blob: 3d1e8bc5e4623fd05e51f0095bc0eb7be8bb8a74 [file] [log] [blame]
//===-- DataDumpExtractorTest.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/StreamString.h"
#include "gtest/gtest.h"
#include <complex>
#include <limits>
using namespace lldb;
using namespace lldb_private;
// This is needed for the tests because they rely on the Target global
// properties.
class DumpDataExtractorTest : public ::testing::Test {
public:
void SetUp() override {
FileSystem::Initialize();
HostInfo::Initialize();
}
void TearDown() override {
HostInfo::Terminate();
FileSystem::Terminate();
}
};
static void TestDumpWithAddress(uint64_t base_addr, size_t item_count,
llvm::StringRef expected) {
std::vector<uint8_t> data{0x11, 0x22};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatHex,
/*item_byte_size=*/1, item_count,
/*num_per_line=*/1, base_addr, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
TEST_F(DumpDataExtractorTest, BaseAddress) {
TestDumpWithAddress(0x12341234, 1, "0x12341234: 0x11");
TestDumpWithAddress(LLDB_INVALID_ADDRESS, 1, "0x11");
TestDumpWithAddress(0x12341234, 2, "0x12341234: 0x11\n0x12341235: 0x22");
TestDumpWithAddress(LLDB_INVALID_ADDRESS, 2, "0x11\n0x22");
}
static void TestDumpWithOffset(offset_t start_offset,
llvm::StringRef expected) {
std::vector<uint8_t> data{0x11, 0x22, 0x33};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, start_offset, lldb::Format::eFormatHex,
/*item_byte_size=*/1, /*item_count=*/data.size(),
/*num_per_line=*/data.size(), /*base_addr=*/0, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
TEST_F(DumpDataExtractorTest, StartOffset) {
TestDumpWithOffset(0, "0x00000000: 0x11 0x22 0x33");
// The offset applies to the DataExtractor, not the address used when
// formatting.
TestDumpWithOffset(1, "0x00000000: 0x22 0x33");
// If the offset is outside the DataExtractor's range we do nothing.
TestDumpWithOffset(3, "");
}
TEST_F(DumpDataExtractorTest, NullStream) {
// We don't do any work if there is no output stream.
uint8_t c = 0x11;
StreamString result;
DataBufferHeap dumpbuffer(&c, 0);
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, nullptr, 0, lldb::Format::eFormatHex,
/*item_byte_size=*/1, /*item_count=*/1,
/*num_per_line=*/1, /*base_addr=*/0, 0, 0);
ASSERT_EQ("", result.GetString());
}
static void TestDumpImpl(const void *data, size_t data_size,
size_t item_byte_size, size_t item_count,
size_t num_per_line, uint64_t base_addr,
lldb::Format format, llvm::StringRef expected) {
StreamString result;
DataBufferHeap dumpbuffer(data, data_size);
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(),
/*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, format, item_byte_size, item_count,
num_per_line, base_addr, 0, 0);
ASSERT_EQ(expected, result.GetString());
}
template <typename T>
static void TestDump(T data, lldb::Format format, llvm::StringRef expected) {
TestDumpImpl(&data, sizeof(T), sizeof(T), 1, 1, LLDB_INVALID_ADDRESS, format,
expected);
}
static void TestDump(llvm::StringRef str, lldb::Format format,
llvm::StringRef expected) {
TestDumpImpl(str.bytes_begin(),
// +1 to include the NULL char as the last byte
str.size() + 1, str.size() + 1, 1, 1, LLDB_INVALID_ADDRESS,
format, expected);
}
template <typename T>
static void TestDump(const std::vector<T> data, lldb::Format format,
llvm::StringRef expected) {
size_t sz_bytes = data.size() * sizeof(T);
TestDumpImpl(&data[0], sz_bytes, sz_bytes, data.size(), 1,
LLDB_INVALID_ADDRESS, format, expected);
}
TEST_F(DumpDataExtractorTest, Formats) {
TestDump<uint8_t>(1, lldb::eFormatDefault, "0x01");
TestDump<uint8_t>(1, lldb::eFormatBoolean, "true");
TestDump<uint8_t>(0xAA, lldb::eFormatBinary, "0b10101010");
TestDump<uint8_t>(1, lldb::eFormatBytes, "01");
TestDump<uint8_t>(1, lldb::eFormatBytesWithASCII, "01 .");
TestDump('?', lldb::eFormatChar, "'?'");
TestDump('\x1A', lldb::eFormatCharPrintable, ".");
TestDump('#', lldb::eFormatCharPrintable, "#");
TestDump(std::complex<float>(1.2f, 3.4f), lldb::eFormatComplex, "1.2 + 3.4i");
TestDump(std::complex<double>(4.5, 6.7), lldb::eFormatComplex, "4.5 + 6.7i");
// long double is not tested here because for some platforms we treat it as 10
// bytes when the compiler allocates 16 bytes of space for it. (see
// DataExtractor::GetLongDouble) Meaning that when we extract the second one,
// it gets the wrong value (it's 6 bytes off). You could manually construct a
// set of bytes to match the 10 byte format but then if the test runs on a
// machine where we don't use 10 it'll break.
// Test printable characters.
TestDump(llvm::StringRef("aardvark"), lldb::Format::eFormatCString,
"\"aardvark\"");
// Test unprintable characters.
TestDump(llvm::StringRef("\xcf\xfa\xed\xfe\f"), lldb::Format::eFormatCString,
"\"\\xcf\\xfa\\xed\\xfe\\f\"");
// Test a mix of printable and unprintable characters.
TestDump(llvm::StringRef("\xcf\xfa\ffoo"), lldb::Format::eFormatCString,
"\"\\xcf\\xfa\\ffoo\"");
TestDump<uint16_t>(99, lldb::Format::eFormatDecimal, "99");
// Just prints as a signed integer.
TestDump(-1, lldb::Format::eFormatEnum, "-1");
TestDump(0xcafef00d, lldb::Format::eFormatHex, "0xcafef00d");
TestDump(0xcafef00d, lldb::Format::eFormatHexUppercase, "0xCAFEF00D");
TestDump(0.456, lldb::Format::eFormatFloat, "0.45600000000000002");
TestDump(9, lldb::Format::eFormatOctal, "011");
// Chars packed into an integer.
TestDump<uint32_t>(0x4C4C4442, lldb::Format::eFormatOSType, "'LLDB'");
// Unicode8 doesn't have a specific formatter.
TestDump<uint8_t>(0x34, lldb::Format::eFormatUnicode8, "0x34");
TestDump<uint16_t>(0x1122, lldb::Format::eFormatUnicode16, "U+1122");
TestDump<uint32_t>(0x12345678, lldb::Format::eFormatUnicode32,
"U+0x12345678");
TestDump<unsigned int>(654321, lldb::Format::eFormatUnsigned, "654321");
// This pointer is printed based on the size of uint64_t, so the test is the
// same for 32/64 bit host.
TestDump<uint64_t>(0x4444555566667777, lldb::Format::eFormatPointer,
"0x4444555566667777");
TestDump(std::vector<char>{'A', '\x01', 'C'},
lldb::Format::eFormatVectorOfChar, "{A\\x01C}");
TestDump(std::vector<int8_t>{0, -1, std::numeric_limits<int8_t>::max()},
lldb::Format::eFormatVectorOfSInt8, "{0 -1 127}");
TestDump(std::vector<uint8_t>{12, 0xFF, 34},
lldb::Format::eFormatVectorOfUInt8, "{0x0c 0xff 0x22}");
TestDump(std::vector<int16_t>{-1, 1234, std::numeric_limits<int16_t>::max()},
lldb::Format::eFormatVectorOfSInt16, "{-1 1234 32767}");
TestDump(std::vector<uint16_t>{0xffff, 0xabcd, 0x1234},
lldb::Format::eFormatVectorOfUInt16, "{0xffff 0xabcd 0x1234}");
TestDump(std::vector<int32_t>{0, -1, std::numeric_limits<int32_t>::max()},
lldb::Format::eFormatVectorOfSInt32, "{0 -1 2147483647}");
TestDump(std::vector<uint32_t>{0, 0xffffffff, 0x1234abcd},
lldb::Format::eFormatVectorOfUInt32,
"{0x00000000 0xffffffff 0x1234abcd}");
TestDump(std::vector<int64_t>{0, -1, std::numeric_limits<int64_t>::max()},
lldb::Format::eFormatVectorOfSInt64, "{0 -1 9223372036854775807}");
TestDump(std::vector<uint64_t>{0, 0xaaaabbbbccccdddd},
lldb::Format::eFormatVectorOfUInt64,
"{0x0000000000000000 0xaaaabbbbccccdddd}");
// See half2float for format details.
// Test zeroes.
TestDump(std::vector<uint16_t>{0x0000, 0x8000},
lldb::Format::eFormatVectorOfFloat16, "{0 -0}");
// Some subnormal numbers.
TestDump(std::vector<uint16_t>{0x0001, 0x8001},
lldb::Format::eFormatVectorOfFloat16, "{5.9605E-8 -5.9605E-8}");
// A full mantisse and empty expontent.
TestDump(std::vector<uint16_t>{0x83ff, 0x03ff},
lldb::Format::eFormatVectorOfFloat16, "{-6.0976E-5 6.0976E-5}");
// Some normal numbers.
TestDump(std::vector<uint16_t>{0b0100001001001000},
lldb::Format::eFormatVectorOfFloat16, "{3.1406}");
// Largest and smallest normal number.
TestDump(std::vector<uint16_t>{0x0400, 0x7bff},
lldb::Format::eFormatVectorOfFloat16, "{6.1035E-5 65504}");
TestDump(std::vector<uint16_t>{0xabcd, 0x1234},
lldb::Format::eFormatVectorOfFloat16, "{-0.060944 7.5722E-4}");
// quiet/signaling NaNs.
TestDump(std::vector<uint16_t>{0xffff, 0xffc0, 0x7fff, 0x7fc0},
lldb::Format::eFormatVectorOfFloat16, "{NaN NaN NaN NaN}");
// +/-Inf.
TestDump(std::vector<uint16_t>{0xfc00, 0x7c00},
lldb::Format::eFormatVectorOfFloat16, "{-Inf +Inf}");
TestDump(std::vector<float>{std::numeric_limits<float>::min(),
std::numeric_limits<float>::max()},
lldb::Format::eFormatVectorOfFloat32,
"{1.17549435E-38 3.40282347E+38}");
TestDump(std::vector<float>{std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::signaling_NaN(),
-std::numeric_limits<float>::quiet_NaN(),
-std::numeric_limits<float>::signaling_NaN()},
lldb::Format::eFormatVectorOfFloat32, "{NaN NaN NaN NaN}");
TestDump(std::vector<double>{std::numeric_limits<double>::min(),
std::numeric_limits<double>::max()},
lldb::Format::eFormatVectorOfFloat64,
"{2.2250738585072014E-308 1.7976931348623157E+308}");
TestDump(
std::vector<double>{
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::signaling_NaN(),
-std::numeric_limits<double>::quiet_NaN(),
-std::numeric_limits<double>::signaling_NaN(),
},
lldb::Format::eFormatVectorOfFloat64, "{NaN NaN NaN NaN}");
// Not sure we can rely on having uint128_t everywhere so emulate with
// uint64_t.
TestDump(
std::vector<uint64_t>{0x1, 0x1111222233334444, 0xaaaabbbbccccdddd, 0x0},
lldb::Format::eFormatVectorOfUInt128,
"{0x11112222333344440000000000000001 "
"0x0000000000000000aaaabbbbccccdddd}");
TestDump(std::vector<int>{2, 4}, lldb::Format::eFormatComplexInteger,
"2 + 4i");
// Without an execution context this just prints the pointer on its own.
TestDump<uint32_t>(0x11223344, lldb::Format::eFormatAddressInfo,
"0x11223344");
// Input not written in hex form because that requires C++17.
TestDump<float>(10, lldb::Format::eFormatHexFloat, "0x1.4p3");
TestDump<double>(10, lldb::Format::eFormatHexFloat, "0x1.4p3");
// long double not supported, see ItemByteSizeErrors.
// Can't disassemble without an execution context.
TestDump<uint32_t>(0xcafef00d, lldb::Format::eFormatInstruction,
"invalid target");
// Has no special handling, intended for use elsewhere.
TestDump<int>(99, lldb::Format::eFormatVoid, "0x00000063");
}
TEST_F(DumpDataExtractorTest, FormatCharArray) {
// Unlike the other formats, charArray isn't 1 array of N chars.
// It must be passed as N chars of 1 byte each.
// (eFormatVectorOfChar does this swap for you)
std::vector<char> data{'A', '\x01', '#'};
StreamString result;
DataBufferHeap dumpbuffer(&data[0], data.size());
DataExtractor extractor(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
endian::InlHostByteOrder(), /*addr_size=*/4);
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatCharArray,
/*item_byte_size=*/1,
/*item_count=*/data.size(),
/*num_per_line=*/data.size(), 0, 0, 0);
ASSERT_EQ("0x00000000: A\\x01#", result.GetString());
result.Clear();
DumpDataExtractor(extractor, &result, 0, lldb::Format::eFormatCharArray, 1,
data.size(), 1, 0, 0, 0);
// ASSERT macro thinks the split strings are multiple arguments so make a var.
const char *expected = "0x00000000: A\n"
"0x00000001: \\x01\n"
"0x00000002: #";
ASSERT_EQ(expected, result.GetString());
}
template <typename T>
void TestDumpMultiLine(std::vector<T> data, lldb::Format format,
size_t num_per_line, llvm::StringRef expected) {
size_t sz_bytes = data.size() * sizeof(T);
TestDumpImpl(&data[0], sz_bytes, data.size(), sz_bytes, num_per_line,
0x80000000, format, expected);
}
template <typename T>
void TestDumpMultiLine(const T *data, size_t num_items, lldb::Format format,
size_t num_per_line, llvm::StringRef expected) {
TestDumpImpl(data, sizeof(T) * num_items, sizeof(T), num_items, num_per_line,
0x80000000, format, expected);
}
TEST_F(DumpDataExtractorTest, MultiLine) {
// A vector counts as 1 item regardless of size.
TestDumpMultiLine(std::vector<uint8_t>{0x11},
lldb::Format::eFormatVectorOfUInt8, 1,
"0x80000000: {0x11}");
TestDumpMultiLine(std::vector<uint8_t>{0x11, 0x22},
lldb::Format::eFormatVectorOfUInt8, 1,
"0x80000000: {0x11 0x22}");
// If you have multiple vectors then that's multiple items.
// Here we say that these 2 bytes are actually 2 1 byte vectors.
const std::vector<uint8_t> vector_data{0x11, 0x22};
TestDumpMultiLine(vector_data.data(), 2, lldb::Format::eFormatVectorOfUInt8,
1, "0x80000000: {0x11}\n0x80000001: {0x22}");
// Single value formats can span multiple lines.
const std::vector<uint8_t> bytes{0x11, 0x22, 0x33};
const char *expected_bytes_3_line = "0x80000000: 0x11\n"
"0x80000001: 0x22\n"
"0x80000002: 0x33";
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 1,
expected_bytes_3_line);
// Lines may not have the full number of items.
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 4,
"0x80000000: 0x11 0x22 0x33");
const char *expected_bytes_2_line = "0x80000000: 0x11 0x22\n"
"0x80000002: 0x33";
TestDumpMultiLine(bytes.data(), bytes.size(), lldb::Format::eFormatHex, 2,
expected_bytes_2_line);
// The line address accounts for item sizes other than 1 byte.
const std::vector<uint16_t> shorts{0x1111, 0x2222, 0x3333};
const char *expected_shorts_2_line = "0x80000000: 0x1111 0x2222\n"
"0x80000004: 0x3333";
TestDumpMultiLine(shorts.data(), shorts.size(), lldb::Format::eFormatHex, 2,
expected_shorts_2_line);
// The ascii column is positioned using the maximum line length.
const std::vector<char> chars{'L', 'L', 'D', 'B'};
const char *expected_chars_2_lines = "0x80000000: 4c 4c 44 LLD\n"
"0x80000003: 42 B";
TestDumpMultiLine(chars.data(), chars.size(),
lldb::Format::eFormatBytesWithASCII, 3,
expected_chars_2_lines);
}
void TestDumpWithItemByteSize(size_t item_byte_size, lldb::Format format,
llvm::StringRef expected) {
// We won't be reading this data so anything will do.
uint8_t dummy = 0;
TestDumpImpl(&dummy, 1, item_byte_size, 1, 1, LLDB_INVALID_ADDRESS, format,
expected);
}
TEST_F(DumpDataExtractorTest, ItemByteSizeErrors) {
TestDumpWithItemByteSize(
16, lldb::Format::eFormatBoolean,
"error: unsupported byte size (16) for boolean format");
TestDumpWithItemByteSize(21, lldb::Format::eFormatChar,
"error: unsupported byte size (21) for char format");
TestDumpWithItemByteSize(
18, lldb::Format::eFormatComplexInteger,
"error: unsupported byte size (18) for complex integer format");
// The code uses sizeof(long double) for these checks. This changes by host
// but we know it won't be >16.
TestDumpWithItemByteSize(
34, lldb::Format::eFormatComplex,
"error: unsupported byte size (34) for complex float format");
TestDumpWithItemByteSize(
18, lldb::Format::eFormatFloat,
"error: unsupported byte size (18) for float format");
// We want sizes to exactly match one of float/double.
TestDumpWithItemByteSize(
14, lldb::Format::eFormatComplex,
"error: unsupported byte size (14) for complex float format");
TestDumpWithItemByteSize(3, lldb::Format::eFormatFloat,
"error: unsupported byte size (3) for float format");
// We only allow float and double size.
TestDumpWithItemByteSize(
1, lldb::Format::eFormatHexFloat,
"error: unsupported byte size (1) for hex float format");
TestDumpWithItemByteSize(
17, lldb::Format::eFormatHexFloat,
"error: unsupported byte size (17) for hex float format");
}