blob: 9ecc9e229e0e64f45418888758a119d0914dc212 [file] [log] [blame]
//===-- Options.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Interpreter/Options.h"
#include <algorithm>
#include <bitset>
#include <map>
#include <set>
#include "lldb/Host/OptionParser.h"
#include "lldb/Interpreter/CommandCompletions.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandObject.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/StreamString.h"
using namespace lldb;
using namespace lldb_private;
// Options
Options::Options() : m_getopt_table() { BuildValidOptionSets(); }
Options::~Options() {}
void Options::NotifyOptionParsingStarting(ExecutionContext *execution_context) {
m_seen_options.clear();
// Let the subclass reset its option values
OptionParsingStarting(execution_context);
}
Status
Options::NotifyOptionParsingFinished(ExecutionContext *execution_context) {
return OptionParsingFinished(execution_context);
}
void Options::OptionSeen(int option_idx) { m_seen_options.insert(option_idx); }
// Returns true is set_a is a subset of set_b; Otherwise returns false.
bool Options::IsASubset(const OptionSet &set_a, const OptionSet &set_b) {
bool is_a_subset = true;
OptionSet::const_iterator pos_a;
OptionSet::const_iterator pos_b;
// set_a is a subset of set_b if every member of set_a is also a member of
// set_b
for (pos_a = set_a.begin(); pos_a != set_a.end() && is_a_subset; ++pos_a) {
pos_b = set_b.find(*pos_a);
if (pos_b == set_b.end())
is_a_subset = false;
}
return is_a_subset;
}
// Returns the set difference set_a - set_b, i.e. { x | ElementOf (x, set_a) &&
// !ElementOf (x, set_b) }
size_t Options::OptionsSetDiff(const OptionSet &set_a, const OptionSet &set_b,
OptionSet &diffs) {
size_t num_diffs = 0;
OptionSet::const_iterator pos_a;
OptionSet::const_iterator pos_b;
for (pos_a = set_a.begin(); pos_a != set_a.end(); ++pos_a) {
pos_b = set_b.find(*pos_a);
if (pos_b == set_b.end()) {
++num_diffs;
diffs.insert(*pos_a);
}
}
return num_diffs;
}
// Returns the union of set_a and set_b. Does not put duplicate members into
// the union.
void Options::OptionsSetUnion(const OptionSet &set_a, const OptionSet &set_b,
OptionSet &union_set) {
OptionSet::const_iterator pos;
OptionSet::iterator pos_union;
// Put all the elements of set_a into the union.
for (pos = set_a.begin(); pos != set_a.end(); ++pos)
union_set.insert(*pos);
// Put all the elements of set_b that are not already there into the union.
for (pos = set_b.begin(); pos != set_b.end(); ++pos) {
pos_union = union_set.find(*pos);
if (pos_union == union_set.end())
union_set.insert(*pos);
}
}
bool Options::VerifyOptions(CommandReturnObject &result) {
bool options_are_valid = false;
int num_levels = GetRequiredOptions().size();
if (num_levels) {
for (int i = 0; i < num_levels && !options_are_valid; ++i) {
// This is the correct set of options if: 1). m_seen_options contains
// all of m_required_options[i] (i.e. all the required options at this
// level are a subset of m_seen_options); AND 2). { m_seen_options -
// m_required_options[i] is a subset of m_options_options[i] (i.e. all
// the rest of m_seen_options are in the set of optional options at this
// level.
// Check to see if all of m_required_options[i] are a subset of
// m_seen_options
if (IsASubset(GetRequiredOptions()[i], m_seen_options)) {
// Construct the set difference: remaining_options = {m_seen_options} -
// {m_required_options[i]}
OptionSet remaining_options;
OptionsSetDiff(m_seen_options, GetRequiredOptions()[i],
remaining_options);
// Check to see if remaining_options is a subset of
// m_optional_options[i]
if (IsASubset(remaining_options, GetOptionalOptions()[i]))
options_are_valid = true;
}
}
} else {
options_are_valid = true;
}
if (options_are_valid) {
result.SetStatus(eReturnStatusSuccessFinishNoResult);
} else {
result.AppendError("invalid combination of options for the given command");
result.SetStatus(eReturnStatusFailed);
}
return options_are_valid;
}
// This is called in the Options constructor, though we could call it lazily if
// that ends up being a performance problem.
void Options::BuildValidOptionSets() {
// Check to see if we already did this.
if (m_required_options.size() != 0)
return;
// Check to see if there are any options.
int num_options = NumCommandOptions();
if (num_options == 0)
return;
auto opt_defs = GetDefinitions();
m_required_options.resize(1);
m_optional_options.resize(1);
// First count the number of option sets we've got. Ignore
// LLDB_ALL_OPTION_SETS...
uint32_t num_option_sets = 0;
for (const auto &def : opt_defs) {
uint32_t this_usage_mask = def.usage_mask;
if (this_usage_mask == LLDB_OPT_SET_ALL) {
if (num_option_sets == 0)
num_option_sets = 1;
} else {
for (uint32_t j = 0; j < LLDB_MAX_NUM_OPTION_SETS; j++) {
if (this_usage_mask & (1 << j)) {
if (num_option_sets <= j)
num_option_sets = j + 1;
}
}
}
}
if (num_option_sets > 0) {
m_required_options.resize(num_option_sets);
m_optional_options.resize(num_option_sets);
for (const auto &def : opt_defs) {
for (uint32_t j = 0; j < num_option_sets; j++) {
if (def.usage_mask & 1 << j) {
if (def.required)
m_required_options[j].insert(def.short_option);
else
m_optional_options[j].insert(def.short_option);
}
}
}
}
}
uint32_t Options::NumCommandOptions() { return GetDefinitions().size(); }
Option *Options::GetLongOptions() {
// Check to see if this has already been done.
if (m_getopt_table.empty()) {
auto defs = GetDefinitions();
if (defs.empty())
return nullptr;
std::map<int, uint32_t> option_seen;
m_getopt_table.resize(defs.size() + 1);
for (size_t i = 0; i < defs.size(); ++i) {
const int short_opt = defs[i].short_option;
m_getopt_table[i].definition = &defs[i];
m_getopt_table[i].flag = nullptr;
m_getopt_table[i].val = short_opt;
if (option_seen.find(short_opt) == option_seen.end()) {
option_seen[short_opt] = i;
} else if (short_opt) {
m_getopt_table[i].val = 0;
std::map<int, uint32_t>::const_iterator pos =
option_seen.find(short_opt);
StreamString strm;
if (defs[i].HasShortOption())
Host::SystemLog(Host::eSystemLogError,
"option[%u] --%s has a short option -%c that "
"conflicts with option[%u] --%s, short option won't "
"be used for --%s\n",
(int)i, defs[i].long_option, short_opt, pos->second,
m_getopt_table[pos->second].definition->long_option,
defs[i].long_option);
else
Host::SystemLog(Host::eSystemLogError,
"option[%u] --%s has a short option 0x%x that "
"conflicts with option[%u] --%s, short option won't "
"be used for --%s\n",
(int)i, defs[i].long_option, short_opt, pos->second,
m_getopt_table[pos->second].definition->long_option,
defs[i].long_option);
}
}
// getopt_long_only requires a NULL final entry in the table:
m_getopt_table.back().definition = nullptr;
m_getopt_table.back().flag = nullptr;
m_getopt_table.back().val = 0;
}
if (m_getopt_table.empty())
return nullptr;
return &m_getopt_table.front();
}
// This function takes INDENT, which tells how many spaces to output at the
// front of each line; SPACES, which is a string containing 80 spaces; and
// TEXT, which is the text that is to be output. It outputs the text, on
// multiple lines if necessary, to RESULT, with INDENT spaces at the front of
// each line. It breaks lines on spaces, tabs or newlines, shortening the line
// if necessary to not break in the middle of a word. It assumes that each
// output line should contain a maximum of OUTPUT_MAX_COLUMNS characters.
void Options::OutputFormattedUsageText(Stream &strm,
const OptionDefinition &option_def,
uint32_t output_max_columns) {
std::string actual_text;
if (option_def.validator) {
const char *condition = option_def.validator->ShortConditionString();
if (condition) {
actual_text = "[";
actual_text.append(condition);
actual_text.append("] ");
}
}
actual_text.append(option_def.usage_text);
// Will it all fit on one line?
if (static_cast<uint32_t>(actual_text.length() + strm.GetIndentLevel()) <
output_max_columns) {
// Output it as a single line.
strm.Indent(actual_text);
strm.EOL();
} else {
// We need to break it up into multiple lines.
int text_width = output_max_columns - strm.GetIndentLevel() - 1;
int start = 0;
int end = start;
int final_end = actual_text.length();
int sub_len;
while (end < final_end) {
// Don't start the 'text' on a space, since we're already outputting the
// indentation.
while ((start < final_end) && (actual_text[start] == ' '))
start++;
end = start + text_width;
if (end > final_end)
end = final_end;
else {
// If we're not at the end of the text, make sure we break the line on
// white space.
while (end > start && actual_text[end] != ' ' &&
actual_text[end] != '\t' && actual_text[end] != '\n')
end--;
}
sub_len = end - start;
if (start != 0)
strm.EOL();
strm.Indent();
assert(start < final_end);
assert(start + sub_len <= final_end);
strm.Write(actual_text.c_str() + start, sub_len);
start = end + 1;
}
strm.EOL();
}
}
bool Options::SupportsLongOption(const char *long_option) {
if (!long_option || !long_option[0])
return false;
auto opt_defs = GetDefinitions();
if (opt_defs.empty())
return false;
const char *long_option_name = long_option;
if (long_option[0] == '-' && long_option[1] == '-')
long_option_name += 2;
for (auto &def : opt_defs) {
if (!def.long_option)
continue;
if (strcmp(def.long_option, long_option_name) == 0)
return true;
}
return false;
}
enum OptionDisplayType {
eDisplayBestOption,
eDisplayShortOption,
eDisplayLongOption
};
static bool PrintOption(const OptionDefinition &opt_def,
OptionDisplayType display_type, const char *header,
const char *footer, bool show_optional, Stream &strm) {
if (display_type == eDisplayShortOption && !opt_def.HasShortOption())
return false;
if (header && header[0])
strm.PutCString(header);
if (show_optional && !opt_def.required)
strm.PutChar('[');
const bool show_short_option =
opt_def.HasShortOption() && display_type != eDisplayLongOption;
if (show_short_option)
strm.Printf("-%c", opt_def.short_option);
else
strm.Printf("--%s", opt_def.long_option);
switch (opt_def.option_has_arg) {
case OptionParser::eNoArgument:
break;
case OptionParser::eRequiredArgument:
strm.Printf(" <%s>", CommandObject::GetArgumentName(opt_def.argument_type));
break;
case OptionParser::eOptionalArgument:
strm.Printf("%s[<%s>]", show_short_option ? "" : "=",
CommandObject::GetArgumentName(opt_def.argument_type));
break;
}
if (show_optional && !opt_def.required)
strm.PutChar(']');
if (footer && footer[0])
strm.PutCString(footer);
return true;
}
void Options::GenerateOptionUsage(Stream &strm, CommandObject *cmd,
uint32_t screen_width) {
const bool only_print_args = cmd->IsDashDashCommand();
auto opt_defs = GetDefinitions();
const uint32_t save_indent_level = strm.GetIndentLevel();
llvm::StringRef name;
StreamString arguments_str;
if (cmd) {
name = cmd->GetCommandName();
cmd->GetFormattedCommandArguments(arguments_str);
} else
name = "";
strm.PutCString("\nCommand Options Usage:\n");
strm.IndentMore(2);
// First, show each usage level set of options, e.g. <cmd> [options-for-
// level-0]
// <cmd>
// [options-for-level-1]
// etc.
const uint32_t num_options = NumCommandOptions();
if (num_options == 0)
return;
uint32_t num_option_sets = GetRequiredOptions().size();
uint32_t i;
if (!only_print_args) {
for (uint32_t opt_set = 0; opt_set < num_option_sets; ++opt_set) {
uint32_t opt_set_mask;
opt_set_mask = 1 << opt_set;
if (opt_set > 0)
strm.Printf("\n");
strm.Indent(name);
// Different option sets may require different args.
StreamString args_str;
if (cmd)
cmd->GetFormattedCommandArguments(args_str, opt_set_mask);
// First go through and print all options that take no arguments as a
// single string. If a command has "-a" "-b" and "-c", this will show up
// as [-abc]
std::set<int> options;
std::set<int>::const_iterator options_pos, options_end;
for (auto &def : opt_defs) {
if (def.usage_mask & opt_set_mask && def.HasShortOption()) {
// Add current option to the end of out_stream.
if (def.required && def.option_has_arg == OptionParser::eNoArgument) {
options.insert(def.short_option);
}
}
}
if (!options.empty()) {
// We have some required options with no arguments
strm.PutCString(" -");
for (i = 0; i < 2; ++i)
for (options_pos = options.begin(), options_end = options.end();
options_pos != options_end; ++options_pos) {
if (i == 0 && ::islower(*options_pos))
continue;
if (i == 1 && ::isupper(*options_pos))
continue;
strm << (char)*options_pos;
}
}
options.clear();
for (auto &def : opt_defs) {
if (def.usage_mask & opt_set_mask && def.HasShortOption()) {
// Add current option to the end of out_stream.
if (!def.required &&
def.option_has_arg == OptionParser::eNoArgument) {
options.insert(def.short_option);
}
}
}
if (!options.empty()) {
// We have some required options with no arguments
strm.PutCString(" [-");
for (i = 0; i < 2; ++i)
for (options_pos = options.begin(), options_end = options.end();
options_pos != options_end; ++options_pos) {
if (i == 0 && ::islower(*options_pos))
continue;
if (i == 1 && ::isupper(*options_pos))
continue;
strm << (char)*options_pos;
}
strm.PutChar(']');
}
// First go through and print the required options (list them up front).
for (auto &def : opt_defs) {
if (def.usage_mask & opt_set_mask && def.HasShortOption()) {
if (def.required && def.option_has_arg != OptionParser::eNoArgument)
PrintOption(def, eDisplayBestOption, " ", nullptr, true, strm);
}
}
// Now go through again, and this time only print the optional options.
for (auto &def : opt_defs) {
if (def.usage_mask & opt_set_mask) {
// Add current option to the end of out_stream.
if (!def.required && def.option_has_arg != OptionParser::eNoArgument)
PrintOption(def, eDisplayBestOption, " ", nullptr, true, strm);
}
}
if (args_str.GetSize() > 0) {
if (cmd->WantsRawCommandString() && !only_print_args)
strm.Printf(" --");
strm << " " << args_str.GetString();
if (only_print_args)
break;
}
}
}
if (cmd && (only_print_args || cmd->WantsRawCommandString()) &&
arguments_str.GetSize() > 0) {
if (!only_print_args)
strm.PutChar('\n');
strm.Indent(name);
strm << " " << arguments_str.GetString();
}
strm.Printf("\n\n");
if (!only_print_args) {
// Now print out all the detailed information about the various options:
// long form, short form and help text:
// -short <argument> ( --long_name <argument> )
// help text
// This variable is used to keep track of which options' info we've printed
// out, because some options can be in more than one usage level, but we
// only want to print the long form of its information once.
std::multimap<int, uint32_t> options_seen;
strm.IndentMore(5);
// Put the unique command options in a vector & sort it, so we can output
// them alphabetically (by short_option) when writing out detailed help for
// each option.
i = 0;
for (auto &def : opt_defs)
options_seen.insert(std::make_pair(def.short_option, i++));
// Go through the unique'd and alphabetically sorted vector of options,
// find the table entry for each option and write out the detailed help
// information for that option.
bool first_option_printed = false;
for (auto pos : options_seen) {
i = pos.second;
// Print out the help information for this option.
// Put a newline separation between arguments
if (first_option_printed)
strm.EOL();
else
first_option_printed = true;
CommandArgumentType arg_type = opt_defs[i].argument_type;
StreamString arg_name_str;
arg_name_str.Printf("<%s>", CommandObject::GetArgumentName(arg_type));
strm.Indent();
if (opt_defs[i].short_option && opt_defs[i].HasShortOption()) {
PrintOption(opt_defs[i], eDisplayShortOption, nullptr, nullptr, false,
strm);
PrintOption(opt_defs[i], eDisplayLongOption, " ( ", " )", false, strm);
} else {
// Short option is not printable, just print long option
PrintOption(opt_defs[i], eDisplayLongOption, nullptr, nullptr, false,
strm);
}
strm.EOL();
strm.IndentMore(5);
if (opt_defs[i].usage_text)
OutputFormattedUsageText(strm, opt_defs[i], screen_width);
if (!opt_defs[i].enum_values.empty()) {
strm.Indent();
strm.Printf("Values: ");
bool is_first = true;
for (const auto &enum_value : opt_defs[i].enum_values) {
if (is_first) {
strm.Printf("%s", enum_value.string_value);
is_first = false;
}
else
strm.Printf(" | %s", enum_value.string_value);
}
strm.EOL();
}
strm.IndentLess(5);
}
}
// Restore the indent level
strm.SetIndentLevel(save_indent_level);
}
// This function is called when we have been given a potentially incomplete set
// of options, such as when an alias has been defined (more options might be
// added at at the time the alias is invoked). We need to verify that the
// options in the set m_seen_options are all part of a set that may be used
// together, but m_seen_options may be missing some of the "required" options.
bool Options::VerifyPartialOptions(CommandReturnObject &result) {
bool options_are_valid = false;
int num_levels = GetRequiredOptions().size();
if (num_levels) {
for (int i = 0; i < num_levels && !options_are_valid; ++i) {
// In this case we are treating all options as optional rather than
// required. Therefore a set of options is correct if m_seen_options is a
// subset of the union of m_required_options and m_optional_options.
OptionSet union_set;
OptionsSetUnion(GetRequiredOptions()[i], GetOptionalOptions()[i],
union_set);
if (IsASubset(m_seen_options, union_set))
options_are_valid = true;
}
}
return options_are_valid;
}
bool Options::HandleOptionCompletion(CompletionRequest &request,
OptionElementVector &opt_element_vector,
CommandInterpreter &interpreter) {
// For now we just scan the completions to see if the cursor position is in
// an option or its argument. Otherwise we'll call HandleArgumentCompletion.
// In the future we can use completion to validate options as well if we
// want.
auto opt_defs = GetDefinitions();
llvm::StringRef cur_opt_str = request.GetCursorArgumentPrefix();
for (size_t i = 0; i < opt_element_vector.size(); i++) {
size_t opt_pos = static_cast<size_t>(opt_element_vector[i].opt_pos);
size_t opt_arg_pos = static_cast<size_t>(opt_element_vector[i].opt_arg_pos);
int opt_defs_index = opt_element_vector[i].opt_defs_index;
if (opt_pos == request.GetCursorIndex()) {
// We're completing the option itself.
if (opt_defs_index == OptionArgElement::eBareDash) {
// We're completing a bare dash. That means all options are open.
// FIXME: We should scan the other options provided and only complete
// options
// within the option group they belong to.
std::string opt_str = "-a";
for (auto &def : opt_defs) {
if (!def.short_option)
continue;
opt_str[1] = def.short_option;
request.AddCompletion(opt_str, def.usage_text);
}
return true;
} else if (opt_defs_index == OptionArgElement::eBareDoubleDash) {
std::string full_name("--");
for (auto &def : opt_defs) {
if (!def.short_option)
continue;
full_name.erase(full_name.begin() + 2, full_name.end());
full_name.append(def.long_option);
request.AddCompletion(full_name, def.usage_text);
}
return true;
} else if (opt_defs_index != OptionArgElement::eUnrecognizedArg) {
// We recognized it, if it an incomplete long option, complete it
// anyway (getopt_long_only is happy with shortest unique string, but
// it's still a nice thing to do.) Otherwise return The string so the
// upper level code will know this is a full match and add the " ".
const OptionDefinition &opt = opt_defs[opt_defs_index];
llvm::StringRef long_option = opt.long_option;
if (cur_opt_str.startswith("--") && cur_opt_str != long_option) {
request.AddCompletion("--" + long_option.str(), opt.usage_text);
return true;
} else
request.AddCompletion(request.GetCursorArgumentPrefix());
return true;
} else {
// FIXME - not handling wrong options yet:
// Check to see if they are writing a long option & complete it.
// I think we will only get in here if the long option table has two
// elements
// that are not unique up to this point. getopt_long_only does
// shortest unique match for long options already.
if (cur_opt_str.consume_front("--")) {
for (auto &def : opt_defs) {
llvm::StringRef long_option(def.long_option);
if (long_option.startswith(cur_opt_str))
request.AddCompletion("--" + long_option.str(), def.usage_text);
}
}
return true;
}
} else if (opt_arg_pos == request.GetCursorIndex()) {
// Okay the cursor is on the completion of an argument. See if it has a
// completion, otherwise return no matches.
if (opt_defs_index != -1) {
HandleOptionArgumentCompletion(request, opt_element_vector, i,
interpreter);
return true;
} else {
// No completion callback means no completions...
return true;
}
} else {
// Not the last element, keep going.
continue;
}
}
return false;
}
void Options::HandleOptionArgumentCompletion(
CompletionRequest &request, OptionElementVector &opt_element_vector,
int opt_element_index, CommandInterpreter &interpreter) {
auto opt_defs = GetDefinitions();
std::unique_ptr<SearchFilter> filter_up;
int opt_defs_index = opt_element_vector[opt_element_index].opt_defs_index;
// See if this is an enumeration type option, and if so complete it here:
const auto &enum_values = opt_defs[opt_defs_index].enum_values;
if (!enum_values.empty())
for (const auto &enum_value : enum_values)
request.TryCompleteCurrentArg(enum_value.string_value);
// If this is a source file or symbol type completion, and there is a -shlib
// option somewhere in the supplied arguments, then make a search filter for
// that shared library.
// FIXME: Do we want to also have an "OptionType" so we don't have to match
// string names?
uint32_t completion_mask = opt_defs[opt_defs_index].completion_type;
if (completion_mask == 0) {
lldb::CommandArgumentType option_arg_type =
opt_defs[opt_defs_index].argument_type;
if (option_arg_type != eArgTypeNone) {
const CommandObject::ArgumentTableEntry *arg_entry =
CommandObject::FindArgumentDataByType(
opt_defs[opt_defs_index].argument_type);
if (arg_entry)
completion_mask = arg_entry->completion_type;
}
}
if (completion_mask & CommandCompletions::eSourceFileCompletion ||
completion_mask & CommandCompletions::eSymbolCompletion) {
for (size_t i = 0; i < opt_element_vector.size(); i++) {
int cur_defs_index = opt_element_vector[i].opt_defs_index;
// trying to use <0 indices will definitely cause problems
if (cur_defs_index == OptionArgElement::eUnrecognizedArg ||
cur_defs_index == OptionArgElement::eBareDash ||
cur_defs_index == OptionArgElement::eBareDoubleDash)
continue;
int cur_arg_pos = opt_element_vector[i].opt_arg_pos;
const char *cur_opt_name = opt_defs[cur_defs_index].long_option;
// If this is the "shlib" option and there was an argument provided,
// restrict it to that shared library.
if (cur_opt_name && strcmp(cur_opt_name, "shlib") == 0 &&
cur_arg_pos != -1) {
const char *module_name =
request.GetParsedLine().GetArgumentAtIndex(cur_arg_pos);
if (module_name) {
FileSpec module_spec(module_name);
lldb::TargetSP target_sp =
interpreter.GetDebugger().GetSelectedTarget();
// Search filters require a target...
if (target_sp)
filter_up =
std::make_unique<SearchFilterByModule>(target_sp, module_spec);
}
break;
}
}
}
CommandCompletions::InvokeCommonCompletionCallbacks(
interpreter, completion_mask, request, filter_up.get());
}
void OptionGroupOptions::Append(OptionGroup *group) {
auto group_option_defs = group->GetDefinitions();
for (uint32_t i = 0; i < group_option_defs.size(); ++i) {
m_option_infos.push_back(OptionInfo(group, i));
m_option_defs.push_back(group_option_defs[i]);
}
}
const OptionGroup *OptionGroupOptions::GetGroupWithOption(char short_opt) {
for (uint32_t i = 0; i < m_option_defs.size(); i++) {
OptionDefinition opt_def = m_option_defs[i];
if (opt_def.short_option == short_opt)
return m_option_infos[i].option_group;
}
return nullptr;
}
void OptionGroupOptions::Append(OptionGroup *group, uint32_t src_mask,
uint32_t dst_mask) {
auto group_option_defs = group->GetDefinitions();
for (uint32_t i = 0; i < group_option_defs.size(); ++i) {
if (group_option_defs[i].usage_mask & src_mask) {
m_option_infos.push_back(OptionInfo(group, i));
m_option_defs.push_back(group_option_defs[i]);
m_option_defs.back().usage_mask = dst_mask;
}
}
}
void OptionGroupOptions::Finalize() {
m_did_finalize = true;
}
Status OptionGroupOptions::SetOptionValue(uint32_t option_idx,
llvm::StringRef option_value,
ExecutionContext *execution_context) {
// After calling OptionGroupOptions::Append(...), you must finalize the
// groups by calling OptionGroupOptions::Finlize()
assert(m_did_finalize);
Status error;
if (option_idx < m_option_infos.size()) {
error = m_option_infos[option_idx].option_group->SetOptionValue(
m_option_infos[option_idx].option_index, option_value,
execution_context);
} else {
error.SetErrorString("invalid option index"); // Shouldn't happen...
}
return error;
}
void OptionGroupOptions::OptionParsingStarting(
ExecutionContext *execution_context) {
std::set<OptionGroup *> group_set;
OptionInfos::iterator pos, end = m_option_infos.end();
for (pos = m_option_infos.begin(); pos != end; ++pos) {
OptionGroup *group = pos->option_group;
if (group_set.find(group) == group_set.end()) {
group->OptionParsingStarting(execution_context);
group_set.insert(group);
}
}
}
Status
OptionGroupOptions::OptionParsingFinished(ExecutionContext *execution_context) {
std::set<OptionGroup *> group_set;
Status error;
OptionInfos::iterator pos, end = m_option_infos.end();
for (pos = m_option_infos.begin(); pos != end; ++pos) {
OptionGroup *group = pos->option_group;
if (group_set.find(group) == group_set.end()) {
error = group->OptionParsingFinished(execution_context);
group_set.insert(group);
if (error.Fail())
return error;
}
}
return error;
}
// OptionParser permutes the arguments while processing them, so we create a
// temporary array holding to avoid modification of the input arguments. The
// options themselves are never modified, but the API expects a char * anyway,
// hence the const_cast.
static std::vector<char *> GetArgvForParsing(const Args &args) {
std::vector<char *> result;
// OptionParser always skips the first argument as it is based on getopt().
result.push_back(const_cast<char *>("<FAKE-ARG0>"));
for (const Args::ArgEntry &entry : args)
result.push_back(const_cast<char *>(entry.c_str()));
result.push_back(nullptr);
return result;
}
// Given a permuted argument, find it's position in the original Args vector.
static Args::const_iterator FindOriginalIter(const char *arg,
const Args &original) {
return llvm::find_if(
original, [arg](const Args::ArgEntry &D) { return D.c_str() == arg; });
}
// Given a permuted argument, find it's index in the original Args vector.
static size_t FindOriginalIndex(const char *arg, const Args &original) {
return std::distance(original.begin(), FindOriginalIter(arg, original));
}
// Construct a new Args object, consisting of the entries from the original
// arguments, but in the permuted order.
static Args ReconstituteArgsAfterParsing(llvm::ArrayRef<char *> parsed,
const Args &original) {
Args result;
for (const char *arg : parsed) {
auto pos = FindOriginalIter(arg, original);
assert(pos != original.end());
result.AppendArgument(pos->ref(), pos->GetQuoteChar());
}
return result;
}
static size_t FindArgumentIndexForOption(const Args &args,
const Option &long_option) {
std::string short_opt = llvm::formatv("-{0}", char(long_option.val)).str();
std::string long_opt =
std::string(llvm::formatv("--{0}", long_option.definition->long_option));
for (const auto &entry : llvm::enumerate(args)) {
if (entry.value().ref().startswith(short_opt) ||
entry.value().ref().startswith(long_opt))
return entry.index();
}
return size_t(-1);
}
static std::string BuildShortOptions(const Option *long_options) {
std::string storage;
llvm::raw_string_ostream sstr(storage);
// Leading : tells getopt to return a : for a missing option argument AND to
// suppress error messages.
sstr << ":";
for (size_t i = 0; long_options[i].definition != nullptr; ++i) {
if (long_options[i].flag == nullptr) {
sstr << (char)long_options[i].val;
switch (long_options[i].definition->option_has_arg) {
default:
case OptionParser::eNoArgument:
break;
case OptionParser::eRequiredArgument:
sstr << ":";
break;
case OptionParser::eOptionalArgument:
sstr << "::";
break;
}
}
}
return std::move(sstr.str());
}
llvm::Expected<Args> Options::ParseAlias(const Args &args,
OptionArgVector *option_arg_vector,
std::string &input_line) {
Option *long_options = GetLongOptions();
if (long_options == nullptr) {
return llvm::make_error<llvm::StringError>("Invalid long options",
llvm::inconvertibleErrorCode());
}
std::string short_options = BuildShortOptions(long_options);
Args args_copy = args;
std::vector<char *> argv = GetArgvForParsing(args);
std::unique_lock<std::mutex> lock;
OptionParser::Prepare(lock);
int val;
while (true) {
int long_options_index = -1;
val = OptionParser::Parse(argv, short_options, long_options,
&long_options_index);
if (val == ':') {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"last option requires an argument");
}
if (val == -1)
break;
if (val == '?') {
return llvm::make_error<llvm::StringError>(
"Unknown or ambiguous option", llvm::inconvertibleErrorCode());
}
if (val == 0)
continue;
OptionSeen(val);
// Look up the long option index
if (long_options_index == -1) {
for (int j = 0; long_options[j].definition || long_options[j].flag ||
long_options[j].val;
++j) {
if (long_options[j].val == val) {
long_options_index = j;
break;
}
}
}
// See if the option takes an argument, and see if one was supplied.
if (long_options_index == -1) {
return llvm::make_error<llvm::StringError>(
llvm::formatv("Invalid option with value '{0}'.", char(val)).str(),
llvm::inconvertibleErrorCode());
}
StreamString option_str;
option_str.Printf("-%c", val);
const OptionDefinition *def = long_options[long_options_index].definition;
int has_arg =
(def == nullptr) ? OptionParser::eNoArgument : def->option_has_arg;
const char *option_arg = nullptr;
switch (has_arg) {
case OptionParser::eRequiredArgument:
if (OptionParser::GetOptionArgument() == nullptr) {
return llvm::make_error<llvm::StringError>(
llvm::formatv("Option '{0}' is missing argument specifier.",
option_str.GetString())
.str(),
llvm::inconvertibleErrorCode());
}
LLVM_FALLTHROUGH;
case OptionParser::eOptionalArgument:
option_arg = OptionParser::GetOptionArgument();
LLVM_FALLTHROUGH;
case OptionParser::eNoArgument:
break;
default:
return llvm::make_error<llvm::StringError>(
llvm::formatv("error with options table; invalid value in has_arg "
"field for option '{0}'.",
char(val))
.str(),
llvm::inconvertibleErrorCode());
}
if (!option_arg)
option_arg = "<no-argument>";
option_arg_vector->emplace_back(std::string(option_str.GetString()),
has_arg, std::string(option_arg));
// Find option in the argument list; also see if it was supposed to take an
// argument and if one was supplied. Remove option (and argument, if
// given) from the argument list. Also remove them from the
// raw_input_string, if one was passed in.
size_t idx =
FindArgumentIndexForOption(args_copy, long_options[long_options_index]);
if (idx == size_t(-1))
continue;
if (!input_line.empty()) {
auto tmp_arg = args_copy[idx].ref();
size_t pos = input_line.find(std::string(tmp_arg));
if (pos != std::string::npos)
input_line.erase(pos, tmp_arg.size());
}
args_copy.DeleteArgumentAtIndex(idx);
if ((long_options[long_options_index].definition->option_has_arg !=
OptionParser::eNoArgument) &&
(OptionParser::GetOptionArgument() != nullptr) &&
(idx < args_copy.GetArgumentCount()) &&
(args_copy[idx].ref() == OptionParser::GetOptionArgument())) {
if (input_line.size() > 0) {
auto tmp_arg = args_copy[idx].ref();
size_t pos = input_line.find(std::string(tmp_arg));
if (pos != std::string::npos)
input_line.erase(pos, tmp_arg.size());
}
args_copy.DeleteArgumentAtIndex(idx);
}
}
return std::move(args_copy);
}
OptionElementVector Options::ParseForCompletion(const Args &args,
uint32_t cursor_index) {
OptionElementVector option_element_vector;
Option *long_options = GetLongOptions();
option_element_vector.clear();
if (long_options == nullptr)
return option_element_vector;
std::string short_options = BuildShortOptions(long_options);
std::unique_lock<std::mutex> lock;
OptionParser::Prepare(lock);
OptionParser::EnableError(false);
int val;
auto opt_defs = GetDefinitions();
std::vector<char *> dummy_vec = GetArgvForParsing(args);
bool failed_once = false;
uint32_t dash_dash_pos = -1;
while (true) {
bool missing_argument = false;
int long_options_index = -1;
val = OptionParser::Parse(dummy_vec, short_options, long_options,
&long_options_index);
if (val == -1) {
// When we're completing a "--" which is the last option on line,
if (failed_once)
break;
failed_once = true;
// If this is a bare "--" we mark it as such so we can complete it
// successfully later. Handling the "--" is a little tricky, since that
// may mean end of options or arguments, or the user might want to
// complete options by long name. I make this work by checking whether
// the cursor is in the "--" argument, and if so I assume we're
// completing the long option, otherwise I let it pass to
// OptionParser::Parse which will terminate the option parsing. Note, in
// either case we continue parsing the line so we can figure out what
// other options were passed. This will be useful when we come to
// restricting completions based on what other options we've seen on the
// line.
if (static_cast<size_t>(OptionParser::GetOptionIndex()) <
dummy_vec.size() &&
(strcmp(dummy_vec[OptionParser::GetOptionIndex() - 1], "--") == 0)) {
dash_dash_pos = FindOriginalIndex(
dummy_vec[OptionParser::GetOptionIndex() - 1], args);
if (dash_dash_pos == cursor_index) {
option_element_vector.push_back(
OptionArgElement(OptionArgElement::eBareDoubleDash, dash_dash_pos,
OptionArgElement::eBareDoubleDash));
continue;
} else
break;
} else
break;
} else if (val == '?') {
option_element_vector.push_back(OptionArgElement(
OptionArgElement::eUnrecognizedArg,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args),
OptionArgElement::eUnrecognizedArg));
continue;
} else if (val == 0) {
continue;
} else if (val == ':') {
// This is a missing argument.
val = OptionParser::GetOptionErrorCause();
missing_argument = true;
}
OptionSeen(val);
// Look up the long option index
if (long_options_index == -1) {
for (int j = 0; long_options[j].definition || long_options[j].flag ||
long_options[j].val;
++j) {
if (long_options[j].val == val) {
long_options_index = j;
break;
}
}
}
// See if the option takes an argument, and see if one was supplied.
if (long_options_index >= 0) {
int opt_defs_index = -1;
for (size_t i = 0; i < opt_defs.size(); i++) {
if (opt_defs[i].short_option != val)
continue;
opt_defs_index = i;
break;
}
const OptionDefinition *def = long_options[long_options_index].definition;
int has_arg =
(def == nullptr) ? OptionParser::eNoArgument : def->option_has_arg;
switch (has_arg) {
case OptionParser::eNoArgument:
option_element_vector.push_back(OptionArgElement(
opt_defs_index,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args),
0));
break;
case OptionParser::eRequiredArgument:
if (OptionParser::GetOptionArgument() != nullptr) {
int arg_index;
if (missing_argument)
arg_index = -1;
else
arg_index = OptionParser::GetOptionIndex() - 2;
option_element_vector.push_back(OptionArgElement(
opt_defs_index,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 2],
args),
arg_index));
} else {
option_element_vector.push_back(OptionArgElement(
opt_defs_index,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args),
-1));
}
break;
case OptionParser::eOptionalArgument:
if (OptionParser::GetOptionArgument() != nullptr) {
option_element_vector.push_back(OptionArgElement(
opt_defs_index,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 2],
args),
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args)));
} else {
option_element_vector.push_back(OptionArgElement(
opt_defs_index,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 2],
args),
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args)));
}
break;
default:
// The options table is messed up. Here we'll just continue
option_element_vector.push_back(OptionArgElement(
OptionArgElement::eUnrecognizedArg,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args),
OptionArgElement::eUnrecognizedArg));
break;
}
} else {
option_element_vector.push_back(OptionArgElement(
OptionArgElement::eUnrecognizedArg,
FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1],
args),
OptionArgElement::eUnrecognizedArg));
}
}
// Finally we have to handle the case where the cursor index points at a
// single "-". We want to mark that in the option_element_vector, but only
// if it is not after the "--". But it turns out that OptionParser::Parse
// just ignores an isolated "-". So we have to look it up by hand here. We
// only care if it is AT the cursor position. Note, a single quoted dash is
// not the same as a single dash...
const Args::ArgEntry &cursor = args[cursor_index];
if ((static_cast<int32_t>(dash_dash_pos) == -1 ||
cursor_index < dash_dash_pos) &&
!cursor.IsQuoted() && cursor.ref() == "-") {
option_element_vector.push_back(
OptionArgElement(OptionArgElement::eBareDash, cursor_index,
OptionArgElement::eBareDash));
}
return option_element_vector;
}
llvm::Expected<Args> Options::Parse(const Args &args,
ExecutionContext *execution_context,
lldb::PlatformSP platform_sp,
bool require_validation) {
Status error;
Option *long_options = GetLongOptions();
if (long_options == nullptr) {
return llvm::make_error<llvm::StringError>("Invalid long options.",
llvm::inconvertibleErrorCode());
}
std::string short_options = BuildShortOptions(long_options);
std::vector<char *> argv = GetArgvForParsing(args);
std::unique_lock<std::mutex> lock;
OptionParser::Prepare(lock);
int val;
while (true) {
int long_options_index = -1;
val = OptionParser::Parse(argv, short_options, long_options,
&long_options_index);
if (val == ':') {
error.SetErrorString("last option requires an argument");
break;
}
if (val == -1)
break;
// Did we get an error?
if (val == '?') {
error.SetErrorString("unknown or ambiguous option");
break;
}
// The option auto-set itself
if (val == 0)
continue;
OptionSeen(val);
// Lookup the long option index
if (long_options_index == -1) {
for (int i = 0; long_options[i].definition || long_options[i].flag ||
long_options[i].val;
++i) {
if (long_options[i].val == val) {
long_options_index = i;
break;
}
}
}
// Call the callback with the option
if (long_options_index >= 0 &&
long_options[long_options_index].definition) {
const OptionDefinition *def = long_options[long_options_index].definition;
if (!platform_sp) {
// User did not pass in an explicit platform. Try to grab from the
// execution context.
TargetSP target_sp =
execution_context ? execution_context->GetTargetSP() : TargetSP();
platform_sp = target_sp ? target_sp->GetPlatform() : PlatformSP();
}
OptionValidator *validator = def->validator;
if (!platform_sp && require_validation) {
// Caller requires validation but we cannot validate as we don't have
// the mandatory platform against which to validate.
return llvm::make_error<llvm::StringError>(
"cannot validate options: no platform available",
llvm::inconvertibleErrorCode());
}
bool validation_failed = false;
if (platform_sp) {
// Ensure we have an execution context, empty or not.
ExecutionContext dummy_context;
ExecutionContext *exe_ctx_p =
execution_context ? execution_context : &dummy_context;
if (validator && !validator->IsValid(*platform_sp, *exe_ctx_p)) {
validation_failed = true;
error.SetErrorStringWithFormat("Option \"%s\" invalid. %s",
def->long_option,
def->validator->LongConditionString());
}
}
// As long as validation didn't fail, we set the option value.
if (!validation_failed)
error =
SetOptionValue(long_options_index,
(def->option_has_arg == OptionParser::eNoArgument)
? nullptr
: OptionParser::GetOptionArgument(),
execution_context);
// If the Option setting returned an error, we should stop parsing
// and return the error.
if (error.Fail())
break;
} else {
error.SetErrorStringWithFormat("invalid option with value '%i'", val);
}
}
if (error.Fail())
return error.ToError();
argv.pop_back();
argv.erase(argv.begin(), argv.begin() + OptionParser::GetOptionIndex());
return ReconstituteArgsAfterParsing(argv, args);
}