blob: 9576d3cbd6edc3f6571ae60b30cb8895ce896f9a [file] [log] [blame]
//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that RISCV uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "RISCVISelLowering.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVRegisterInfo.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
const RISCVSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
if (Subtarget.isRV32E())
report_fatal_error("Codegen not yet implemented for RV32E");
RISCVABI::ABI ABI = Subtarget.getTargetABI();
assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
!Subtarget.hasStdExtF()) {
errs() << "Hard-float 'f' ABI can't be used for a target that "
"doesn't support the F instruction set extension (ignoring "
"target-abi)\n";
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
} else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
!Subtarget.hasStdExtD()) {
errs() << "Hard-float 'd' ABI can't be used for a target that "
"doesn't support the D instruction set extension (ignoring "
"target-abi)\n";
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
}
switch (ABI) {
default:
report_fatal_error("Don't know how to lower this ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64:
case RISCVABI::ABI_LP64F:
case RISCVABI::ABI_LP64D:
break;
}
MVT XLenVT = Subtarget.getXLenVT();
// Set up the register classes.
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
if (Subtarget.hasStdExtZfh())
addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
if (Subtarget.hasStdExtF())
addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
if (Subtarget.hasStdExtD())
addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
static const MVT::SimpleValueType BoolVecVTs[] = {
MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
static const MVT::SimpleValueType IntVecVTs[] = {
MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
MVT::nxv4i64, MVT::nxv8i64};
static const MVT::SimpleValueType F16VecVTs[] = {
MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
static const MVT::SimpleValueType F32VecVTs[] = {
MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
static const MVT::SimpleValueType F64VecVTs[] = {
MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
if (Subtarget.hasStdExtV()) {
auto addRegClassForRVV = [this](MVT VT) {
unsigned Size = VT.getSizeInBits().getKnownMinValue();
assert(Size <= 512 && isPowerOf2_32(Size));
const TargetRegisterClass *RC;
if (Size <= 64)
RC = &RISCV::VRRegClass;
else if (Size == 128)
RC = &RISCV::VRM2RegClass;
else if (Size == 256)
RC = &RISCV::VRM4RegClass;
else
RC = &RISCV::VRM8RegClass;
addRegisterClass(VT, RC);
};
for (MVT VT : BoolVecVTs)
addRegClassForRVV(VT);
for (MVT VT : IntVecVTs)
addRegClassForRVV(VT);
if (Subtarget.hasStdExtZfh())
for (MVT VT : F16VecVTs)
addRegClassForRVV(VT);
if (Subtarget.hasStdExtF())
for (MVT VT : F32VecVTs)
addRegClassForRVV(VT);
if (Subtarget.hasStdExtD())
for (MVT VT : F64VecVTs)
addRegClassForRVV(VT);
if (Subtarget.useRVVForFixedLengthVectors()) {
auto addRegClassForFixedVectors = [this](MVT VT) {
unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
const TargetRegisterClass *RC;
if (LMul == 1)
RC = &RISCV::VRRegClass;
else if (LMul == 2)
RC = &RISCV::VRM2RegClass;
else if (LMul == 4)
RC = &RISCV::VRM4RegClass;
else if (LMul == 8)
RC = &RISCV::VRM8RegClass;
else
llvm_unreachable("Unexpected LMul!");
addRegisterClass(VT, RC);
};
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
if (useRVVForFixedLengthVectorVT(VT))
addRegClassForFixedVectors(VT);
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
if (useRVVForFixedLengthVectorVT(VT))
addRegClassForFixedVectors(VT);
}
}
// Compute derived properties from the register classes.
computeRegisterProperties(STI.getRegisterInfo());
setStackPointerRegisterToSaveRestore(RISCV::X2);
for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
setLoadExtAction(N, XLenVT, MVT::i1, Promote);
// TODO: add all necessary setOperationAction calls.
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, XLenVT, Expand);
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (!Subtarget.hasStdExtZbb()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
}
if (Subtarget.is64Bit()) {
setOperationAction(ISD::ADD, MVT::i32, Custom);
setOperationAction(ISD::SUB, MVT::i32, Custom);
setOperationAction(ISD::SHL, MVT::i32, Custom);
setOperationAction(ISD::SRA, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i32, Custom);
}
if (!Subtarget.hasStdExtM()) {
setOperationAction(ISD::MUL, XLenVT, Expand);
setOperationAction(ISD::MULHS, XLenVT, Expand);
setOperationAction(ISD::MULHU, XLenVT, Expand);
setOperationAction(ISD::SDIV, XLenVT, Expand);
setOperationAction(ISD::UDIV, XLenVT, Expand);
setOperationAction(ISD::SREM, XLenVT, Expand);
setOperationAction(ISD::UREM, XLenVT, Expand);
}
if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
setOperationAction(ISD::MUL, MVT::i32, Custom);
setOperationAction(ISD::SDIV, MVT::i8, Custom);
setOperationAction(ISD::UDIV, MVT::i8, Custom);
setOperationAction(ISD::UREM, MVT::i8, Custom);
setOperationAction(ISD::SDIV, MVT::i16, Custom);
setOperationAction(ISD::UDIV, MVT::i16, Custom);
setOperationAction(ISD::UREM, MVT::i16, Custom);
setOperationAction(ISD::SDIV, MVT::i32, Custom);
setOperationAction(ISD::UDIV, MVT::i32, Custom);
setOperationAction(ISD::UREM, MVT::i32, Custom);
}
setOperationAction(ISD::SDIVREM, XLenVT, Expand);
setOperationAction(ISD::UDIVREM, XLenVT, Expand);
setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
if (Subtarget.is64Bit()) {
setOperationAction(ISD::ROTL, MVT::i32, Custom);
setOperationAction(ISD::ROTR, MVT::i32, Custom);
}
} else {
setOperationAction(ISD::ROTL, XLenVT, Expand);
setOperationAction(ISD::ROTR, XLenVT, Expand);
}
if (Subtarget.hasStdExtZbp()) {
// Custom lower bswap/bitreverse so we can convert them to GREVI to enable
// more combining.
setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
setOperationAction(ISD::BSWAP, XLenVT, Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
setOperationAction(ISD::BSWAP, MVT::i32, Custom);
}
} else {
// With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
// pattern match it directly in isel.
setOperationAction(ISD::BSWAP, XLenVT,
Subtarget.hasStdExtZbb() ? Legal : Expand);
}
if (Subtarget.hasStdExtZbb()) {
setOperationAction(ISD::SMIN, XLenVT, Legal);
setOperationAction(ISD::SMAX, XLenVT, Legal);
setOperationAction(ISD::UMIN, XLenVT, Legal);
setOperationAction(ISD::UMAX, XLenVT, Legal);
} else {
setOperationAction(ISD::CTTZ, XLenVT, Expand);
setOperationAction(ISD::CTLZ, XLenVT, Expand);
setOperationAction(ISD::CTPOP, XLenVT, Expand);
}
if (Subtarget.hasStdExtZbt()) {
setOperationAction(ISD::FSHL, XLenVT, Custom);
setOperationAction(ISD::FSHR, XLenVT, Custom);
setOperationAction(ISD::SELECT, XLenVT, Legal);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::FSHL, MVT::i32, Custom);
setOperationAction(ISD::FSHR, MVT::i32, Custom);
}
} else {
setOperationAction(ISD::SELECT, XLenVT, Custom);
}
ISD::CondCode FPCCToExpand[] = {
ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
ISD::NodeType FPOpToExpand[] = {
ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
ISD::FP_TO_FP16};
if (Subtarget.hasStdExtZfh())
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
if (Subtarget.hasStdExtZfh()) {
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
for (auto CC : FPCCToExpand)
setCondCodeAction(CC, MVT::f16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
setOperationAction(ISD::SELECT, MVT::f16, Custom);
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
for (auto Op : FPOpToExpand)
setOperationAction(Op, MVT::f16, Expand);
}
if (Subtarget.hasStdExtF()) {
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
for (auto CC : FPCCToExpand)
setCondCodeAction(CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
for (auto Op : FPOpToExpand)
setOperationAction(Op, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
}
if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
if (Subtarget.hasStdExtD()) {
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
for (auto CC : FPCCToExpand)
setCondCodeAction(CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
for (auto Op : FPOpToExpand)
setOperationAction(Op, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
}
if (Subtarget.is64Bit()) {
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
}
setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
setOperationAction(ISD::BlockAddress, XLenVT, Custom);
setOperationAction(ISD::ConstantPool, XLenVT, Custom);
setOperationAction(ISD::JumpTable, XLenVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
// TODO: On M-mode only targets, the cycle[h] CSR may not be present.
// Unfortunately this can't be determined just from the ISA naming string.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
Subtarget.is64Bit() ? Legal : Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
if (Subtarget.hasStdExtA()) {
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
setMinCmpXchgSizeInBits(32);
} else {
setMaxAtomicSizeInBitsSupported(0);
}
setBooleanContents(ZeroOrOneBooleanContent);
if (Subtarget.hasStdExtV()) {
setBooleanVectorContents(ZeroOrOneBooleanContent);
setOperationAction(ISD::VSCALE, XLenVT, Custom);
// RVV intrinsics may have illegal operands.
// We also need to custom legalize vmv.x.s.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
} else {
// We must custom-lower certain vXi64 operations on RV32 due to the vector
// element type being illegal.
setOperationAction(ISD::SPLAT_VECTOR, MVT::i64, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
}
for (MVT VT : BoolVecVTs) {
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
// Mask VTs are custom-expanded into a series of standard nodes
setOperationAction(ISD::TRUNCATE, VT, Custom);
}
for (MVT VT : IntVecVTs) {
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Custom-lower extensions and truncations from/to mask types.
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
// RVV has native int->float & float->int conversions where the
// element type sizes are within one power-of-two of each other. Any
// wider distances between type sizes have to be lowered as sequences
// which progressively narrow the gap in stages.
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
// Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR"
// nodes which truncate by one power of two at a time.
setOperationAction(ISD::TRUNCATE, VT, Custom);
// Custom-lower insert/extract operations to simplify patterns.
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
// Custom-lower reduction operations to set up the corresponding custom
// nodes' operands.
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
}
// Expand various CCs to best match the RVV ISA, which natively supports UNE
// but no other unordered comparisons, and supports all ordered comparisons
// except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
// purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
// and we pattern-match those back to the "original", swapping operands once
// more. This way we catch both operations and both "vf" and "fv" forms with
// fewer patterns.
ISD::CondCode VFPCCToExpand[] = {
ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
};
// Sets common operation actions on RVV floating-point vector types.
const auto SetCommonVFPActions = [&](MVT VT) {
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
// RVV has native FP_ROUND & FP_EXTEND conversions where the element type
// sizes are within one power-of-two of each other. Therefore conversions
// between vXf16 and vXf64 must be lowered as sequences which convert via
// vXf32.
setOperationAction(ISD::FP_ROUND, VT, Custom);
setOperationAction(ISD::FP_EXTEND, VT, Custom);
// Custom-lower insert/extract operations to simplify patterns.
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
// Expand various condition codes (explained above).
for (auto CC : VFPCCToExpand)
setCondCodeAction(CC, VT, Expand);
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
setOperationAction(ISD::FCOPYSIGN, VT, Legal);
};
if (Subtarget.hasStdExtZfh())
for (MVT VT : F16VecVTs)
SetCommonVFPActions(VT);
if (Subtarget.hasStdExtF())
for (MVT VT : F32VecVTs)
SetCommonVFPActions(VT);
if (Subtarget.hasStdExtD())
for (MVT VT : F64VecVTs)
SetCommonVFPActions(VT);
if (Subtarget.useRVVForFixedLengthVectors()) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
if (!useRVVForFixedLengthVectorVT(VT))
continue;
// By default everything must be expanded.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
// Operations below are different for between masks and other vectors.
if (VT.getVectorElementType() == MVT::i1) {
setOperationAction(ISD::AND, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::XOR, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
continue;
}
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::AND, VT, Custom);
setOperationAction(ISD::OR, VT, Custom);
setOperationAction(ISD::XOR, VT, Custom);
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::SREM, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
setOperationAction(ISD::UREM, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SMIN, VT, Custom);
setOperationAction(ISD::SMAX, VT, Custom);
setOperationAction(ISD::UMIN, VT, Custom);
setOperationAction(ISD::UMAX, VT, Custom);
setOperationAction(ISD::MULHS, VT, Custom);
setOperationAction(ISD::MULHU, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
}
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
if (!useRVVForFixedLengthVectorVT(VT))
continue;
// By default everything must be expanded.
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
setOperationAction(Op, VT, Expand);
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom);
setOperationAction(ISD::FMUL, VT, Custom);
setOperationAction(ISD::FDIV, VT, Custom);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FSQRT, VT, Custom);
setOperationAction(ISD::FMA, VT, Custom);
for (auto CC : VFPCCToExpand)
setCondCodeAction(CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Custom);
}
}
}
// Function alignments.
const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
setMinFunctionAlignment(FunctionAlignment);
setPrefFunctionAlignment(FunctionAlignment);
setMinimumJumpTableEntries(5);
// Jumps are expensive, compared to logic
setJumpIsExpensive();
// We can use any register for comparisons
setHasMultipleConditionRegisters();
setTargetDAGCombine(ISD::SETCC);
if (Subtarget.hasStdExtZbp()) {
setTargetDAGCombine(ISD::OR);
}
if (Subtarget.hasStdExtV())
setTargetDAGCombine(ISD::FCOPYSIGN);
}
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext &Context,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
if (Subtarget.hasStdExtV() &&
(VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
return VT.changeVectorElementTypeToInteger();
}
bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
case Intrinsic::riscv_masked_atomicrmw_add_i32:
case Intrinsic::riscv_masked_atomicrmw_sub_i32:
case Intrinsic::riscv_masked_atomicrmw_nand_i32:
case Intrinsic::riscv_masked_atomicrmw_max_i32:
case Intrinsic::riscv_masked_atomicrmw_min_i32:
case Intrinsic::riscv_masked_atomicrmw_umax_i32:
case Intrinsic::riscv_masked_atomicrmw_umin_i32:
case Intrinsic::riscv_masked_cmpxchg_i32:
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(4);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile;
return true;
}
}
bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// Require a 12-bit signed offset.
if (!isInt<12>(AM.BaseOffs))
return false;
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (!AM.HasBaseReg) // allow "r+i".
break;
return false; // disallow "r+r" or "r+r+i".
default:
return false;
}
return true;
}
bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<12>(Imm);
}
bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
return isInt<12>(Imm);
}
// On RV32, 64-bit integers are split into their high and low parts and held
// in two different registers, so the trunc is free since the low register can
// just be used.
bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
return false;
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
return (SrcBits == 64 && DestBits == 32);
}
bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
!SrcVT.isInteger() || !DstVT.isInteger())
return false;
unsigned SrcBits = SrcVT.getSizeInBits();
unsigned DestBits = DstVT.getSizeInBits();
return (SrcBits == 64 && DestBits == 32);
}
bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
// Zexts are free if they can be combined with a load.
if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
EVT MemVT = LD->getMemoryVT();
if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
(Subtarget.is64Bit() && MemVT == MVT::i32)) &&
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
LD->getExtensionType() == ISD::ZEXTLOAD))
return true;
}
return TargetLowering::isZExtFree(Val, VT2);
}
bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
}
bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
return Subtarget.hasStdExtZbb();
}
bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
return Subtarget.hasStdExtZbb();
}
bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
return false;
if (VT == MVT::f32 && !Subtarget.hasStdExtF())
return false;
if (VT == MVT::f64 && !Subtarget.hasStdExtD())
return false;
if (Imm.isNegZero())
return false;
return Imm.isZero();
}
bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
(VT == MVT::f32 && Subtarget.hasStdExtF()) ||
(VT == MVT::f64 && Subtarget.hasStdExtD());
}
// Changes the condition code and swaps operands if necessary, so the SetCC
// operation matches one of the comparisons supported directly in the RISC-V
// ISA.
static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
switch (CC) {
default:
break;
case ISD::SETGT:
case ISD::SETLE:
case ISD::SETUGT:
case ISD::SETULE:
CC = ISD::getSetCCSwappedOperands(CC);
std::swap(LHS, RHS);
break;
}
}
// Return the RISC-V branch opcode that matches the given DAG integer
// condition code. The CondCode must be one of those supported by the RISC-V
// ISA (see normaliseSetCC).
static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unsupported CondCode");
case ISD::SETEQ:
return RISCV::BEQ;
case ISD::SETNE:
return RISCV::BNE;
case ISD::SETLT:
return RISCV::BLT;
case ISD::SETGE:
return RISCV::BGE;
case ISD::SETULT:
return RISCV::BLTU;
case ISD::SETUGE:
return RISCV::BGEU;
}
}
// Return the largest legal scalable vector type that matches VT's element type.
static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
const RISCVSubtarget &Subtarget) {
assert(VT.isFixedLengthVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
"Expected legal fixed length vector!");
unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
assert(LMul <= 8 && isPowerOf2_32(LMul) && "Unexpected LMUL!");
MVT EltVT = VT.getVectorElementType();
switch (EltVT.SimpleTy) {
default:
llvm_unreachable("unexpected element type for RVV container");
case MVT::i1: {
// Masks are calculated assuming 8-bit elements since that's when we need
// the most elements.
unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / 8;
return MVT::getScalableVectorVT(MVT::i1, LMul * EltsPerBlock);
}
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f16:
case MVT::f32:
case MVT::f64: {
unsigned EltsPerBlock = RISCV::RVVBitsPerBlock / EltVT.getSizeInBits();
return MVT::getScalableVectorVT(EltVT, LMul * EltsPerBlock);
}
}
}
// Grow V to consume an entire RVV register.
static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
assert(VT.isScalableVector() &&
"Expected to convert into a scalable vector!");
assert(V.getValueType().isFixedLengthVector() &&
"Expected a fixed length vector operand!");
SDLoc DL(V);
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
}
// Shrink V so it's just big enough to maintain a VT's worth of data.
static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
assert(VT.isFixedLengthVector() &&
"Expected to convert into a fixed length vector!");
assert(V.getValueType().isScalableVector() &&
"Expected a scalable vector operand!");
SDLoc DL(V);
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
}
// Gets the two common "VL" operands: an all-ones mask and the vector length.
// VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
// the vector type that it is contained in.
static std::pair<SDValue, SDValue>
getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
MVT XLenVT = Subtarget.getXLenVT();
SDValue VL = VecVT.isFixedLengthVector()
? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
: DAG.getRegister(RISCV::X0, XLenVT);
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
return {Mask, VL};
}
// As above but assuming the given type is a scalable vector type.
static std::pair<SDValue, SDValue>
getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
assert(VecVT.isScalableVector() && "Expecting a scalable vector");
return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
}
static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
assert(VT.isFixedLengthVector() && "Unexpected vector!");
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
SDLoc DL(Op);
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
if (VT.getVectorElementType() == MVT::i1) {
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
}
if (ISD::isBuildVectorAllOnes(Op.getNode())) {
SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
}
return SDValue();
}
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
: RISCVISD::VMV_V_X_VL;
Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
}
// Try and match an index sequence, which we can lower directly to the vid
// instruction. An all-undef vector is matched by getSplatValue, above.
if (VT.isInteger()) {
bool IsVID = true;
for (unsigned i = 0, e = Op.getNumOperands(); i < e && IsVID; i++)
IsVID &= Op.getOperand(i).isUndef() ||
(isa<ConstantSDNode>(Op.getOperand(i)) &&
Op.getConstantOperandVal(i) == i);
if (IsVID) {
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
return convertFromScalableVector(VT, VID, DAG, Subtarget);
}
}
return SDValue();
}
static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
SDValue V1 = Op.getOperand(0);
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
if (Lane >= 0) {
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
assert(Lane < (int)VT.getVectorNumElements() && "Unexpected lane!");
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
MVT XLenVT = Subtarget.getXLenVT();
SDValue Gather =
DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
DAG.getConstant(Lane, DL, XLenVT), Mask, VL);
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
}
}
return SDValue();
}
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
report_fatal_error("unimplemented operand");
case ISD::GlobalAddress:
return lowerGlobalAddress(Op, DAG);
case ISD::BlockAddress:
return lowerBlockAddress(Op, DAG);
case ISD::ConstantPool:
return lowerConstantPool(Op, DAG);
case ISD::JumpTable:
return lowerJumpTable(Op, DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(Op, DAG);
case ISD::SELECT:
return lowerSELECT(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::FRAMEADDR:
return lowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR:
return lowerRETURNADDR(Op, DAG);
case ISD::SHL_PARTS:
return lowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS:
return lowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS:
return lowerShiftRightParts(Op, DAG, false);
case ISD::BITCAST: {
assert(((Subtarget.is64Bit() && Subtarget.hasStdExtF()) ||
Subtarget.hasStdExtZfh()) &&
"Unexpected custom legalisation");
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
if (Op.getValueType() == MVT::f16 && Subtarget.hasStdExtZfh()) {
if (Op0.getValueType() != MVT::i16)
return SDValue();
SDValue NewOp0 =
DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Op0);
SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
return FPConv;
} else if (Op.getValueType() == MVT::f32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtF()) {
if (Op0.getValueType() != MVT::i32)
return SDValue();
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
SDValue FPConv =
DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
return FPConv;
}
return SDValue();
}
case ISD::INTRINSIC_WO_CHAIN:
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::BSWAP:
case ISD::BITREVERSE: {
// Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
// Start with the maximum immediate value which is the bitwidth - 1.
unsigned Imm = VT.getSizeInBits() - 1;
// If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
if (Op.getOpcode() == ISD::BSWAP)
Imm &= ~0x7U;
return DAG.getNode(RISCVISD::GREVI, DL, VT, Op.getOperand(0),
DAG.getTargetConstant(Imm, DL, Subtarget.getXLenVT()));
}
case ISD::FSHL:
case ISD::FSHR: {
MVT VT = Op.getSimpleValueType();
assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
SDLoc DL(Op);
// FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
// use log(XLen) bits. Mask the shift amount accordingly.
unsigned ShAmtWidth = Subtarget.getXLen() - 1;
SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
DAG.getConstant(ShAmtWidth, DL, VT));
unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
}
case ISD::TRUNCATE: {
SDLoc DL(Op);
EVT VT = Op.getValueType();
// Only custom-lower vector truncates
if (!VT.isVector())
return Op;
// Truncates to mask types are handled differently
if (VT.getVectorElementType() == MVT::i1)
return lowerVectorMaskTrunc(Op, DAG);
// RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
// truncates as a series of "RISCVISD::TRUNCATE_VECTOR" nodes which
// truncate by one power of two at a time.
EVT DstEltVT = VT.getVectorElementType();
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
EVT SrcEltVT = SrcVT.getVectorElementType();
assert(DstEltVT.bitsLT(SrcEltVT) &&
isPowerOf2_64(DstEltVT.getSizeInBits()) &&
isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
"Unexpected vector truncate lowering");
SDValue Result = Src;
LLVMContext &Context = *DAG.getContext();
const ElementCount Count = SrcVT.getVectorElementCount();
do {
SrcEltVT = EVT::getIntegerVT(Context, SrcEltVT.getSizeInBits() / 2);
EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR, DL, ResultVT, Result);
} while (SrcEltVT != DstEltVT);
return Result;
}
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
case ISD::SIGN_EXTEND:
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
case ISD::SPLAT_VECTOR:
return lowerSPLATVECTOR(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return lowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::VSCALE: {
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
// We define our scalable vector types for lmul=1 to use a 64 bit known
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
// vscale as VLENB / 8.
SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
DAG.getConstant(3, DL, VT));
return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
}
case ISD::FP_EXTEND: {
// RVV can only do fp_extend to types double the size as the source. We
// custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
// via f32.
MVT VT = Op.getSimpleValueType();
MVT SrcVT = Op.getOperand(0).getSimpleValueType();
// We only need to close the gap between vXf16->vXf64.
if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
SrcVT.getVectorElementType() != MVT::f16)
return Op;
SDLoc DL(Op);
MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
SDValue IntermediateRound =
DAG.getFPExtendOrRound(Op.getOperand(0), DL, InterVT);
return DAG.getFPExtendOrRound(IntermediateRound, DL, VT);
}
case ISD::FP_ROUND: {
// RVV can only do fp_round to types half the size as the source. We
// custom-lower f64->f16 rounds via RVV's round-to-odd float
// conversion instruction.
MVT VT = Op.getSimpleValueType();
MVT SrcVT = Op.getOperand(0).getSimpleValueType();
// We only need to close the gap between vXf64<->vXf16.
if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
SrcVT.getVectorElementType() != MVT::f64)
return Op;
SDLoc DL(Op);
MVT InterVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
SDValue IntermediateRound =
DAG.getNode(RISCVISD::VFNCVT_ROD, DL, InterVT, Op.getOperand(0));
return DAG.getFPExtendOrRound(IntermediateRound, DL, VT);
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: {
// RVV can only do fp<->int conversions to types half/double the size as
// the source. We custom-lower any conversions that do two hops into
// sequences.
MVT VT = Op.getSimpleValueType();
if (!VT.isVector())
return Op;
SDLoc DL(Op);
SDValue Src = Op.getOperand(0);
MVT EltVT = VT.getVectorElementType();
MVT SrcEltVT = Src.getSimpleValueType().getVectorElementType();
unsigned EltSize = EltVT.getSizeInBits();
unsigned SrcEltSize = SrcEltVT.getSizeInBits();
assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
"Unexpected vector element types");
bool IsInt2FP = SrcEltVT.isInteger();
// Widening conversions
if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
if (IsInt2FP) {
// Do a regular integer sign/zero extension then convert to float.
MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
VT.getVectorElementCount());
unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND;
SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
}
// FP2Int
assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
// Do one doubling fp_extend then complete the operation by converting
// to int.
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
}
// Narrowing conversions
if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
if (IsInt2FP) {
// One narrowing int_to_fp, then an fp_round.
assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
return DAG.getFPExtendOrRound(Int2FP, DL, VT);
}
// FP2Int
// One narrowing fp_to_int, then truncate the integer. If the float isn't
// representable by the integer, the result is poison.
MVT IVecVT =
MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
VT.getVectorElementCount());
SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
}
return Op;
}
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
return lowerVECREDUCE(Op, DAG);
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_SEQ_FADD:
return lowerFPVECREDUCE(Op, DAG);
case ISD::BUILD_VECTOR:
return lowerBUILD_VECTOR(Op, DAG, Subtarget);
case ISD::VECTOR_SHUFFLE:
return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
case ISD::LOAD:
return lowerFixedLengthVectorLoadToRVV(Op, DAG);
case ISD::STORE:
return lowerFixedLengthVectorStoreToRVV(Op, DAG);
case ISD::SETCC:
return lowerFixedLengthVectorSetccToRVV(Op, DAG);
case ISD::ADD:
return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
case ISD::SUB:
return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
case ISD::MUL:
return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
case ISD::MULHS:
return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
case ISD::MULHU:
return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
case ISD::AND:
return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
RISCVISD::AND_VL);
case ISD::OR:
return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
RISCVISD::OR_VL);
case ISD::XOR:
return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
RISCVISD::XOR_VL);
case ISD::SDIV:
return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
case ISD::SREM:
return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
case ISD::UDIV:
return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
case ISD::UREM:
return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
case ISD::SHL:
return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
case ISD::SRA:
return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
case ISD::SRL:
return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
case ISD::FADD:
return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
case ISD::FSUB:
return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
case ISD::FMUL:
return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
case ISD::FDIV:
return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
case ISD::FNEG:
return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
case ISD::FABS:
return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
case ISD::FSQRT:
return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
case ISD::FMA:
return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
case ISD::SMIN:
return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
case ISD::SMAX:
return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
case ISD::UMIN:
return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
case ISD::UMAX:
return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
case ISD::VSELECT:
return lowerFixedLengthVectorSelectToRVV(Op, DAG);
}
}
static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
}
static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
Flags);
}
static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
N->getOffset(), Flags);
}
static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
}
template <class NodeTy>
SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
bool IsLocal) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
if (isPositionIndependent()) {
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
if (IsLocal)
// Use PC-relative addressing to access the symbol. This generates the
// pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
// %pcrel_lo(auipc)).
return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
// Use PC-relative addressing to access the GOT for this symbol, then load
// the address from the GOT. This generates the pattern (PseudoLA sym),
// which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
}
switch (getTargetMachine().getCodeModel()) {
default:
report_fatal_error("Unsupported code model for lowering");
case CodeModel::Small: {
// Generate a sequence for accessing addresses within the first 2 GiB of
// address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
}
case CodeModel::Medium: {
// Generate a sequence for accessing addresses within any 2GiB range within
// the address space. This generates the pattern (PseudoLLA sym), which
// expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
}
}
}
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
int64_t Offset = N->getOffset();
MVT XLenVT = Subtarget.getXLenVT();
const GlobalValue *GV = N->getGlobal();
bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
SDValue Addr = getAddr(N, DAG, IsLocal);
// In order to maximise the opportunity for common subexpression elimination,
// emit a separate ADD node for the global address offset instead of folding
// it in the global address node. Later peephole optimisations may choose to
// fold it back in when profitable.
if (Offset != 0)
return DAG.getNode(ISD::ADD, DL, Ty, Addr,
DAG.getConstant(Offset, DL, XLenVT));
return Addr;
}
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
return getAddr(N, DAG);
}
SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
return getAddr(N, DAG);
}
SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
return getAddr(N, DAG);
}
SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
SelectionDAG &DAG,
bool UseGOT) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
const GlobalValue *GV = N->getGlobal();
MVT XLenVT = Subtarget.getXLenVT();
if (UseGOT) {
// Use PC-relative addressing to access the GOT for this TLS symbol, then
// load the address from the GOT and add the thread pointer. This generates
// the pattern (PseudoLA_TLS_IE sym), which expands to
// (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
SDValue Load =
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
// Add the thread pointer.
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
}
// Generate a sequence for accessing the address relative to the thread
// pointer, with the appropriate adjustment for the thread pointer offset.
// This generates the pattern
// (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
SDValue AddrHi =
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
SDValue AddrAdd =
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
SDValue AddrLo =
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
SDValue MNAdd = SDValue(
DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
0);
return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
}
SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
SelectionDAG &DAG) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
const GlobalValue *GV = N->getGlobal();
// Use a PC-relative addressing mode to access the global dynamic GOT address.
// This generates the pattern (PseudoLA_TLS_GD sym), which expands to
// (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
SDValue Load =
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
// Prepare argument list to generate call.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Load;
Entry.Ty = CallTy;
Args.push_back(Entry);
// Setup call to __tls_get_addr.
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::C, CallTy,
DAG.getExternalSymbol("__tls_get_addr", Ty),
std::move(Args));
return LowerCallTo(CLI).first;
}
SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
int64_t Offset = N->getOffset();
MVT XLenVT = Subtarget.getXLenVT();
TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
CallingConv::GHC)
report_fatal_error("In GHC calling convention TLS is not supported");
SDValue Addr;
switch (Model) {
case TLSModel::LocalExec:
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
break;
case TLSModel::InitialExec:
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
break;
case TLSModel::LocalDynamic:
case TLSModel::GeneralDynamic:
Addr = getDynamicTLSAddr(N, DAG);
break;
}
// In order to maximise the opportunity for common subexpression elimination,
// emit a separate ADD node for the global address offset instead of folding
// it in the global address node. Later peephole optimisations may choose to
// fold it back in when profitable.
if (Offset != 0)
return DAG.getNode(ISD::ADD, DL, Ty, Addr,
DAG.getConstant(Offset, DL, XLenVT));
return Addr;
}
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue CondV = Op.getOperand(0);
SDValue TrueV = Op.getOperand(1);
SDValue FalseV = Op.getOperand(2);
SDLoc DL(Op);
MVT XLenVT = Subtarget.getXLenVT();
// If the result type is XLenVT and CondV is the output of a SETCC node
// which also operated on XLenVT inputs, then merge the SETCC node into the
// lowered RISCVISD::SELECT_CC to take advantage of the integer
// compare+branch instructions. i.e.:
// (select (setcc lhs, rhs, cc), truev, falsev)
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
CondV.getOperand(0).getSimpleValueType() == XLenVT) {
SDValue LHS = CondV.getOperand(0);
SDValue RHS = CondV.getOperand(1);
auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
ISD::CondCode CCVal = CC->get();
normaliseSetCC(LHS, RHS, CCVal);
SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
}
// Otherwise:
// (select condv, truev, falsev)
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
}
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
SDLoc DL(Op);
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy(MF.getDataLayout()));
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
Register FrameReg = RI.getFrameRegister(MF);
int XLenInBytes = Subtarget.getXLen() / 8;
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
while (Depth--) {
int Offset = -(XLenInBytes * 2);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
DAG.getIntPtrConstant(Offset, DL));
FrameAddr =
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
}
return FrameAddr;
}
SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
MVT XLenVT = Subtarget.getXLenVT();
int XLenInBytes = Subtarget.getXLen() / 8;
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
int Off = -XLenInBytes;
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(Off, DL, VT);
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return the value of the return address register, marking it an implicit
// live-in.
Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
}
SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
EVT VT = Lo.getValueType();
// if Shamt-XLEN < 0: // Shamt < XLEN
// Lo = Lo << Shamt
// Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
// else:
// Lo = 0
// Hi = Lo << (Shamt-XLEN)
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
SDValue ShiftRightLo =
DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
SDValue Parts[2] = {Lo, Hi};
return DAG.getMergeValues(Parts, DL);
}
SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
bool IsSRA) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
EVT VT = Lo.getValueType();
// SRA expansion:
// if Shamt-XLEN < 0: // Shamt < XLEN
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
// Hi = Hi >>s Shamt
// else:
// Lo = Hi >>s (Shamt-XLEN);
// Hi = Hi >>s (XLEN-1)
//
// SRL expansion:
// if Shamt-XLEN < 0: // Shamt < XLEN
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
// Hi = Hi >>u Shamt
// else:
// Lo = Hi >>u (Shamt-XLEN);
// Hi = 0;
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
SDValue ShiftLeftHi =
DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
SDValue HiFalse =
IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
SDValue Parts[2] = {Lo, Hi};
return DAG.getMergeValues(Parts, DL);
}
// Custom-lower a SPLAT_VECTOR where XLEN<SEW, as the SEW element type is
// illegal (currently only vXi64 RV32).
// FIXME: We could also catch non-constant sign-extended i32 values and lower
// them to SPLAT_VECTOR_I64
SDValue RISCVTargetLowering::lowerSPLATVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VecVT = Op.getValueType();
assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
"Unexpected SPLAT_VECTOR lowering");
SDValue SplatVal = Op.getOperand(0);
// If we can prove that the value is a sign-extended 32-bit value, lower this
// as a custom node in order to try and match RVV vector/scalar instructions.
if (auto *CVal = dyn_cast<ConstantSDNode>(SplatVal)) {
if (isInt<32>(CVal->getSExtValue()))
return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT,
DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32));
}
if (SplatVal.getOpcode() == ISD::SIGN_EXTEND &&
SplatVal.getOperand(0).getValueType() == MVT::i32) {
return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT,
SplatVal.getOperand(0));
}
// Else, on RV32 we lower an i64-element SPLAT_VECTOR thus, being careful not
// to accidentally sign-extend the 32-bit halves to the e64 SEW:
// vmv.v.x vX, hi
// vsll.vx vX, vX, /*32*/
// vmv.v.x vY, lo
// vsll.vx vY, vY, /*32*/
// vsrl.vx vY, vY, /*32*/
// vor.vv vX, vX, vY
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue ThirtyTwoV = DAG.getConstant(32, DL, VecVT);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, Zero);
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, SplatVal, One);
Lo = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
Lo = DAG.getNode(ISD::SHL, DL, VecVT, Lo, ThirtyTwoV);
Lo = DAG.getNode(ISD::SRL, DL, VecVT, Lo, ThirtyTwoV);
if (isNullConstant(Hi))
return Lo;
Hi = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Hi);
Hi = DAG.getNode(ISD::SHL, DL, VecVT, Hi, ThirtyTwoV);
return DAG.getNode(ISD::OR, DL, VecVT, Lo, Hi);
}
// Custom-lower extensions from mask vectors by using a vselect either with 1
// for zero/any-extension or -1 for sign-extension:
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
// Note that any-extension is lowered identically to zero-extension.
SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
int64_t ExtTrueVal) const {
SDLoc DL(Op);
MVT VecVT = Op.getSimpleValueType();
SDValue Src = Op.getOperand(0);
// Only custom-lower extensions from mask types
if (!Src.getValueType().isVector() ||
Src.getValueType().getVectorElementType() != MVT::i1)
return Op;
MVT XLenVT = Subtarget.getXLenVT();
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
if (VecVT.isScalableVector()) {
// Be careful not to introduce illegal scalar types at this stage, and be
// careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
// illegal and must be expanded. Since we know that the constants are
// sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
bool IsRV32E64 =
!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
if (!IsRV32E64) {
SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
} else {
SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
SplatTrueVal =
DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
}
return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
}
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget);
MVT I1ContainerVT =
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
SplatTrueVal =
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
SplatTrueVal, SplatZero, VL);
return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
}
// Custom-lower truncations from vectors to mask vectors by using a mask and a
// setcc operation:
// (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT MaskVT = Op.getValueType();
// Only expect to custom-lower truncations to mask types
assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
"Unexpected type for vector mask lowering");
SDValue Src = Op.getOperand(0);
EVT VecVT = Src.getValueType();
// Be careful not to introduce illegal scalar types at this stage, and be
// careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
// illegal and must be expanded. Since we know that the constants are
// sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
bool IsRV32E64 =
!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
if (!IsRV32E64) {
SplatOne = DAG.getSplatVector(VecVT, DL, SplatOne);
SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
} else {
SplatOne = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatOne);
SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
}
SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
}
SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VecVT = Op.getSimpleValueType();
SDValue Vec = Op.getOperand(0);
SDValue Val = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
// Custom-legalize INSERT_VECTOR_ELT where XLEN>=SEW, so that the vector is
// first slid down into position, the value is inserted into the first
// position, and the vector is slid back up. We do this to simplify patterns.
// (slideup vec, (insertelt (slidedown impdef, vec, idx), val, 0), idx),
if (Subtarget.is64Bit() || Val.getValueType() != MVT::i64) {
if (isNullConstant(Idx))
return Op;
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
SDValue Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT,
DAG.getUNDEF(VecVT), Vec, Idx, Mask, VL);
SDValue InsertElt0 =
DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecVT, Slidedown, Val,
DAG.getConstant(0, DL, Subtarget.getXLenVT()));
return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, Vec, InsertElt0, Idx,
Mask, VL);
}
if (!VecVT.isScalableVector())
return SDValue();
// Custom-legalize INSERT_VECTOR_ELT where XLEN<SEW, as the SEW element type
// is illegal (currently only vXi64 RV32).
// Since there is no easy way of getting a single element into a vector when
// XLEN<SEW, we lower the operation to the following sequence:
// splat vVal, rVal
// vid.v vVid
// vmseq.vx mMask, vVid, rIdx
// vmerge.vvm vDest, vSrc, vVal, mMask
// This essentially merges the original vector with the inserted element by
// using a mask whose only set bit is that corresponding to the insert
// index.
SDValue SplattedVal = DAG.getSplatVector(VecVT, DL, Val);
SDValue SplattedIdx = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Idx);
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VecVT, Mask, VL);
auto SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VecVT);
SDValue SelectCond = DAG.getSetCC(DL, SetCCVT, VID, SplattedIdx, ISD::SETEQ);
return DAG.getNode(ISD::VSELECT, DL, VecVT, SelectCond, SplattedVal, Vec);
}
// Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
// extract the first element: (extractelt (slidedown vec, idx), 0). For integer
// types this is done using VMV_X_S to allow us to glean information about the
// sign bits of the result.
SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Idx = Op.getOperand(1);
SDValue Vec = Op.getOperand(0);
EVT EltVT = Op.getValueType();
MVT VecVT = Vec.getSimpleValueType();
MVT XLenVT = Subtarget.getXLenVT();
// If the index is 0, the vector is already in the right position.
if (!isNullConstant(Idx)) {
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT),
Vec, Idx, Mask, VL);
}
if (!EltVT.isInteger()) {
// Floating-point extracts are handled in TableGen.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
DAG.getConstant(0, DL, XLenVT));
}
SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
}
SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc DL(Op);
if (Subtarget.hasStdExtV()) {
// Some RVV intrinsics may claim that they want an integer operand to be
// extended.
if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) {
if (II->ExtendedOperand) {
assert(II->ExtendedOperand < Op.getNumOperands());
SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
SDValue &ScalarOp = Operands[II->ExtendedOperand];
EVT OpVT = ScalarOp.getValueType();
if (OpVT == MVT::i8 || OpVT == MVT::i16 ||
(OpVT == MVT::i32 && Subtarget.is64Bit())) {
// If the operand is a constant, sign extend to increase our chances
// of being able to use a .vi instruction. ANY_EXTEND would become a
// a zero extend and the simm5 check in isel would fail.
// FIXME: Should we ignore the upper bits in isel instead?
unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND
: ISD::ANY_EXTEND;
ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
Operands);
}
}
}
}
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getRegister(RISCV::X4, PtrVT);
}
case Intrinsic::riscv_vmv_x_s:
assert(Op.getValueType() == Subtarget.getXLenVT() && "Unexpected VT!");
return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
Op.getOperand(1));
case Intrinsic::riscv_vmv_v_x: {
SDValue Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(),
Op.getOperand(1));
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, Op.getValueType(),
Scalar, Op.getOperand(2));
}
case Intrinsic::riscv_vfmv_v_f:
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
}
SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
SDLoc DL(Op);
if (Subtarget.hasStdExtV()) {
// Some RVV intrinsics may claim that they want an integer operand to be
// extended.
if (const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo)) {
if (II->ExtendedOperand) {
// The operands start from the second argument in INTRINSIC_W_CHAIN.
unsigned ExtendOp = II->ExtendedOperand + 1;
assert(ExtendOp < Op.getNumOperands());
SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
SDValue &ScalarOp = Operands[ExtendOp];
EVT OpVT = ScalarOp.getValueType();
if (OpVT == MVT::i8 || OpVT == MVT::i16 ||
(OpVT == MVT::i32 && Subtarget.is64Bit())) {
// If the operand is a constant, sign extend to increase our chances
// of being able to use a .vi instruction. ANY_EXTEND would become a
// a zero extend and the simm5 check in isel would fail.
// FIXME: Should we ignore the upper bits in isel instead?
unsigned ExtOpc = isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND
: ISD::ANY_EXTEND;
ScalarOp = DAG.getNode(ExtOpc, DL, Subtarget.getXLenVT(), ScalarOp);
return DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, Op->getVTList(),
Operands);
}
}
}
}
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::riscv_vleff: {
SDLoc DL(Op);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue);
SDValue Load = DAG.getNode(RISCVISD::VLEFF, DL, VTs, Op.getOperand(0),
Op.getOperand(2), Op.getOperand(3));
SDValue ReadVL =
SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1),
Load.getValue(2)),
0);
return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL);
}
case Intrinsic::riscv_vleff_mask: {
SDLoc DL(Op);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Other, MVT::Glue);
SDValue Load = DAG.getNode(RISCVISD::VLEFF_MASK, DL, VTs, Op.getOperand(0),
Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4), Op.getOperand(5));
SDValue ReadVL =
SDValue(DAG.getMachineNode(RISCV::PseudoReadVL, DL, Op->getValueType(1),
Load.getValue(2)),
0);
return DAG.getMergeValues({Load, ReadVL, Load.getValue(1)}, DL);
}
}
}
static std::pair<unsigned, uint64_t>
getRVVReductionOpAndIdentityVal(unsigned ISDOpcode, unsigned EltSizeBits) {
switch (ISDOpcode) {
default:
llvm_unreachable("Unhandled reduction");
case ISD::VECREDUCE_ADD:
return {RISCVISD::VECREDUCE_ADD, 0};
case ISD::VECREDUCE_UMAX:
return {RISCVISD::VECREDUCE_UMAX, 0};
case ISD::VECREDUCE_SMAX:
return {RISCVISD::VECREDUCE_SMAX, minIntN(EltSizeBits)};
case ISD::VECREDUCE_UMIN:
return {RISCVISD::VECREDUCE_UMIN, maxUIntN(EltSizeBits)};
case ISD::VECREDUCE_SMIN:
return {RISCVISD::VECREDUCE_SMIN, maxIntN(EltSizeBits)};
case ISD::VECREDUCE_AND:
return {RISCVISD::VECREDUCE_AND, -1};
case ISD::VECREDUCE_OR:
return {RISCVISD::VECREDUCE_OR, 0};
case ISD::VECREDUCE_XOR:
return {RISCVISD::VECREDUCE_XOR, 0};
}
}
// Take a (supported) standard ISD reduction opcode and transform it to a RISCV
// reduction opcode. Note that this returns a vector type, which must be
// further processed to access the scalar result in element 0.
SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
assert(Op.getValueType().isSimple() &&
Op.getOperand(0).getValueType().isSimple() &&
"Unexpected vector-reduce lowering");
MVT VecEltVT = Op.getOperand(0).getSimpleValueType().getVectorElementType();
unsigned RVVOpcode;
uint64_t IdentityVal;
std::tie(RVVOpcode, IdentityVal) =
getRVVReductionOpAndIdentityVal(Op.getOpcode(), VecEltVT.getSizeInBits());
// We have to perform a bit of a dance to get from our vector type to the
// correct LMUL=1 vector type. We divide our minimum VLEN (64) by the vector
// element type to find the type which fills a single register. Be careful to
// use the operand's vector element type rather than the reduction's value
// type, as that has likely been extended to XLEN.
unsigned NumElts = 64 / VecEltVT.getSizeInBits();
MVT M1VT = MVT::getScalableVectorVT(VecEltVT, NumElts);
SDValue IdentitySplat =
DAG.getSplatVector(M1VT, DL, DAG.getConstant(IdentityVal, DL, VecEltVT));
SDValue Reduction =
DAG.getNode(RVVOpcode, DL, M1VT, Op.getOperand(0), IdentitySplat);
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
DAG.getConstant(0, DL, Subtarget.getXLenVT()));
return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
}
// Given a reduction op, this function returns the matching reduction opcode,
// the vector SDValue and the scalar SDValue required to lower this to a
// RISCVISD node.
static std::tuple<unsigned, SDValue, SDValue>
getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
SDLoc DL(Op);
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unhandled reduction");
case ISD::VECREDUCE_FADD:
return std::make_tuple(RISCVISD::VECREDUCE_FADD, Op.getOperand(0),
DAG.getConstantFP(0.0, DL, EltVT));
case ISD::VECREDUCE_SEQ_FADD:
return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD, Op.getOperand(1),
Op.getOperand(0));
}
}
SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VecEltVT = Op.getSimpleValueType();
// We have to perform a bit of a dance to get from our vector type to the
// correct LMUL=1 vector type. See above for an explanation.
unsigned NumElts = 64 / VecEltVT.getSizeInBits();
MVT M1VT = MVT::getScalableVectorVT(VecEltVT, NumElts);
unsigned RVVOpcode;
SDValue VectorVal, ScalarVal;
std::tie(RVVOpcode, VectorVal, ScalarVal) =
getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
DAG.getConstant(0, DL, Subtarget.getXLenVT()));
}
SDValue
RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
SelectionDAG &DAG) const {
auto *Load = cast<LoadSDNode>(Op);
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
SDValue VL =
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
SDValue NewLoad = DAG.getMemIntrinsicNode(
RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
Load->getMemoryVT(), Load->getMemOperand());
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
return DAG.getMergeValues({Result, Load->getChain()}, DL);
}
SDValue
RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
SelectionDAG &DAG) const {
auto *Store = cast<StoreSDNode>(Op);
SDLoc DL(Op);
MVT VT = Store->getValue().getSimpleValueType();
// FIXME: We probably need to zero any extra bits in a byte for mask stores.
// This is tricky to do.
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
SDValue VL =
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
SDValue NewValue =
convertToScalableVector(ContainerVT, Store->getValue(), DAG, Subtarget);
return DAG.getMemIntrinsicNode(
RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
{Store->getChain(), NewValue, Store->getBasePtr(), VL},
Store->getMemoryVT(), Store->getMemOperand());
}
SDValue
RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
SelectionDAG &DAG) const {
MVT InVT = Op.getOperand(0).getSimpleValueType();
MVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT, Subtarget);
MVT VT = Op.getSimpleValueType();
SDValue Op1 =
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
SDValue Op2 =
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
SDLoc DL(Op);
SDValue VL =
DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
bool Invert = false;
Optional<unsigned> LogicOpc;
if (ContainerVT.isFloatingPoint()) {
bool Swap = false;
switch (CC) {
default:
break;
case ISD::SETULE:
case ISD::SETULT:
Swap = true;
LLVM_FALLTHROUGH;
case ISD::SETUGE:
case ISD::SETUGT:
CC = getSetCCInverse(CC, ContainerVT);
Invert = true;
break;
case ISD::SETOGE:
case ISD::SETOGT:
case ISD::SETGE:
case ISD::SETGT:
Swap = true;
break;
case ISD::SETUEQ:
// Use !((OLT Op1, Op2) || (OLT Op2, Op1))
Invert = true;
LogicOpc = RISCVISD::VMOR_VL;
CC = ISD::SETOLT;
break;
case ISD::SETONE:
// Use ((OLT Op1, Op2) || (OLT Op2, Op1))
LogicOpc = RISCVISD::VMOR_VL;
CC = ISD::SETOLT;
break;
case ISD::SETO:
// Use (OEQ Op1, Op1) && (OEQ Op2, Op2)
LogicOpc = RISCVISD::VMAND_VL;
CC = ISD::SETOEQ;
break;
case ISD::SETUO:
// Use (UNE Op1, Op1) || (UNE Op2, Op2)
LogicOpc = RISCVISD::VMOR_VL;
CC = ISD::SETUNE;
break;
}
if (Swap) {
CC = getSetCCSwappedOperands(CC);
std::swap(Op1, Op2);
}
}
MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
// There are 3 cases we need to emit.
// 1. For (OEQ Op1, Op1) && (OEQ Op2, Op2) or (UNE Op1, Op1) || (UNE Op2, Op2)
// we need to compare each operand with itself.
// 2. For (OLT Op1, Op2) || (OLT Op2, Op1) we need to compare Op1 and Op2 in
// both orders.
// 3. For any other case we just need one compare with Op1 and Op2.
SDValue Cmp;
if (LogicOpc && (CC == ISD::SETOEQ || CC == ISD::SETUNE)) {
Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op1,
DAG.getCondCode(CC), Mask, VL);
SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op2,
DAG.getCondCode(CC), Mask, VL);
Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
} else {
Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
DAG.getCondCode(CC), Mask, VL);
if (LogicOpc) {
SDValue Cmp2 = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op2, Op1,
DAG.getCondCode(CC), Mask, VL);
Cmp = DAG.getNode(*LogicOpc, DL, MaskVT, Cmp, Cmp2, VL);
}
}
if (Invert) {
SDValue AllOnes = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
Cmp = DAG.getNode(RISCVISD::VMXOR_VL, DL, MaskVT, Cmp, AllOnes, VL);
}
return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
}
SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
MVT VT = Op.getSimpleValueType();
if (VT.getVectorElementType() == MVT::i1)
return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
}
SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
SDValue Op, SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
MVT I1ContainerVT =
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
SDValue CC =
convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
SDValue Op1 =
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
SDValue Op2 =
convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
SDLoc DL(Op);
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
SDValue Select =
DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
return convertFromScalableVector(VT, Select, DAG, Subtarget);
}
SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
unsigned NewOpc,
bool HasMask) const {
MVT VT = Op.getSimpleValueType();
assert(useRVVForFixedLengthVectorVT(VT) &&
"Only expected to lower fixed length vector operation!");
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
// Create list of operands by converting existing ones to scalable types.
SmallVector<SDValue, 6> Ops;
for (const SDValue &V : Op->op_values()) {
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
// Pass through non-vector operands.
if (!V.getValueType().isVector()) {
Ops.push_back(V);
continue;
}
// "cast" fixed length vector to a scalable vector.
assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
"Only fixed length vectors are supported!");
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
}
SDLoc DL(Op);
SDValue Mask, VL;
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
if (HasMask)
Ops.push_back(Mask);
Ops.push_back(VL);
SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
}
// Returns the opcode of the target-specific SDNode that implements the 32-bit
// form of the given Opcode.
static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode");
case ISD::SHL:
return RISCVISD::SLLW;
case ISD::SRA:
return RISCVISD::SRAW;
case ISD::SRL:
return RISCVISD::SRLW;
case ISD::SDIV:
return RISCVISD::DIVW;
case ISD::UDIV:
return RISCVISD::DIVUW;
case ISD::UREM:
return RISCVISD::REMUW;
case ISD::ROTL:
return RISCVISD::ROLW;
case ISD::ROTR:
return RISCVISD::RORW;
case RISCVISD::GREVI:
return RISCVISD::GREVIW;
case RISCVISD::GORCI:
return RISCVISD::GORCIW;
}
}
// Converts the given 32-bit operation to a target-specific SelectionDAG node.
// Because i32 isn't a legal type for RV64, these operations would otherwise
// be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
// later one because the fact the operation was originally of type i32 is
// lost.
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
unsigned ExtOpc = ISD::ANY_EXTEND) {
SDLoc DL(N);
RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
// ReplaceNodeResults requires we maintain the same type for the return value.
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
}
// Converts the given 32-bit operation to a i64 operation with signed extension
// semantic to reduce the signed extension instructions.
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
DAG.getValueType(MVT::i32));
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
}
void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDLoc DL(N);
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom type legalize this operation!");
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
bool IsStrict = N->isStrictFPOpcode();
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
// If the FP type needs to be softened, emit a library call using the 'si'
// version. If we left it to default legalization we'd end up with 'di'. If
// the FP type doesn't need to be softened just let generic type
// legalization promote the result type.
if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
TargetLowering::TypeSoftenFloat)
return;
RTLIB::Libcall LC;
if (N->getOpcode() == ISD::FP_TO_SINT ||
N->getOpcode() == ISD::STRICT_FP_TO_SINT)
LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
else
LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
MakeLibCallOptions CallOptions;
EVT OpVT = Op0.getValueType();
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
SDValue Result;
std::tie(Result, Chain) =
makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
Results.push_back(Result);
if (IsStrict)
Results.push_back(Chain);
break;
}
case ISD::READCYCLECOUNTER: {
assert(!Subtarget.is64Bit() &&
"READCYCLECOUNTER only has custom type legalization on riscv32");
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
SDValue RCW =
DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
Results.push_back(
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
Results.push_back(RCW.getValue(2));
break;
}
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
if (N->getOperand(1).getOpcode() == ISD::Constant)
return;
Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
if (N->getOperand(1).getOpcode() == ISD::Constant)
return;
Results.push_back(customLegalizeToWOp(N, DAG));
break;
case ISD::ROTL:
case ISD::ROTR:
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
Results.push_back(customLegalizeToWOp(N, DAG));
break;
case ISD::SDIV:
case ISD::UDIV:
case ISD::UREM: {
MVT VT = N->getSimpleValueType(0);
assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
"Unexpected custom legalisation");
if (N->getOperand(0).getOpcode() == ISD::Constant ||
N->getOperand(1).getOpcode() == ISD::Constant)
return;
// If the input is i32, use ANY_EXTEND since the W instructions don't read
// the upper 32 bits. For other types we need to sign or zero extend
// based on the opcode.
unsigned ExtOpc = ISD::ANY_EXTEND;
if (VT != MVT::i32)
ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
break;
}
case ISD::BITCAST: {
assert(((N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtF()) ||
(N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh())) &&
"Unexpected custom legalisation");
SDValue Op0 = N->getOperand(0);
if (N->getValueType(0) == MVT::i16 && Subtarget.hasStdExtZfh()) {
if (Op0.getValueType() != MVT::f16)
return;
SDValue FPConv =
DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, Subtarget.getXLenVT(), Op0);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
} else if (N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtF()) {
if (Op0.getValueType() != MVT::f32)
return;
SDValue FPConv =
DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
}
break;
}
case RISCVISD::GREVI:
case RISCVISD::GORCI: {
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
// This is similar to customLegalizeToWOp, except that we pass the second
// operand (a TargetConstant) straight through: it is already of type
// XLenVT.
SDLoc DL(N);
RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
SDValue NewOp0 =
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
SDValue NewRes =
DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, N->getOperand(1));
// ReplaceNodeResults requires we maintain the same type for the return
// value.
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
break;
}
case ISD::BSWAP:
case ISD::BITREVERSE: {
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
N->getOperand(0));
unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
SDValue GREVIW = DAG.getNode(RISCVISD::GREVIW, DL, MVT::i64, NewOp0,
DAG.getTargetConstant(Imm, DL,
Subtarget.getXLenVT()));
// ReplaceNodeResults requires we maintain the same type for the return
// value.
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
break;
}
case ISD::FSHL:
case ISD::FSHR: {
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
SDValue NewOp0 =
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
SDValue NewOp1 =
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
SDValue NewOp2 =
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
// FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
// Mask the shift amount to 5 bits.
NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
DAG.getConstant(0x1f, DL, MVT::i64));
unsigned Opc =
N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
// Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
// type is illegal (currently only vXi64 RV32).
// With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
// transferred to the destination register. We issue two of these from the
// upper- and lower- halves of the SEW-bit vector element, slid down to the
// first element.
SDLoc DL(N);
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VecVT = Vec.getValueType();
assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
VecVT.getVectorElementType() == MVT::i64 &&
"Unexpected EXTRACT_VECTOR_ELT legalization");
if (!VecVT.isScalableVector())
return;
SDValue Slidedown = Vec;
MVT XLenVT = Subtarget.getXLenVT();
// Unless the index is known to be 0, we must slide the vector down to get
// the desired element into index 0.
if (!isNullConstant(Idx)) {
SDValue Mask, VL;
std::tie(Mask, VL) =
getDefaultScalableVLOps(VecVT.getSimpleVT(), DL, DAG, Subtarget);
Slidedown = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT,
DAG.getUNDEF(VecVT), Vec, Idx, Mask, VL);
}
// Extract the lower XLEN bits of the correct vector element.
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Slidedown, Idx);
// To extract the upper XLEN bits of the vector element, shift the first
// element right by 32 bits and re-extract the lower XLEN bits.
SDValue ThirtyTwoV =
DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT,
DAG.getConstant(32, DL, Subtarget.getXLenVT()));
SDValue LShr32 = DAG.getNode(ISD::SRL, DL, VecVT, Slidedown, ThirtyTwoV);
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32, Idx);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IntNo) {
default:
llvm_unreachable(
"Don't know how to custom type legalize this intrinsic!");
case Intrinsic::riscv_vmv_x_s: {
EVT VT = N->getValueType(0);
assert((VT == MVT::i8 || VT == MVT::i16 ||
(Subtarget.is64Bit() && VT == MVT::i32)) &&
"Unexpected custom legalisation!");
SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
Subtarget.getXLenVT(), N->getOperand(1));
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
break;
}
}
break;
}
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMIN:
// The custom-lowering for these nodes returns a vector whose first element
// is the result of the reduction. Extract its first element and let the
// legalization for EXTRACT_VECTOR_ELT do the rest of the job.
Results.push_back(lowerVECREDUCE(SDValue(N, 0), DAG));
break;
}
}
// A structure to hold one of the bit-manipulation patterns below. Together, a
// SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
// (or (and (shl x, 1), 0xAAAAAAAA),
// (and (srl x, 1), 0x55555555))
struct RISCVBitmanipPat {
SDValue Op;
unsigned ShAmt;
bool IsSHL;
bool formsPairWith(const RISCVBitmanipPat &Other) const {
return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
}
};
// Matches any of the following bit-manipulation patterns:
// (and (shl x, 1), (0x55555555 << 1))
// (and (srl x, 1), 0x55555555)
// (shl (and x, 0x55555555), 1)
// (srl (and x, (0x55555555 << 1)), 1)
// where the shift amount and mask may vary thus:
// [1] = 0x55555555 / 0xAAAAAAAA
// [2] = 0x33333333 / 0xCCCCCCCC
// [4] = 0x0F0F0F0F / 0xF0F0F0F0
// [8] = 0x00FF00FF / 0xFF00FF00
// [16] = 0x0000FFFF / 0xFFFFFFFF
// [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
static Optional<RISCVBitmanipPat> matchRISCVBitmanipPat(SDValue Op) {
Optional<uint64_t> Mask;
// Optionally consume a mask around the shift operation.
if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
Mask = Op.getConstantOperandVal(1);
Op = Op.getOperand(0);
}
if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
return None;
bool IsSHL = Op.getOpcode() == ISD::SHL;
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return None;
auto ShAmt = Op.getConstantOperandVal(1);
if (!isPowerOf2_64(ShAmt))
return None;
// These are the unshifted masks which we use to match bit-manipulation
// patterns. They may be shifted left in certain circumstances.
static const uint64_t BitmanipMasks[] = {
0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL,
};
unsigned MaskIdx = Log2_64(ShAmt);
if (MaskIdx >= array_lengthof(BitmanipMasks))
return None;
auto Src = Op.getOperand(0);
unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
auto ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
// The expected mask is shifted left when the AND is found around SHL
// patterns.
// ((x >> 1) & 0x55555555)
// ((x << 1) & 0xAAAAAAAA)
bool SHLExpMask = IsSHL;
if (!Mask) {
// Sometimes LLVM keeps the mask as an operand of the shift, typically when
// the mask is all ones: consume that now.
if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
Mask = Src.getConstantOperandVal(1);
Src = Src.getOperand(0);
// The expected mask is now in fact shifted left for SRL, so reverse the
// decision.
// ((x & 0xAAAAAAAA) >> 1)
// ((x & 0x55555555) << 1)
SHLExpMask = !SHLExpMask;
} else {
// Use a default shifted mask of all-ones if there's no AND, truncated
// down to the expected width. This simplifies the logic later on.
Mask = maskTrailingOnes<uint64_t>(Width);
*Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
}
}
if (SHLExpMask)
ExpMask <<= ShAmt;
if (Mask != ExpMask)
return None;
return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
}
// Match the following pattern as a GREVI(W) operation
// (or (BITMANIP_SHL x), (BITMANIP_SRL x))
static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
EVT VT = Op.getValueType();
if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
auto LHS = matchRISCVBitmanipPat(Op.getOperand(0));
auto RHS = matchRISCVBitmanipPat(Op.getOperand(1));
if (LHS && RHS && LHS->formsPairWith(*RHS)) {
SDLoc DL(Op);
return DAG.getNode(
RISCVISD::GREVI, DL, VT, LHS->Op,
DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
}
}
return SDValue();
}
// Matches any the following pattern as a GORCI(W) operation
// 1. (or (GREVI x, shamt), x) if shamt is a power of 2
// 2. (or x, (GREVI x, shamt)) if shamt is a power of 2
// 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
// Note that with the variant of 3.,
// (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
// the inner pattern will first be matched as GREVI and then the outer
// pattern will be matched to GORC via the first rule above.
// 4. (or (rotl/rotr x, bitwidth/2), x)
static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
const RISCVSubtarget &Subtarget) {
EVT VT = Op.getValueType();
if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
if (Reverse.getOpcode() == RISCVISD::GREVI && Reverse.getOperand(0) == X &&
isPowerOf2_32(Reverse.getConstantOperandVal(1)))
return DAG.getNode(RISCVISD::GORCI, DL, VT, X, Reverse.getOperand(1));
// We can also form GORCI from ROTL/ROTR by half the bitwidth.
if ((Reverse.getOpcode() == ISD::ROTL ||
Reverse.getOpcode() == ISD::ROTR) &&
Reverse.getOperand(0) == X &&
isa<ConstantSDNode>(Reverse.getOperand(1))) {
uint64_t RotAmt = Reverse.getConstantOperandVal(1);
if (RotAmt == (VT.getSizeInBits() / 2))
return DAG.getNode(
RISCVISD::GORCI, DL, VT, X,
DAG.getTargetConstant(RotAmt, DL, Subtarget.getXLenVT()));
}
return SDValue();
};
// Check for either commutable permutation of (or (GREVI x, shamt), x)
if (SDValue V = MatchOROfReverse(Op0, Op1))
return V;
if (SDValue V = MatchOROfReverse(Op1, Op0))
return V;
// OR is commutable so canonicalize its OR operand to the left
if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
std::swap(Op0, Op1);
if (Op0.getOpcode() != ISD::OR)
return SDValue();
SDValue OrOp0 = Op0.getOperand(0);
SDValue OrOp1 = Op0.getOperand(1);
auto LHS = matchRISCVBitmanipPat(OrOp0);
// OR is commutable so swap the operands and try again: x might have been
// on the left
if (!LHS) {
std::swap(OrOp0, OrOp1);
LHS = matchRISCVBitmanipPat(OrOp0);
}
auto RHS = matchRISCVBitmanipPat(Op1);
if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
return DAG.getNode(
RISCVISD::GORCI, DL, VT, LHS->Op,
DAG.getTargetConstant(LHS->ShAmt, DL, Subtarget.getXLenVT()));
}
}
return SDValue();
}
// Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
// non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
// Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
// not undo itself, but they are redundant.
static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
unsigned ShAmt1 = N->getConstantOperandVal(1);
SDValue Src = N->getOperand(0);
if (Src.getOpcode() != N->getOpcode())
return SDValue();
unsigned ShAmt2 = Src.getConstantOperandVal(1);
Src = Src.getOperand(0);
unsigned CombinedShAmt;
if (N->getOpcode() == RISCVISD::GORCI || N->getOpcode() == RISCVISD::GORCIW)
CombinedShAmt = ShAmt1 | ShAmt2;
else
CombinedShAmt = ShAmt1 ^ ShAmt2;
if (CombinedShAmt == 0)
return Src;
SDLoc DL(N);
return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), Src,
DAG.getTargetConstant(CombinedShAmt, DL,
N->getOperand(1).getValueType()));
}
SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default:
break;
case RISCVISD::SplitF64: {
SDValue Op0 = N->getOperand(0);
// If the input to SplitF64 is just BuildPairF64 then the operation is
// redundant. Instead, use BuildPairF64's operands directly.
if (Op0->getOpcode() == RISCVISD::BuildPairF64)
return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
SDLoc DL(N);
// It's cheaper to materialise two 32-bit integers than to load a double
// from the constant pool and transfer it to integer registers through the
// stack.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
APInt V = C->getValueAPF().bitcastToAPInt();
SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
return DCI.CombineTo(N, Lo, Hi);
}
// This is a target-specific version of a DAGCombine performed in
// DAGCombiner::visitBITCAST. It performs the equivalent of:
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
!Op0.getNode()->hasOneUse())
break;
SDValue NewSplitF64 =
DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
Op0.getOperand(0));
SDValue Lo = NewSplitF64.getValue(0);
SDValue Hi = NewSplitF64.getValue(1);
APInt SignBit = APInt::getSignMask(32);
if (Op0.getOpcode() == ISD::FNEG) {
SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
DAG.getConstant(SignBit, DL, MVT::i32));
return DCI.CombineTo(N, Lo, NewHi);
}
assert(Op0.getOpcode() == ISD::FABS);
SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
DAG.getConstant(~SignBit, DL, MVT::i32));
return DCI.CombineTo(N, Lo, NewHi);
}
case RISCVISD::SLLW:
case RISCVISD::SRAW:
case RISCVISD::SRLW:
case RISCVISD::ROLW:
case RISCVISD::RORW: {
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
if (N->getOpcode() != ISD::DELETED_NODE)
DCI.AddToWorklist(N);
return SDValue(N, 0);
}
break;
}
case RISCVISD::FSL:
case RISCVISD::FSR: {
// Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
SDValue ShAmt = N->getOperand(2);
unsigned BitWidth = ShAmt.getValueSizeInBits();
assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
if (N->getOpcode() != ISD::DELETED_NODE)
DCI.AddToWorklist(N);
return SDValue(N, 0);
}
break;
}
case RISCVISD::FSLW:
case RISCVISD::FSRW: {
// Only the lower 32 bits of Values and lower 6 bits of shift amount are
// read.
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue ShAmt = N->getOperand(2);
APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
SimplifyDemandedBits(Op1, OpMask, DCI) ||
SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
if (N->getOpcode() != ISD::DELETED_NODE)
DCI.AddToWorklist(N);
return SDValue(N, 0);
}
break;
}
case RISCVISD::GREVIW:
case RISCVISD::GORCIW: {
// Only the lower 32 bits of the first operand are read
SDValue Op0 = N->getOperand(0);
APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
if (SimplifyDemandedBits(Op0, Mask, DCI)) {
if (N->getOpcode() != ISD::DELETED_NODE)
DCI.AddToWorklist(N);
return SDValue(N, 0);
}
return combineGREVI_GORCI(N, DCI.DAG);
}
case RISCVISD::FMV_X_ANYEXTW_RV64: {
SDLoc DL(N);
SDValue Op0 = N->getOperand(0);
// If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
// conversion is unnecessary and can be replaced with an ANY_EXTEND
// of the FMV_W_X_RV64 operand.
if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
"Unexpected value type!");
return Op0.getOperand(0);
}
// This is a target-specific version of a DAGCombine performed in
// DAGCombiner::visitBITCAST. It performs the equivalent of:
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
!Op0.getNode()->hasOneUse())
break;
SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
Op0.getOperand(0));
APInt SignBit = APInt::getSignMask(32).sext(64);
if (Op0.getOpcode() == ISD::FNEG)
return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
DAG.getConstant(SignBit, DL, MVT::i64));
assert(Op0.getOpcode() == ISD::FABS);
return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
DAG.getConstant(~SignBit, DL, MVT::i64));
}
case RISCVISD::GREVI:
case RISCVISD::GORCI:
return combineGREVI_GORCI(N, DCI.DAG);
case ISD::OR:
if (auto GREV = combineORToGREV(SDValue(N, 0), DCI.DAG, Subtarget))
return GREV;
if (auto GORC = combineORToGORC(SDValue(N, 0), DCI.DAG, Subtarget))
return GORC;
break;
case RISCVISD::SELECT_CC: {
// Transform
// (select_cc (xor X, 1), 0, setne, trueV, falseV) ->
// (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
// This can occur when legalizing some floating point comparisons.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
if (ISD::isIntEqualitySetCC(CCVal) && isNullConstant(RHS) &&
LHS.getOpcode() == ISD::XOR && isOneConstant(LHS.getOperand(1)) &&
DAG.MaskedValueIsZero(LHS.getOperand(0), Mask)) {
SDLoc DL(N);
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
SDValue TargetCC = DAG.getConstant(CCVal, DL, Subtarget.getXLenVT());
return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
{LHS.getOperand(0), RHS, TargetCC, N->getOperand(3),
N->getOperand(4)});
}
break;
}
case ISD::SETCC: {
// (setcc X, 1, setne) -> (setcc X, 0, seteq) if we can prove X is 0/1.
// Comparing with 0 may allow us to fold into bnez/beqz.
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getValueType().isScalableVector())
break;
auto CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
if (isOneConstant(RHS) && ISD::isIntEqualitySetCC(CC) &&
DAG.MaskedValueIsZero(LHS, Mask)) {
SDLoc DL(N);
SDValue Zero = DAG.getConstant(0, DL, LHS.getValueType());
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
return DAG.getSetCC(DL, N->getValueType(0), LHS, Zero, CC);
}
break;
}
case ISD::FCOPYSIGN: {
EVT VT = N->getValueType(0);
if (!VT.isVector())
break;
// There is a form of VFSGNJ which injects the negated sign of its second
// operand. Try and bubble any FNEG up after the extend/round to produce
// this optimized pattern. Avoid modifying cases where FP_ROUND and
// TRUNC=1.
SDValue In2 = N->getOperand(1);
// Avoid cases where the extend/round has multiple uses, as duplicating
// those is typically more expensive than removing a fneg.
if (!In2.hasOneUse())
break;
if (In2.getOpcode() != ISD::FP_EXTEND &&
(In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
break;
In2 = In2.getOperand(0);
if (In2.getOpcode() != ISD::FNEG)
break;
SDLoc DL(N);
SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
}
}
return SDValue();
}
bool RISCVTargetLowering::isDesirableToCommuteWithShift(
const SDNode *N, CombineLevel Level) const {
// The following folds are only desirable if `(OP _, c1 << c2)` can be
// materialised in fewer instructions than `(OP _, c1)`:
//
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
SDValue N0 = N->getOperand(0);
EVT Ty = N0.getValueType();
if (Ty.isScalarInteger() &&
(N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (C1 && C2) {
const APInt &C1Int = C1->getAPIntValue();
APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
// We can materialise `c1 << c2` into an add immediate, so it's "free",
// and the combine should happen, to potentially allow further combines
// later.
if (ShiftedC1Int.getMinSignedBits() <= 64 &&
isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
return true;
// We can materialise `c1` in an add immediate, so it's "free", and the
// combine should be prevented.
if (C1Int.getMinSignedBits() <= 64 &&
isLegalAddImmediate(C1Int.getSExtValue()))
return false;
// Neither constant will fit into an immediate, so find materialisation
// costs.
int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
Subtarget.is64Bit());
int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
// Materialising `c1` is cheaper than materialising `c1 << c2`, so the
// combine should be prevented.
if (C1Cost < ShiftedC1Cost)
return false;
}
}
return true;
}
bool RISCVTargetLowering::targetShrinkDemandedConstant(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
TargetLoweringOpt &TLO) const {
// Delay this optimization as late as possible.
if (!TLO.LegalOps)
return false;
EVT VT = Op.getValueType();
if (VT.isVector())
return false;
// Only handle AND for now.
if (Op.getOpcode() != ISD::AND)
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
const APInt &Mask = C->getAPIntValue();
// Clear all non-demanded bits initially.
APInt ShrunkMask = Mask & DemandedBits;
// If the shrunk mask fits in sign extended 12 bits, let the target
// independent code apply it.
if (ShrunkMask.isSignedIntN(12))
return false;
// Try to make a smaller immediate by setting undemanded bits.
// We need to be able to make a negative number through a combination of mask
// and undemanded bits.
APInt ExpandedMask = Mask | ~DemandedBits;
if (!ExpandedMask.isNegative())
return false;
// What is the fewest number of bits we need to represent the negative number.
unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
// Try to make a 12 bit negative immediate. If that fails try to make a 32
// bit negative immediate unless the shrunk immediate already fits in 32 bits.
APInt NewMask = ShrunkMask;
if (MinSignedBits <= 12)
NewMask.setBitsFrom(11);
else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
NewMask.setBitsFrom(31);
else
return false;
// Sanity check that our new mask is a subset of the demanded mask.
assert(NewMask.isSubsetOf(ExpandedMask));
// If we aren't changing the mask, just return true to keep it and prevent
// the caller from optimizing.
if (NewMask == Mask)
return true;
// Replace the constant with the new mask.
SDLoc DL(Op);
SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
return TLO.CombineTo(Op, NewOp);
}
void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = Known.getBitWidth();
unsigned Opc = Op.getOpcode();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
Known.resetAll();
switch (Opc) {
default: break;
case RISCVISD::REMUW: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
// We only care about the lower 32 bits.
Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
// Restore the original width by sign extending.
Known = Known.sext(BitWidth);
break;
}
case RISCVISD::DIVUW: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
// We only care about the lower 32 bits.
Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
// Restore the original width by sign extending.
Known = Known.sext(BitWidth);
break;
}
case RISCVISD::READ_VLENB:
// We assume VLENB is at least 8 bytes.
// FIXME: The 1.0 draft spec defines minimum VLEN as 128 bits.
Known.Zero.setLowBits(3);
break;
}
}
unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
case RISCVISD::SLLW:
case RISCVISD::SRAW:
case RISCVISD::SRLW:
case RISCVISD::DIVW:
case RISCVISD::DIVUW:
case RISCVISD::REMUW:
case RISCVISD::ROLW:
case RISCVISD::RORW:
case RISCVISD::GREVIW:
case RISCVISD::GORCIW:
case RISCVISD::FSLW:
case RISCVISD::FSRW:
// TODO: As the result is sign-extended, this is conservatively correct. A
// more precise answer could be calculated for SRAW depending on known
// bits in the shift amount.
return 33;
case RISCVISD::VMV_X_S:
// The number of sign bits of the scalar result is computed by obtaining the
// element type of the input vector operand, subtracting its width from the
// XLEN, and then adding one (sign bit within the element type). If the
// element type is wider than XLen, the least-significant XLEN bits are
// taken.
if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
return 1;
return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
}
return 1;
}
static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
// To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
// Should the count have wrapped while it was being read, we need to try
// again.
// ...
// read:
// rdcycleh x3 # load high word of cycle
// rdcycle x2 # load low word of cycle
// rdcycleh x4 # load high word of cycle
// bne x3, x4, read # check if high word reads match, otherwise try again
// ...
MachineFunction &MF = *BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, LoopMBB);
MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, DoneMBB);
// Transfer the remainder of BB and its successor edges to DoneMBB.
DoneMBB->splice(DoneMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(LoopMBB);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
Register LoReg = MI.getOperand(0).getReg();
Register HiReg = MI.getOperand(1).getReg();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
.addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
.addReg(RISCV::X0);
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
.addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
.addReg(RISCV::X0);
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
.addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
.addReg(RISCV::X0);
BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
.addReg(HiReg)
.addReg(ReadAgainReg)
.addMBB(LoopMBB);
LoopMBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(DoneMBB);
MI.eraseFromParent();
return DoneMBB;
}
static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
Register LoReg = MI.getOperand(0).getReg();
Register HiReg = MI.getOperand(1).getReg();
Register SrcReg = MI.getOperand(2).getReg();
const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
RI);
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
MachineMemOperand *MMOLo =
MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMOLo);
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(MMOHi);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
"Unexpected instruction");
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
Register DstReg = MI.getOperand(0).getReg();
Register LoReg = MI.getOperand(1).getReg();
Register HiReg = MI.getOperand(2).getReg();
const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
MachineMemOperand *MMOLo =
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
.addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMOLo);
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
.addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(MMOHi);
TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static bool isSelectPseudo(MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case RISCV::Select_GPR_Using_CC_GPR:
case RISCV::Select_FPR16_Using_CC_GPR:
case RISCV::Select_FPR32_Using_CC_GPR:
case RISCV::Select_FPR64_Using_CC_GPR:
return true;
}
}
static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
// To "insert" Select_* instructions, we actually have to insert the triangle
// control-flow pattern. The incoming instructions know the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and the condcode to use to select the appropriate branch.
//
// We produce the following control flow:
// HeadMBB
// | \
// | IfFalseMBB
// | /
// TailMBB
//
// When we find a sequence of selects we attempt to optimize their emission
// by sharing the control flow. Currently we only handle cases where we have
// multiple selects with the exact same condition (same LHS, RHS and CC).
// The selects may be interleaved with other instructions if the other
// instructions meet some requirements we deem safe:
// - They are debug instructions. Otherwise,
// - They do not have side-effects, do not access memory and their inputs do
// not depend on the results of the select pseudo-instructions.
// The TrueV/FalseV operands of the selects cannot depend on the result of
// previous selects in the sequence.
// These conditions could be further relaxed. See the X86 target for a
// related approach and more information.
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
SmallVector<MachineInstr *, 4> SelectDebugValues;
SmallSet<Register, 4> SelectDests;
SelectDests.insert(MI.getOperand(0).getReg());
MachineInstr *LastSelectPseudo = &MI;
for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
SequenceMBBI != E; ++SequenceMBBI) {
if (SequenceMBBI->isDebugInstr())
continue;
else if (isSelectPseudo(*SequenceMBBI)) {
if (SequenceMBBI->getOperand(1).getReg() != LHS ||
SequenceMBBI->getOperand(2).getReg() != RHS ||
SequenceMBBI->getOperand(3).getImm() != CC ||
SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
break;
LastSelectPseudo = &*SequenceMBBI;
SequenceMBBI->collectDebugValues(SelectDebugValues);
SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
} else {
if (SequenceMBBI->hasUnmodeledSideEffects() ||
SequenceMBBI->mayLoadOrStore())
break;
if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
}))
break;
}
}
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
DebugLoc DL = MI.getDebugLoc();
MachineFunction::iterator I = ++BB->getIterator();
MachineBasicBlock *HeadMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, IfFalseMBB);
F->insert(I, TailMBB);
// Transfer debug instructions associated with the selects to TailMBB.
for (MachineInstr *DebugInstr : SelectDebugValues) {
TailMBB->push_back(DebugInstr->removeFromParent());
}
// Move all instructions after the sequence to TailMBB.
TailMBB->splice(TailMBB->end(), HeadMBB,
std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi nodes for the selects.
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
// Set the successors for HeadMBB.
HeadMBB->addSuccessor(IfFalseMBB);
HeadMBB->addSuccessor(TailMBB);
// Insert appropriate branch.
unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
BuildMI(HeadMBB, DL, TII.get(Opcode))
.addReg(LHS)
.addReg(RHS)
.addMBB(TailMBB);
// IfFalseMBB just falls through to TailMBB.
IfFalseMBB->addSuccessor(TailMBB);
// Create PHIs for all of the select pseudo-instructions.
auto SelectMBBI = MI.getIterator();
auto SelectEnd = std::next(LastSelectPseudo->getIterator());
auto InsertionPoint = TailMBB->begin();
while (SelectMBBI != SelectEnd) {
auto Next = std::next(SelectMBBI);
if (isSelectPseudo(*SelectMBBI)) {
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
.addReg(SelectMBBI->getOperand(4).getReg())
.addMBB(HeadMBB)
.addReg(SelectMBBI->getOperand(5).getReg())
.addMBB(IfFalseMBB);
SelectMBBI->eraseFromParent();
}
SelectMBBI = Next;
}
F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
return TailMBB;
}
static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
int VLIndex, unsigned SEWIndex,
RISCVVLMUL VLMul, bool ForceTailAgnostic) {
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
unsigned SEW = MI.getOperand(SEWIndex).getImm();
assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
RISCVVSEW ElementWidth = static_cast<RISCVVSEW>(Log2_32(SEW / 8));
MachineRegisterInfo &MRI = MF.getRegInfo();
// VL and VTYPE are alive here.
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI));
if (VLIndex >= 0) {
// Set VL (rs1 != X0).
Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
MIB.addReg(DestReg, RegState::Define | RegState::Dead)
.addReg(MI.getOperand(VLIndex).getReg());
} else
// With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
MIB.addReg(RISCV::X0, RegState::Define | RegState::Dead)
.addReg(RISCV::X0, RegState::Kill);
// Default to tail agnostic unless the destination is tied to a source. In
// that case the user would have some control over the tail values. The tail
// policy is also ignored on instructions that only update element 0 like
// vmv.s.x or reductions so use agnostic there to match the common case.
// FIXME: This is conservatively correct, but we might want to detect that
// the input is undefined.
bool TailAgnostic = true;
unsigned UseOpIdx;
if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
TailAgnostic = false;
// If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
if (UseMI && UseMI->isImplicitDef())
TailAgnostic = true;
}
// For simplicity we reuse the vtype representation here.
MIB.addImm(RISCVVType::encodeVTYPE(VLMul, ElementWidth,
/*TailAgnostic*/ TailAgnostic,
/*MaskAgnostic*/ false));
// Remove (now) redundant operands from pseudo
MI.getOperand(SEWIndex).setImm(-1);
if (VLIndex >= 0) {
MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
MI.getOperand(VLIndex).setIsKill(false);
}
return BB;
}
MachineBasicBlock *
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
uint64_t TSFlags = MI.getDesc().TSFlags;
if (TSFlags & RISCVII::HasSEWOpMask) {
unsigned NumOperands = MI.getNumExplicitOperands();
int VLIndex = (TSFlags & RISCVII::HasVLOpMask) ? NumOperands - 2 : -1;
unsigned SEWIndex = NumOperands - 1;
bool ForceTailAgnostic = TSFlags & RISCVII::ForceTailAgnosticMask;
RISCVVLMUL VLMul = static_cast<RISCVVLMUL>((TSFlags & RISCVII::VLMulMask) >>
RISCVII::VLMulShift);
return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
}
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case RISCV::ReadCycleWide:
assert(!Subtarget.is64Bit() &&
"ReadCycleWrite is only to be used on riscv32");
return emitReadCycleWidePseudo(MI, BB);
case RISCV::Select_GPR_Using_CC_GPR:
case RISCV::Select_FPR16_Using_CC_GPR:
case RISCV::Select_FPR32_Using_CC_GPR:
case RISCV::Select_FPR64_Using_CC_GPR:
return emitSelectPseudo(MI, BB);
case RISCV::BuildPairF64Pseudo:
return emitBuildPairF64Pseudo(MI, BB);
case RISCV::SplitF64Pseudo:
return emitSplitF64Pseudo(MI, BB);
}
}
// Calling Convention Implementation.
// The expectations for frontend ABI lowering vary from target to target.
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
// details, but this is a longer term goal. For now, we simply try to keep the
// role of the frontend as simple and well-defined as possible. The rules can
// be summarised as:
// * Never split up large scalar arguments. We handle them here.
// * If a hardfloat calling convention is being used, and the struct may be
// passed in a pair of registers (fp+fp, int+fp), and both registers are
// available, then pass as two separate arguments. If either the GPRs or FPRs
// are exhausted, then pass according to the rule below.
// * If a struct could never be passed in registers or directly in a stack
// slot (as it is larger than 2*XLEN and the floating point rules don't
// apply), then pass it using a pointer with the byval attribute.
// * If a struct is less than 2*XLEN, then coerce to either a two-element
// word-sized array or a 2*XLEN scalar (depending on alignment).
// * The frontend can determine whether a struct is returned by reference or
// not based on its size and fields. If it will be returned by reference, the
// frontend must modify the prototype so a pointer with the sret annotation is
// passed as the first argument. This is not necessary for large scalar
// returns.
// * Struct return values and varargs should be coerced to structs containing
// register-size fields in the same situations they would be for fixed
// arguments.
static const MCPhysReg ArgGPRs[] = {
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
};
static const MCPhysReg ArgFPR16s[] = {
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
};
static const MCPhysReg ArgFPR32s[] = {
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
};
static const MCPhysReg ArgFPR64s[] = {
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
};
// This is an interim calling convention and it may be changed in the future.
static const MCPhysReg ArgVRs[] = {
RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
RISCV::V20M2, RISCV::V22M2};
static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
RISCV::V20M4};
static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
// Pass a 2*XLEN argument that has been split into two XLEN values through
// registers or the stack as necessary.
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
MVT ValVT2, MVT LocVT2,
ISD::ArgFlagsTy ArgFlags2) {
unsigned XLenInBytes = XLen / 8;
if (Register Reg = State.AllocateReg(ArgGPRs)) {
// At least one half can be passed via register.
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
VA1.getLocVT(), CCValAssign::Full));
} else {
// Both halves must be passed on the stack, with proper alignment.
Align StackAlign =
std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
State.addLoc(
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
State.AllocateStack(XLenInBytes, StackAlign),
VA1.getLocVT(), CCValAssign::Full));
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
LocVT2, CCValAssign::Full));
return false;
}
if (Register Reg = State.AllocateReg(ArgGPRs)) {
// The second half can also be passed via register.
State.addLoc(
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
} else {
// The second half is passed via the stack, without additional alignment.
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
LocVT2, CCValAssign::Full));
}
return false;
}
// Implements the RISC-V calling convention. Returns true upon failure.
static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
Optional<unsigned> FirstMaskArgument) {
unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
assert(XLen == 32 || XLen == 64);
MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
// Any return value split in to more than two values can't be returned
// directly.
if (IsRet && ValNo > 1)
return true;
// UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
// variadic argument, or if no F16/F32 argument registers are available.
bool UseGPRForF16_F32 = true;
// UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
// variadic argument, or if no F64 argument registers are available.
bool UseGPRForF64 = true;
switch (ABI) {
default:
llvm_unreachable("Unexpected ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
break;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
UseGPRForF16_F32 = !IsFixed;
break;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
UseGPRForF16_F32 = !IsFixed;
UseGPRForF64 = !IsFixed;
break;
}
// FPR16, FPR32, and FPR64 alias each other.
if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
UseGPRForF16_F32 = true;
UseGPRForF64 = true;
}
// From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
// similar local variables rather than directly checking against the target
// ABI.
if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
LocVT = XLenVT;
LocInfo = CCValAssign::BCvt;
} else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
LocVT = MVT::i64;
LocInfo = CCValAssign::BCvt;
}
// If this is a variadic argument, the RISC-V calling convention requires
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
// be used regardless of whether the original argument was split during
// legalisation or not. The argument will not be passed by registers if the
// original type is larger than 2*XLEN, so the register alignment rule does
// not apply.
unsigned TwoXLenInBytes = (2 * XLen) / 8;
if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
// Skip 'odd' register if necessary.
if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
State.AllocateReg(ArgGPRs);
}
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
State.getPendingArgFlags();
assert(PendingLocs.size() == PendingArgFlags.size() &&
"PendingLocs and PendingArgFlags out of sync");
// Handle passing f64 on RV32D with a soft float ABI or when floating point
// registers are exhausted.
if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
"Can't lower f64 if it is split");
// Depending on available argument GPRS, f64 may be passed in a pair of
// GPRs, split between a GPR and the stack, or passed completely on the
// stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
// cases.
Register Reg = State.AllocateReg(ArgGPRs);
LocVT = MVT::i32;
if (!Reg) {
unsigned StackOffset = State.AllocateStack(8, Align(8));
State.addLoc(
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
if (!State.AllocateReg(ArgGPRs))
State.AllocateStack(4, Align(4));
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// Split arguments might be passed indirectly, so keep track of the pending
// values.
if (ArgFlags.isSplit() || !PendingLocs.empty()) {
LocVT = XLenVT;
LocInfo = CCValAssign::Indirect;
PendingLocs.push_back(
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
PendingArgFlags.push_back(ArgFlags);
if (!ArgFlags.isSplitEnd()) {
return false;
}
}
// If the split argument only had two elements, it should be passed directly
// in registers or on the stack.
if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
// Apply the normal calling convention rules to the first half of the
// split argument.
CCValAssign VA = PendingLocs[0];
ISD::ArgFlagsTy AF = PendingArgFlags[0];
PendingLocs.clear();
PendingArgFlags.clear();
return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
ArgFlags);
}
// Allocate to a register if possible, or else a stack slot.
Register Reg;
if (ValVT == MVT::f16 && !UseGPRForF16_F32)
Reg = State.AllocateReg(ArgFPR16s);
else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
Reg = State.AllocateReg(ArgFPR32s);
else if (ValVT == MVT::f64 && !UseGPRForF64)
Reg = State.AllocateReg(ArgFPR64s);
else if (ValVT.isScalableVector()) {
const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
if (RC == &RISCV::VRRegClass) {
// Assign the first mask argument to V0.
// This is an interim calling convention and it may be changed in the
// future.
if (FirstMaskArgument.hasValue() &&
ValNo == FirstMaskArgument.getValue()) {
Reg = State.AllocateReg(RISCV::V0);
} else {
Reg = State.AllocateReg(ArgVRs);
}
} else if (RC == &RISCV::VRM2RegClass) {
Reg = State.AllocateReg(ArgVRM2s);
} else if (RC == &RISCV::VRM4RegClass) {
Reg = State.AllocateReg(ArgVRM4s);
} else if (RC == &RISCV::VRM8RegClass) {
Reg = State.AllocateReg(ArgVRM8s);
} else {
llvm_unreachable("Unhandled class register for ValueType");
}
if (!Reg) {
LocInfo = CCValAssign::Indirect;
// Try using a GPR to pass the address
Reg = State.AllocateReg(ArgGPRs);
LocVT = XLenVT;
}
} else
Reg = State.AllocateReg(ArgGPRs);
unsigned StackOffset =
Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
// If we reach this point and PendingLocs is non-empty, we must be at the
// end of a split argument that must be passed indirectly.
if (!PendingLocs.empty()) {
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
for (auto &It : PendingLocs) {
if (Reg)
It.convertToReg(Reg);
else
It.convertToMem(StackOffset);
State.addLoc(It);
}
PendingLocs.clear();
PendingArgFlags.clear();
return false;
}
assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
(TLI.getSubtarget().hasStdExtV() && ValVT.isScalableVector())) &&
"Expected an XLenVT or scalable vector types at this stage");
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// When a floating-point value is passed on the stack, no bit-conversion is
// needed.
if (ValVT.isFloatingPoint()) {
LocVT = ValVT;
LocInfo = CCValAssign::Full;
}
State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
template <typename ArgTy>
static Optional<unsigned> preAssignMask(const ArgTy &Args) {
for (const auto &ArgIdx : enumerate(Args)) {
MVT ArgVT = ArgIdx.value().VT;
if (ArgVT.isScalableVector() &&
ArgVT.getVectorElementType().SimpleTy == MVT::i1)
return ArgIdx.index();
}
return None;
}
void RISCVTargetLowering::analyzeInputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
unsigned NumArgs = Ins.size();
FunctionType *FType = MF.getFunction().getFunctionType();
Optional<unsigned> FirstMaskArgument;
if (Subtarget.hasStdExtV())
FirstMaskArgument = preAssignMask(Ins);
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Ins[i].VT;
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
Type *ArgTy = nullptr;
if (IsRet)
ArgTy = FType->getReturnType();
else if (Ins[i].isOrigArg())
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
FirstMaskArgument)) {
LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << '\n');
llvm_unreachable(nullptr);
}
}
}
void RISCVTargetLowering::analyzeOutputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
CallLoweringInfo *CLI) const {
unsigned NumArgs = Outs.size();
Optional<unsigned> FirstMaskArgument;
if (Subtarget.hasStdExtV())
FirstMaskArgument = preAssignMask(Outs);
for (unsigned i = 0; i != NumArgs; i++) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
FirstMaskArgument)) {
LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n");
llvm_unreachable(nullptr);
}
}
}
// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
// values.
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
else
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
}
return Val;
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL,
const RISCVTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
EVT LocVT = VA.getLocVT();
SDValue Val;
const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
Register VReg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
if (VA.getLocInfo() == CCValAssign::Indirect)
return Val;
return convertLocVTToValVT(DAG, Val, VA, DL);
}
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
EVT LocVT = VA.getLocVT();
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
else
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
break;
}
return Val;
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT LocVT = VA.getLocVT();
EVT ValVT = VA.getValVT();
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
VA.getLocMemOffset(), /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val;
ISD::LoadExtType ExtType;
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
case CCValAssign::Indirect:
case CCValAssign::BCvt:
ExtType = ISD::NON_EXTLOAD;
break;
}
Val = DAG.getExtLoad(
ExtType, DL, LocVT, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
return Val;
}
static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
"Unexpected VA");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
if (VA.isMemLoc()) {
// f64 is passed on the stack.
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(MVT::f64, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
assert(VA.isRegLoc() && "Expected register VA assignment");
Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
SDValue Hi;
if (VA.getLocReg() == RISCV::X17) {
// Second half of f64 is passed on the stack.
int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
} else {
// Second half of f64 is passed in another GPR.
Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
}
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
}
// FastCC has less than 1% performance improvement for some particular
// benchmark. But theoretically, it may has benenfit for some cases.
static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
// X5 and X6 might be used for save-restore libcall.
static const MCPhysReg GPRList[] = {
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
RISCV::X29, RISCV::X30, RISCV::X31};
if (unsigned Reg = State.AllocateReg(GPRList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f16) {
static const MCPhysReg FPR16List[] = {
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
if (unsigned Reg = State.AllocateReg(FPR16List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32) {
static const MCPhysReg FPR32List[] = {
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
if (unsigned Reg = State.AllocateReg(FPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64) {
static const MCPhysReg FPR64List[] = {
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
if (unsigned Reg = State.AllocateReg(FPR64List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
unsigned Offset4 = State.AllocateStack(4, Align(4));
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
return false;
}
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
unsigned Offset5 = State.AllocateStack(8, Align(8));
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
return false;
}
return true; // CC didn't match.
}
static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
// s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
static const MCPhysReg GPRList[] = {
RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
if (unsigned Reg = State.AllocateReg(GPRList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32) {
// Pass in STG registers: F1, ..., F6
// fs0 ... fs5
static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
RISCV::F18_F, RISCV::F19_F,
RISCV::F20_F, RISCV::F21_F};
if (unsigned Reg = State.AllocateReg(FPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64) {
// Pass in STG registers: D1, ..., D6
// fs6 ... fs11
static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
RISCV::F24_D, RISCV::F25_D,
RISCV::F26_D, RISCV::F27_D};
if (unsigned Reg = State.AllocateReg(FPR64List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
report_fatal_error("No registers left in GHC calling convention");
return true;
}
// Transform physical registers into virtual registers.
SDValue RISCVTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
break;
case CallingConv::GHC:
if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
report_fatal_error(
"GHC calling convention requires the F and D instruction set extensions");
}
const Function &Func = MF.getFunction();
if (Func.hasFnAttribute("interrupt")) {
if (!Func.arg_empty())
report_fatal_error(
"Functions with the interrupt attribute cannot have arguments!");
StringRef Kind =
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
report_fatal_error(
"Function interrupt attribute argument not supported!");
}
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT XLenVT = Subtarget.getXLenVT();
unsigned XLenInBytes = Subtarget.getXLen() / 8;
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (CallConv == CallingConv::Fast)
CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
else if (CallConv == CallingConv::GHC)
CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
else
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue;
// Passing f64 on RV32D with a soft float ABI must be handled as a special
// case.
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
else if (VA.isRegLoc())
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
else
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
if (VA.getLocInfo() == CCValAssign::Indirect) {
// If the original argument was split and passed by reference (e.g. i128
// on RV32), we need to load all parts of it here (using the same
// address).
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
MachinePointerInfo()));
unsigned ArgIndex = Ins[i].OrigArgIndex;
assert(Ins[i].PartOffset == 0);
while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
CCValAssign &PartVA = ArgLocs[i + 1];
unsigned PartOffset = Ins[i + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
DAG.getIntPtrConstant(PartOffset, DL));
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
MachinePointerInfo()));
++i;
}
continue;
}
InVals.push_back(ArgValue);
}
if (IsVarArg) {
ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Offset of the first variable argument from stack pointer, and size of
// the vararg save area. For now, the varargs save area is either zero or
// large enough to hold a0-a7.
int VaArgOffset, VarArgsSaveSize;
// If all registers are allocated, then all varargs must be passed on the
// stack and we don't need to save any argregs.
if (ArgRegs.size() == Idx) {
VaArgOffset = CCInfo.getNextStackOffset();
VarArgsSaveSize = 0;
} else {
VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
VaArgOffset = -VarArgsSaveSize;
}
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
RVFI->setVarArgsFrameIndex(FI);
// If saving an odd number of registers then create an extra stack slot to
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
// offsets to even-numbered registered remain 2*XLEN-aligned.
if (Idx % 2) {
MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
VarArgsSaveSize += XLenInBytes;
}
// Copy the integer registers that may have been used for passing varargs
// to the vararg save area.
for (unsigned I = Idx; I < ArgRegs.size();
++I, VaArgOffset += XLenInBytes) {
const Register Reg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(ArgRegs[I], Reg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo::getFixedStack(MF, FI));
cast<StoreSDNode>(Store.getNode())
->getMemOperand()
->setValue((Value *)nullptr);
OutChains.push_back(Store);
}
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
}
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens for vararg functions.
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
/// isEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization.
/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
bool RISCVTargetLowering::isEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
const SmallVector<CCValAssign, 16> &ArgLocs) const {
auto &Callee = CLI.Callee;
auto CalleeCC = CLI.CallConv;
auto &Outs = CLI.Outs;
auto &Caller = MF.getFunction();
auto CallerCC = Caller.getCallingConv();
// Exception-handling functions need a special set of instructions to
// indicate a return to the hardware. Tail-calling another function would
// probably break this.
// TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
// should be expanded as new function attributes are introduced.
if (Caller.hasFnAttribute("interrupt"))
return false;
// Do not tail call opt if the stack is used to pass parameters.
if (CCInfo.getNextStackOffset() != 0)
return false;
// Do not tail call opt if any parameters need to be passed indirectly.
// Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
// passed indirectly. So the address of the value will be passed in a
// register, or if not available, then the address is put on the stack. In
// order to pass indirectly, space on the stack often needs to be allocated
// in order to store the value. In this case the CCInfo.getNextStackOffset()
// != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
// are passed CCValAssign::Indirect.
for (auto &VA : ArgLocs)
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
// Do not tail call opt if either caller or callee uses struct return
// semantics.
auto IsCallerStructRet = Caller.hasStructRetAttr();
auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
if (IsCallerStructRet || IsCalleeStructRet)
return false;
// Externally-defined functions with weak linkage should not be
// tail-called. The behaviour of branch instructions in this situation (as
// used for tail calls) is implementation-defined, so we cannot rely on the
// linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
if (GV->hasExternalWeakLinkage())
return false;
}
// The callee has to preserve all registers the caller needs to preserve.
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (CalleeCC != CallerCC) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible
// but less efficient and uglier in LowerCall.
for (auto &Arg : Outs)
if (Arg.Flags.isByVal())
return false;
return true;
}
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
// and output parameter nodes.
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT XLenVT = Subtarget.getXLenVT();
MachineFunction &MF = DAG.getMachineFunction();
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (CallConv == CallingConv::Fast)
ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
else if (CallConv == CallingConv::GHC)
ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
else
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
// Check if it's really possible to do a tail call.
if (IsTailCall)
IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
if (IsTailCall)
++NumTailCalls;
else if (CLI.CB && CLI.CB->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
// Create local copies for byval args
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
Align Alignment = Flags.getNonZeroByValAlign();
int FI =
MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
/*IsVolatile=*/false,
/*AlwaysInline=*/false, IsTailCall,
MachinePointerInfo(), MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Handle passing f64 on RV32D with a soft float ABI as a special case.
bool IsF64OnRV32DSoftABI =
VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
SDValue SplitF64 = DAG.getNode(
RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
SDValue Lo = SplitF64.getValue(0);
SDValue Hi = SplitF64.getValue(1);
Register RegLo = VA.getLocReg();
RegsToPass.push_back(std::make_pair(RegLo, Lo));
if (RegLo == RISCV::X17) {
// Second half of f64 is passed on the stack.
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
} else {
// Second half of f64 is passed in another GPR.
assert(RegLo < RISCV::X31 && "Invalid register pair");
Register RegHigh = RegLo + 1;
RegsToPass.push_back(std::make_pair(RegHigh, Hi));
}
continue;
}
// IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
// as any other MemLoc.
// Promote the value if needed.
// For now, only handle fully promoted and indirect arguments.
if (VA.getLocInfo() == CCValAssign::Indirect) {
// Store the argument in a stack slot and pass its address.
SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(MF, FI)));
// If the original argument was split (e.g. i128), we need
// to store all parts of it here (and pass just one address).
unsigned ArgIndex = Outs[i].OrigArgIndex;
assert(Outs[i].PartOffset == 0);
while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
SDValue PartValue = OutVals[i + 1];
unsigned PartOffset = Outs[i + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
DAG.getIntPtrConstant(PartOffset, DL));
MemOpChains.push_back(
DAG.getStore(Chain, DL, PartValue, Address,
MachinePointerInfo::getFixedStack(MF, FI)));
++i;
}
ArgValue = SpillSlot;
} else {
ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
}
// Use local copy if it is a byval arg.
if (Flags.isByVal())
ArgValue = ByValArgs[j++];
if (VA.isRegLoc()) {
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
assert(!IsTailCall && "Tail call not allowed if stack is used "
"for passing parameters");
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
SDValue Address =
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
SDValue Glue;
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
Glue = Chain.getValue(1);
}
// Validate that none of the argument registers have been marked as
// reserved, if so report an error. Do the same for the return address if this
// is not a tailcall.
validateCCReservedRegs(RegsToPass, MF);
if (!IsTailCall &&
MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Return address register required, but has been reserved."});
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
// split it and then direct call can be matched by PseudoCALL.
if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = S->getGlobal();
unsigned OpFlags = RISCVII::MO_CALL;
if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
OpFlags = RISCVII::MO_PLT;
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
unsigned OpFlags = RISCVII::MO_CALL;
if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
nullptr))
OpFlags = RISCVII::MO_PLT;
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (auto &Reg : RegsToPass)
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
if (!IsTailCall) {
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
}
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
}
Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, DL, PtrVT, true),
DAG.getConstant(0, DL, PtrVT, true),
Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
// Copy all of the result registers out of their specified physreg.
for (auto &VA : RVLocs) {
// Copy the value out
SDValue RetValue =
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
// Glue the RetValue to the end of the call sequence
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
SDValue RetValue2 =
DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
Chain = RetValue2.getValue(1);
Glue = RetValue2.getValue(2);
RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
RetValue2);
}
RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
InVals.push_back(RetValue);
}
return Chain;
}
bool RISCVTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
Optional<unsigned> FirstMaskArgument;
if (Subtarget.hasStdExtV())
FirstMaskArgument = preAssignMask(Outs);
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
MVT VT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
*this, FirstMaskArgument))
return false;
}
return true;
}
SDValue
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
const MachineFunction &MF = DAG.getMachineFunction();
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
// Stores the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
nullptr);
if (CallConv == CallingConv::GHC && !RVLocs.empty())
report_fatal_error("GHC functions return void only");
SDValue Glue;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
SDValue Val = OutVals[i];
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
// Handle returning f64 on RV32D with a soft float ABI.
assert(VA.isRegLoc() && "Expected return via registers");
SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
DAG.getVTList(MVT::i32, MVT::i32), Val);
SDValue Lo = SplitF64.getValue(0);
SDValue Hi = SplitF64.getValue(1);
Register RegLo = VA.getLocReg();
assert(RegLo < RISCV::X31 && "Invalid register pair");
Register RegHi = RegLo + 1;
if (STI.isRegisterReservedByUser(RegLo) ||
STI.isRegisterReservedByUser(RegHi))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Return value register required, but has been reserved."});
Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
} else {
// Handle a 'normal' return.
Val = convertValVTToLocVT(DAG, Val, VA, DL);
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
if (STI.isRegisterReservedByUser(VA.getLocReg()))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Return value register required, but has been reserved."});
// Guarantee that all emitted copies are stuck together.
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
}
RetOps[0] = Chain; // Update chain.
// Add the glue node if we have it.
if (Glue.getNode()) {
RetOps.push_back(Glue);
}
// Interrupt service routines use different return instructions.
const Function &Func = DAG.getMachineFunction().getFunction();
if (Func.hasFnAttribute("interrupt")) {
if (!Func.getReturnType()->isVoidTy())
report_fatal_error(
"Functions with the interrupt attribute must have void return type!");
MachineFunction &MF = DAG.getMachineFunction();
StringRef Kind =
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
unsigned RetOpc;
if (Kind == "user")
RetOpc = RISCVISD::URET_FLAG;
else if (Kind == "supervisor")
RetOpc = RISCVISD::SRET_FLAG;
else
RetOpc = RISCVISD::MRET_FLAG;
return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
}
return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
}
void RISCVTargetLowering::validateCCReservedRegs(
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
MachineFunction &MF) const {
const Function &F = MF.getFunction();
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
if (llvm::any_of(Regs, [&STI](auto Reg) {
return STI.isRegisterReservedByUser(Reg.first);
}))
F.getContext().diagnose(DiagnosticInfoUnsupported{
F, "Argument register required, but has been reserved."});
}
bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
return CI->isTailCall();
}
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define NODE_NAME_CASE(NODE) \
case RISCVISD::NODE: \
return "RISCVISD::" #NODE;
// clang-format off
switch ((RISCVISD::NodeType)Opcode) {
case RISCVISD::FIRST_NUMBER:
break;
NODE_NAME_CASE(RET_FLAG)
NODE_NAME_CASE(URET_FLAG)
NODE_NAME_CASE(SRET_FLAG)
NODE_NAME_CASE(MRET_FLAG)
NODE_NAME_CASE(CALL)
NODE_NAME_CASE(SELECT_CC)
NODE_NAME_CASE(BuildPairF64)
NODE_NAME_CASE(SplitF64)
NODE_NAME_CASE(TAIL)
NODE_NAME_CASE(SLLW)
NODE_NAME_CASE(SRAW)
NODE_NAME_CASE(SRLW)
NODE_NAME_CASE(DIVW)
NODE_NAME_CASE(DIVUW)
NODE_NAME_CASE(REMUW)
NODE_NAME_CASE(ROLW)
NODE_NAME_CASE(RORW)
NODE_NAME_CASE(FSLW)
NODE_NAME_CASE(FSRW)
NODE_NAME_CASE(FSL)
NODE_NAME_CASE(FSR)
NODE_NAME_CASE(FMV_H_X)
NODE_NAME_CASE(FMV_X_ANYEXTH)
NODE_NAME_CASE(FMV_W_X_RV64)
NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
NODE_NAME_CASE(READ_CYCLE_WIDE)
NODE_NAME_CASE(GREVI)
NODE_NAME_CASE(GREVIW)
NODE_NAME_CASE(GORCI)
NODE_NAME_CASE(GORCIW)
NODE_NAME_CASE(VMV_V_X_VL)
NODE_NAME_CASE(VFMV_V_F_VL)
NODE_NAME_CASE(VMV_X_S)
NODE_NAME_CASE(SPLAT_VECTOR_I64)
NODE_NAME_CASE(READ_VLENB)
NODE_NAME_CASE(TRUNCATE_VECTOR)
NODE_NAME_CASE(VLEFF)
NODE_NAME_CASE(VLEFF_MASK)
NODE_NAME_CASE(VSLIDEUP_VL)
NODE_NAME_CASE(VSLIDEDOWN_VL)
NODE_NAME_CASE(VID_VL)
NODE_NAME_CASE(VFNCVT_ROD)
NODE_NAME_CASE(VECREDUCE_ADD)
NODE_NAME_CASE(VECREDUCE_UMAX)
NODE_NAME_CASE(VECREDUCE_SMAX)
NODE_NAME_CASE(VECREDUCE_UMIN)
NODE_NAME_CASE(VECREDUCE_SMIN)
NODE_NAME_CASE(VECREDUCE_AND)
NODE_NAME_CASE(VECREDUCE_OR)
NODE_NAME_CASE(VECREDUCE_XOR)
NODE_NAME_CASE(VECREDUCE_FADD)
NODE_NAME_CASE(VECREDUCE_SEQ_FADD)
NODE_NAME_CASE(ADD_VL)
NODE_NAME_CASE(AND_VL)
NODE_NAME_CASE(MUL_VL)
NODE_NAME_CASE(OR_VL)
NODE_NAME_CASE(SDIV_VL)
NODE_NAME_CASE(SHL_VL)
NODE_NAME_CASE(SREM_VL)
NODE_NAME_CASE(SRA_VL)
NODE_NAME_CASE(SRL_VL)
NODE_NAME_CASE(SUB_VL)
NODE_NAME_CASE(UDIV_VL)
NODE_NAME_CASE(UREM_VL)
NODE_NAME_CASE(XOR_VL)
NODE_NAME_CASE(FADD_VL)
NODE_NAME_CASE(FSUB_VL)
NODE_NAME_CASE(FMUL_VL)
NODE_NAME_CASE(FDIV_VL)
NODE_NAME_CASE(FNEG_VL)
NODE_NAME_CASE(FABS_VL)
NODE_NAME_CASE(FSQRT_VL)
NODE_NAME_CASE(FMA_VL)
NODE_NAME_CASE(SMIN_VL)
NODE_NAME_CASE(SMAX_VL)
NODE_NAME_CASE(UMIN_VL)
NODE_NAME_CASE(UMAX_VL)
NODE_NAME_CASE(MULHS_VL)
NODE_NAME_CASE(MULHU_VL)
NODE_NAME_CASE(SETCC_VL)
NODE_NAME_CASE(VSELECT_VL)
NODE_NAME_CASE(VMAND_VL)
NODE_NAME_CASE(VMOR_VL)
NODE_NAME_CASE(VMXOR_VL)
NODE_NAME_CASE(VMCLR_VL)
NODE_NAME_CASE(VMSET_VL)
NODE_NAME_CASE(VRGATHER_VX_VL)
NODE_NAME_CASE(VLE_VL)
NODE_NAME_CASE(VSE_VL)
}
// clang-format on
return nullptr;
#undef NODE_NAME_CASE
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
RISCVTargetLowering::ConstraintType
RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'f':
return C_RegisterClass;
case 'I':
case 'J':
case 'K':
return C_Immediate;
case 'A':
return C_Memory;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to a
// RISCV register class.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return std::make_pair(0U, &RISCV::GPRRegClass);
case 'f':
if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
return std::make_pair(0U, &RISCV::FPR16RegClass);
if (Subtarget.hasStdExtF() && VT == MVT::f32)
return std::make_pair(0U, &RISCV::FPR32RegClass);
if (Subtarget.hasStdExtD() && VT == MVT::f64)
return std::make_pair(0U, &RISCV::FPR64RegClass);
break;
default:
break;
}
}
// Clang will correctly decode the usage of register name aliases into their
// official names. However, other frontends like `rustc` do not. This allows
// users of these frontends to use the ABI names for registers in LLVM-style
// register constraints.
unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
.Case("{zero}", RISCV::X0)
.Case("{ra}", RISCV::X1)
.Case("{sp}", RISCV::X2)
.Case("{gp}", RISCV::X3)
.Case("{tp}", RISCV::X4)
.Case("{t0}", RISCV::X5)
.Case("{t1}", RISCV::X6)
.Case("{t2}", RISCV::X7)
.Cases("{s0}", "{fp}", RISCV::X8)
.Case("{s1}", RISCV::X9)
.Case("{a0}", RISCV::X10)
.Case("{a1}", RISCV::X11)
.Case("{a2}", RISCV::X12)
.Case("{a3}", RISCV::X13)
.Case("{a4}", RISCV::X14)
.Case("{a5}", RISCV::X15)
.Case("{a6}", RISCV::X16)
.Case("{a7}", RISCV::X17)
.Case("{s2}", RISCV::X18)
.Case("{s3}", RISCV::X19)
.Case("{s4}", RISCV::X20)
.Case("{s5}", RISCV::X21)
.Case("{s6}", RISCV::X22)
.Case("{s7}", RISCV::X23)
.Case("{s8}", RISCV::X24)
.Case("{s9}", RISCV::X25)
.Case("{s10}", RISCV::X26)
.Case("{s11}", RISCV::X27)
.Case("{t3}", RISCV::X28)
.Case("{t4}", RISCV::X29)
.Case("{t5}", RISCV::X30)
.Case("{t6}", RISCV::X31)
.Default(RISCV::NoRegister);
if (XRegFromAlias != RISCV::NoRegister)
return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
// Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
// TableGen record rather than the AsmName to choose registers for InlineAsm
// constraints, plus we want to match those names to the widest floating point
// register type available, manually select floating point registers here.
//
// The second case is the ABI name of the register, so that frontends can also
// use the ABI names in register constraint lists.
if (Subtarget.hasStdExtF()) {
unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
.Cases("{f0}", "{ft0}", RISCV::F0_F)
.Cases("{f1}", "{ft1}", RISCV::F1_F)
.Cases("{f2}", "{ft2}", RISCV::F2_F)
.Cases("{f3}", "{ft3}", RISCV::F3_F)
.Cases("{f4}", "{ft4}", RISCV::F4_F)
.Cases("{f5}", "{ft5}", RISCV::F5_F)
.Cases("{f6}", "{ft6}", RISCV::F6_F)
.Cases("{f7}", "{ft7}", RISCV::F7_F)
.Cases("{f8}", "{fs0}", RISCV::F8_F)
.Cases("{f9}", "{fs1}", RISCV::F9_F)
.Cases("{f10}", "{fa0}", RISCV::F10_F)
.Cases("{f11}", "{fa1}", RISCV::F11_F)
.Cases("{f12}", "{fa2}", RISCV::F12_F)
.Cases("{f13}", "{fa3}", RISCV::F13_F)
.Cases("{f14}", "{fa4}", RISCV::F14_F)
.Cases("{f15}", "{fa5}", RISCV::F15_F)
.Cases("{f16}", "{fa6}", RISCV::F16_F)
.Cases("{f17}", "{fa7}", RISCV::F17_F)
.Cases("{f18}", "{fs2}", RISCV::F18_F)
.Cases("{f19}", "{fs3}", RISCV::F19_F)
.Cases("{f20}", "{fs4}", RISCV::F20_F)
.Cases("{f21}", "{fs5}", RISCV::F21_F)
.Cases("{f22}", "{fs6}", RISCV::F22_F)
.Cases("{f23}", "{fs7}", RISCV::F23_F)
.Cases("{f24}", "{fs8}", RISCV::F24_F)
.Cases("{f25}", "{fs9}", RISCV::F25_F)
.Cases("{f26}", "{fs10}", RISCV::F26_F)
.Cases("{f27}", "{fs11}", RISCV::F27_F)
.Cases("{f28}", "{ft8}", RISCV::F28_F)
.Cases("{f29}", "{ft9}", RISCV::F29_F)
.Cases("{f30}", "{ft10}", RISCV::F30_F)
.Cases("{f31}", "{ft11}", RISCV::F31_F)
.Default(RISCV::NoRegister);
if (FReg != RISCV::NoRegister) {
assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
if (Subtarget.hasStdExtD()) {
unsigned RegNo = FReg - RISCV::F0_F;
unsigned DReg = RISCV::F0_D + RegNo;
return std::make_pair(DReg, &RISCV::FPR64RegClass);
}
return std::make_pair(FReg, &RISCV::FPR32RegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
unsigned
RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
// Currently only support length 1 constraints.
if (ConstraintCode.size() == 1) {
switch (ConstraintCode[0]) {
case 'A':
return InlineAsm::Constraint_A;
default:
break;
}
}
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
void RISCVTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
// Currently only support length 1 constraints.
if (Constraint.length() == 1) {
switch (Constraint[0]) {
case 'I':
// Validate & create a 12-bit signed immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getSExtValue();
if (isInt<12>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
}
return;
case 'J':
// Validate & create an integer zero operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (C->getZExtValue() == 0)
Ops.push_back(
DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
return;
case 'K':
// Validate & create a 5-bit unsigned immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getZExtValue();
if (isUInt<5>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
}
return;
default:
break;
}
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
return Builder.CreateFence(Ord);
if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
return Builder.CreateFence(AtomicOrdering::Release);
return nullptr;
}
Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
Instruction *Inst,
AtomicOrdering Ord) const {
if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
return Builder.CreateFence(AtomicOrdering::Acquire);
return nullptr;
}
TargetLowering::AtomicExpansionKind
RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
// atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
// point operations can't be used in an lr/sc sequence without breaking the
// forward-progress guarantee.
if (AI->isFloatingPointOperation())
return AtomicExpansionKind::CmpXChg;
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
if (Size == 8 || Size == 16)
return AtomicExpansionKind::MaskedIntrinsic;
return AtomicExpansionKind::None;
}
static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
if (XLen == 32) {
switch (BinOp) {
default:
llvm_unreachable("Unexpected AtomicRMW BinOp");
case AtomicRMWInst::Xchg:
return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
case AtomicRMWInst::Add:
return Intrinsic::riscv_masked_atomicrmw_add_i32;
case AtomicRMWInst::Sub:
return Intrinsic::riscv_masked_atomicrmw_sub_i32;
case AtomicRMWInst::Nand:
return Intrinsic::riscv_masked_atomicrmw_nand_i32;
case AtomicRMWInst::Max:
return Intrinsic::riscv_masked_atomicrmw_max_i32;
case AtomicRMWInst::Min:
return Intrinsic::riscv_masked_atomicrmw_min_i32;
case AtomicRMWInst::UMax:
return Intrinsic::riscv_masked_atomicrmw_umax_i32;
case AtomicRMWInst::UMin:
return Intrinsic::riscv_masked_atomicrmw_umin_i32;
}
}
if (XLen == 64) {
switch (BinOp) {
default:
llvm_unreachable("Unexpected AtomicRMW BinOp");
case AtomicRMWInst::Xchg:
return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
case AtomicRMWInst::Add:
return Intrinsic::riscv_masked_atomicrmw_add_i64;
case AtomicRMWInst::Sub:
return Intrinsic::riscv_masked_atomicrmw_sub_i64;
case AtomicRMWInst::Nand:
return Intrinsic::riscv_masked_atomicrmw_nand_i64;
case AtomicRMWInst::Max:
return Intrinsic::riscv_masked_atomicrmw_max_i64;
case AtomicRMWInst::Min:
return Intrinsic::riscv_masked_atomicrmw_min_i64;
case AtomicRMWInst::UMax:
return Intrinsic::riscv_masked_atomicrmw_umax_i64;
case AtomicRMWInst::UMin:
return Intrinsic::riscv_masked_atomicrmw_umin_i64;
}
}
llvm_unreachable("Unexpected XLen\n");
}
Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
unsigned XLen = Subtarget.getXLen();
Value *Ordering =
Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
Type *Tys[] = {AlignedAddr->getType()};
Function *LrwOpScwLoop = Intrinsic::getDeclaration(
AI->getModule(),
getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
if (XLen == 64) {
Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
}
Value *Result;
// Must pass the shift amount needed to sign extend the loaded value prior
// to performing a signed comparison for min/max. ShiftAmt is the number of
// bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
// is the number of bits to left+right shift the value in order to
// sign-extend.
if (AI->getOperation() == AtomicRMWInst::Min ||
AI->getOperation() == AtomicRMWInst::Max) {
const DataLayout &DL = AI->getModule()->getDataLayout();
unsigned ValWidth =
DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
Value *SextShamt =
Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
Result = Builder.CreateCall(LrwOpScwLoop,
{AlignedAddr, Incr, Mask, SextShamt, Ordering});
} else {
Result =
Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
}
if (XLen == 64)
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
return Result;
}
TargetLowering::AtomicExpansionKind
RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *CI) const {
unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
if (Size == 8 || Size == 16)
return AtomicExpansionKind::MaskedIntrinsic;
return AtomicExpansionKind::None;
}
Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
unsigned XLen = Subtarget.getXLen();
Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
if (XLen == 64) {
CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
}
Type *Tys[] = {AlignedAddr->getType()};
Function *MaskedCmpXchg =
Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
Value *Result = Builder.CreateCall(
MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
if (XLen == 64)
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
return Result;
}
bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f16:
return Subtarget.hasStdExtZfh();
case MVT::f32:
return Subtarget.hasStdExtF();
case MVT::f64:
return Subtarget.hasStdExtD();
default:
break;
}
return false;
}
Register RISCVTargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
return RISCV::X10;
}
Register RISCVTargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
return RISCV::X11;
}
bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
// Return false to suppress the unnecessary extensions if the LibCall
// arguments or return value is f32 type for LP64 ABI.
RISCVABI::ABI ABI = Subtarget.getTargetABI();
if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
return false;
return true;
}
bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
if (Subtarget.is64Bit() && Type == MVT::i32)
return true;
return IsSigned;
}
bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
SDValue C) const {
// Check integral scalar types.
if (VT.isScalarInteger()) {
// Omit the optimization if the sub target has the M extension and the data
// size exceeds XLen.
if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
return false;
if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
// Break the MUL to a SLLI and an ADD/SUB.
const APInt &Imm = ConstNode->getAPIntValue();
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
(1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
return true;
// Omit the following optimization if the sub target has the M extension
// and the data size >= XLen.
if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
return false;
// Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
// a pair of LUI/ADDI.
if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
(1 - ImmS).isPowerOf2())
return true;
}
}
}
return false;
}
bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
if (!Subtarget.useRVVForFixedLengthVectors())
return false;
if (!VT.isFixedLengthVector())
return false;
// Don't use RVV for vectors we cannot scalarize if required.
switch (VT.getVectorElementType().SimpleTy) {
// i1 is supported but has different rules.
default:
return false;
case MVT::i1:
// Masks can only use a single register.
if (VT.getVectorNumElements() > Subtarget.getMinRVVVectorSizeInBits())
return false;
break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
break;
case MVT::f16:
if (!Subtarget.hasStdExtZfh())
return false;
break;
case MVT::f32:
if (!Subtarget.hasStdExtF())
return false;
break;
case MVT::f64:
if (!Subtarget.hasStdExtD())
return false;
break;
}
unsigned LMul = Subtarget.getLMULForFixedLengthVector(VT);
// Don't use RVV for types that don't fit.
if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
return false;
// TODO: Perhaps an artificial restriction, but worth having whilst getting
// the base fixed length RVV support in place.
if (!VT.isPow2VectorType())
return false;
return true;
}
bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
bool *Fast) const {
if (!VT.isScalableVector())
return false;
EVT ElemVT = VT.getVectorElementType();
if (Alignment >= ElemVT.getStoreSize()) {
if (Fast)
*Fast = true;
return true;
}
return false;
}
#define GET_REGISTER_MATCHER
#include "RISCVGenAsmMatcher.inc"
Register
RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = MatchRegisterAltName(RegName);
if (Reg == RISCV::NoRegister)
Reg = MatchRegisterName(RegName);
if (Reg == RISCV::NoRegister)
report_fatal_error(
Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
StringRef(RegName) + "\"."));
return Reg;
}
namespace llvm {
namespace RISCVVIntrinsicsTable {
#define GET_RISCVVIntrinsicsTable_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVVIntrinsicsTable
} // namespace llvm