)) {
// If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
// ADJCALLSTACKUP must be converted to instructions manipulating the stack
// pointer. This is necessary when there is a variable length stack
// allocation (e.g. alloca), which means it's not possible to allocate
// space for outgoing arguments from within the function prologue.
int64_t Amount = MI->getOperand(0).getImm();
if (Amount != 0) {
// Ensure the stack remains aligned after adjustment.
Amount = alignSPAdjust(Amount);
if (MI->getOpcode() == LoongArch::ADJCALLSTACKDOWN)
Amount = -Amount;
adjustReg(MBB, MI, DL, SPReg, SPReg, Amount, MachineInstr::NoFlags);
}
}
return MBB.erase(MI);
}
bool LoongArchFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
// Insert the spill to the stack frame.
for (auto &CS : CSI) {
Register Reg = CS.getReg();
// If the register is RA and the return address is taken by method
// LoongArchTargetLowering::lowerRETURNADDR, don't set kill flag.
bool IsKill =
!(Reg == LoongArch::R1 && MF->getFrameInfo().isReturnAddressTaken());
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, IsKill, CS.getFrameIdx(), RC, TRI,
Register());
}
return true;
}
StackOffset LoongArchFrameLowering::getFrameIndexReference(
const MachineFunction &MF, int FI, Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>();
uint64_t StackSize = MFI.getStackSize();
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
// Callee-saved registers should be referenced relative to the stack
// pointer (positive offset), otherwise use the frame pointer (negative
// offset).
const auto &CSI = MFI.getCalleeSavedInfo();
int MinCSFI = 0;
int MaxCSFI = -1;
StackOffset Offset =
StackOffset::getFixed(MFI.getObjectOffset(FI) - getOffsetOfLocalArea() +
MFI.getOffsetAdjustment());
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
if (FI >= MinCSFI && FI <= MaxCSFI) {
FrameReg = LoongArch::R3;
if (FirstSPAdjustAmount)
Offset += StackOffset::getFixed(FirstSPAdjustAmount);
else
Offset += StackOffset::getFixed(StackSize);
} else if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
// If the stack was realigned, the frame pointer is set in order to allow
// SP to be restored, so we need another base register to record the stack
// after realignment.
FrameReg = hasBP(MF) ? LoongArchABI::getBPReg() : LoongArch::R3;
Offset += StackOffset::getFixed(StackSize);
} else {
FrameReg = RI->getFrameRegister(MF);
if (hasFP(MF))
Offset += StackOffset::getFixed(LoongArchFI->getVarArgsSaveSize());
else
Offset += StackOffset::getFixed(StackSize);
}
return Offset;
}
bool LoongArchFrameLowering::enableShrinkWrapping(
const MachineFunction &MF) const {
// Keep the conventional code flow when not optimizing.
if (MF.getFunction().hasOptNone())
return false;
return true;
}