blob: 43be0d85771aba9fb718181b78d93d5ed13af40a [file] [log] [blame]
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
#include <sys/time.h>
#include "runtime.h"
#include "defs.h"
#include "signal_unix.h"
extern SigTab runtime_sigtab[];
void
runtime_initsig(void)
{
int32 i;
SigTab *t;
// First call: basic setup.
for(i = 0; runtime_sigtab[i].sig != -1; i++) {
t = &runtime_sigtab[i];
if((t->flags == 0) || (t->flags & SigDefault))
continue;
// For some signals, we respect an inherited SIG_IGN handler
// rather than insist on installing our own default handler.
// Even these signals can be fetched using the os/signal package.
switch(t->sig) {
case SIGHUP:
case SIGINT:
if(runtime_getsig(i) == GO_SIG_IGN) {
t->flags = SigNotify | SigIgnored;
continue;
}
}
t->flags |= SigHandling;
runtime_setsig(i, runtime_sighandler, true);
}
}
void
runtime_sigenable(uint32 sig)
{
int32 i;
SigTab *t;
t = nil;
for(i = 0; runtime_sigtab[i].sig != -1; i++) {
if(runtime_sigtab[i].sig == (int32)sig) {
t = &runtime_sigtab[i];
break;
}
}
if(t == nil)
return;
if((t->flags & SigNotify) && !(t->flags & SigHandling)) {
t->flags |= SigHandling;
if(runtime_getsig(i) == GO_SIG_IGN)
t->flags |= SigIgnored;
runtime_setsig(i, runtime_sighandler, true);
}
}
void
runtime_sigdisable(uint32 sig)
{
int32 i;
SigTab *t;
t = nil;
for(i = 0; runtime_sigtab[i].sig != -1; i++) {
if(runtime_sigtab[i].sig == (int32)sig) {
t = &runtime_sigtab[i];
break;
}
}
if(t == nil)
return;
if((t->flags & SigNotify) && (t->flags & SigHandling)) {
t->flags &= ~SigHandling;
if(t->flags & SigIgnored)
runtime_setsig(i, GO_SIG_IGN, true);
else
runtime_setsig(i, GO_SIG_DFL, true);
}
}
void
runtime_sigignore(uint32 sig)
{
int32 i;
SigTab *t;
t = nil;
for(i = 0; runtime_sigtab[i].sig != -1; i++) {
if(runtime_sigtab[i].sig == (int32)sig) {
t = &runtime_sigtab[i];
break;
}
}
if(t == nil)
return;
if((t->flags & SigNotify) != 0) {
t->flags &= ~SigHandling;
runtime_setsig(i, GO_SIG_IGN, true);
}
}
void
runtime_resetcpuprofiler(int32 hz)
{
struct itimerval it;
runtime_memclr((byte*)&it, sizeof it);
if(hz == 0) {
runtime_setitimer(ITIMER_PROF, &it, nil);
} else {
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000 / hz;
it.it_value = it.it_interval;
runtime_setitimer(ITIMER_PROF, &it, nil);
}
runtime_m()->profilehz = hz;
}
void
os_sigpipe(void)
{
int32 i;
for(i = 0; runtime_sigtab[i].sig != -1; i++)
if(runtime_sigtab[i].sig == SIGPIPE)
break;
runtime_setsig(i, GO_SIG_DFL, false);
runtime_raise(SIGPIPE);
}
void
runtime_unblocksignals(void)
{
sigset_t sigset_none;
sigemptyset(&sigset_none);
pthread_sigmask(SIG_SETMASK, &sigset_none, nil);
}
void
runtime_crash(void)
{
int32 i;
#ifdef GOOS_darwin
// OS X core dumps are linear dumps of the mapped memory,
// from the first virtual byte to the last, with zeros in the gaps.
// Because of the way we arrange the address space on 64-bit systems,
// this means the OS X core file will be >128 GB and even on a zippy
// workstation can take OS X well over an hour to write (uninterruptible).
// Save users from making that mistake.
if(sizeof(void*) == 8)
return;
#endif
runtime_unblocksignals();
for(i = 0; runtime_sigtab[i].sig != -1; i++)
if(runtime_sigtab[i].sig == SIGABRT)
break;
runtime_setsig(i, GO_SIG_DFL, false);
runtime_raise(SIGABRT);
}
void
runtime_raise(int32 sig)
{
raise(sig);
}