blob: 47051f2e68090fccfaa1b3217f6c17a921f5f327 [file] [log] [blame]
//===-- TypeSystemClang.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TypeSystemClang.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/ExprCXX.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
#include <mutex>
#include <memory>
#include <string>
#include <vector>
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTImporter.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Sema/Sema.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Threading.h"
#include "Plugins/ExpressionParser/Clang/ClangASTImporter.h"
#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
#include "Plugins/ExpressionParser/Clang/ClangExternalASTSourceCallbacks.h"
#include "Plugins/ExpressionParser/Clang/ClangFunctionCaller.h"
#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
#include "Plugins/ExpressionParser/Clang/ClangUserExpression.h"
#include "Plugins/ExpressionParser/Clang/ClangUtil.h"
#include "Plugins/ExpressionParser/Clang/ClangUtilityFunction.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "lldb/Host/StreamFile.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Flags.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/ThreadSafeDenseMap.h"
#include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
#include "Plugins/SymbolFile/DWARF/DWARFASTParserClang.h"
#include "Plugins/SymbolFile/PDB/PDBASTParser.h"
#include "Plugins/SymbolFile/NativePDB/PdbAstBuilder.h"
#include <cstdio>
#include <mutex>
#include <optional>
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::dwarf;
using namespace lldb_private::plugin::dwarf;
using namespace clang;
using llvm::StringSwitch;
LLDB_PLUGIN_DEFINE(TypeSystemClang)
namespace {
static void VerifyDecl(clang::Decl *decl) {
assert(decl && "VerifyDecl called with nullptr?");
#ifndef NDEBUG
// We don't care about the actual access value here but only want to trigger
// that Clang calls its internal Decl::AccessDeclContextCheck validation.
decl->getAccess();
#endif
}
static inline bool
TypeSystemClangSupportsLanguage(lldb::LanguageType language) {
return language == eLanguageTypeUnknown || // Clang is the default type system
lldb_private::Language::LanguageIsC(language) ||
lldb_private::Language::LanguageIsCPlusPlus(language) ||
lldb_private::Language::LanguageIsObjC(language) ||
lldb_private::Language::LanguageIsPascal(language) ||
// Use Clang for Rust until there is a proper language plugin for it
language == eLanguageTypeRust ||
// Use Clang for D until there is a proper language plugin for it
language == eLanguageTypeD ||
// Open Dylan compiler debug info is designed to be Clang-compatible
language == eLanguageTypeDylan;
}
// Checks whether m1 is an overload of m2 (as opposed to an override). This is
// called by addOverridesForMethod to distinguish overrides (which share a
// vtable entry) from overloads (which require distinct entries).
bool isOverload(clang::CXXMethodDecl *m1, clang::CXXMethodDecl *m2) {
// FIXME: This should detect covariant return types, but currently doesn't.
lldbassert(&m1->getASTContext() == &m2->getASTContext() &&
"Methods should have the same AST context");
clang::ASTContext &context = m1->getASTContext();
const auto *m1Type = llvm::cast<clang::FunctionProtoType>(
context.getCanonicalType(m1->getType()));
const auto *m2Type = llvm::cast<clang::FunctionProtoType>(
context.getCanonicalType(m2->getType()));
auto compareArgTypes = [&context](const clang::QualType &m1p,
const clang::QualType &m2p) {
return context.hasSameType(m1p.getUnqualifiedType(),
m2p.getUnqualifiedType());
};
// FIXME: In C++14 and later, we can just pass m2Type->param_type_end()
// as a fourth parameter to std::equal().
return (m1->getNumParams() != m2->getNumParams()) ||
!std::equal(m1Type->param_type_begin(), m1Type->param_type_end(),
m2Type->param_type_begin(), compareArgTypes);
}
// If decl is a virtual method, walk the base classes looking for methods that
// decl overrides. This table of overridden methods is used by IRGen to
// determine the vtable layout for decl's parent class.
void addOverridesForMethod(clang::CXXMethodDecl *decl) {
if (!decl->isVirtual())
return;
clang::CXXBasePaths paths;
llvm::SmallVector<clang::NamedDecl *, 4> decls;
auto find_overridden_methods =
[&decls, decl](const clang::CXXBaseSpecifier *specifier,
clang::CXXBasePath &path) {
if (auto *base_record = llvm::dyn_cast<clang::CXXRecordDecl>(
specifier->getType()->castAs<clang::RecordType>()->getDecl())) {
clang::DeclarationName name = decl->getDeclName();
// If this is a destructor, check whether the base class destructor is
// virtual.
if (name.getNameKind() == clang::DeclarationName::CXXDestructorName)
if (auto *baseDtorDecl = base_record->getDestructor()) {
if (baseDtorDecl->isVirtual()) {
decls.push_back(baseDtorDecl);
return true;
} else
return false;
}
// Otherwise, search for name in the base class.
for (path.Decls = base_record->lookup(name).begin();
path.Decls != path.Decls.end(); ++path.Decls) {
if (auto *method_decl =
llvm::dyn_cast<clang::CXXMethodDecl>(*path.Decls))
if (method_decl->isVirtual() && !isOverload(decl, method_decl)) {
decls.push_back(method_decl);
return true;
}
}
}
return false;
};
if (decl->getParent()->lookupInBases(find_overridden_methods, paths)) {
for (auto *overridden_decl : decls)
decl->addOverriddenMethod(
llvm::cast<clang::CXXMethodDecl>(overridden_decl));
}
}
}
static lldb::addr_t GetVTableAddress(Process &process,
VTableContextBase &vtable_ctx,
ValueObject &valobj,
const ASTRecordLayout &record_layout) {
// Retrieve type info
CompilerType pointee_type;
CompilerType this_type(valobj.GetCompilerType());
uint32_t type_info = this_type.GetTypeInfo(&pointee_type);
if (!type_info)
return LLDB_INVALID_ADDRESS;
// Check if it's a pointer or reference
bool ptr_or_ref = false;
if (type_info & (eTypeIsPointer | eTypeIsReference)) {
ptr_or_ref = true;
type_info = pointee_type.GetTypeInfo();
}
// We process only C++ classes
const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus;
if ((type_info & cpp_class) != cpp_class)
return LLDB_INVALID_ADDRESS;
// Calculate offset to VTable pointer
lldb::offset_t vbtable_ptr_offset =
vtable_ctx.isMicrosoft() ? record_layout.getVBPtrOffset().getQuantity()
: 0;
if (ptr_or_ref) {
// We have a pointer / ref to object, so read
// VTable pointer from process memory
if (valobj.GetAddressTypeOfChildren() != eAddressTypeLoad)
return LLDB_INVALID_ADDRESS;
auto vbtable_ptr_addr = valobj.GetValueAsUnsigned(LLDB_INVALID_ADDRESS);
if (vbtable_ptr_addr == LLDB_INVALID_ADDRESS)
return LLDB_INVALID_ADDRESS;
vbtable_ptr_addr += vbtable_ptr_offset;
Status err;
return process.ReadPointerFromMemory(vbtable_ptr_addr, err);
}
// We have an object already read from process memory,
// so just extract VTable pointer from it
DataExtractor data;
Status err;
auto size = valobj.GetData(data, err);
if (err.Fail() || vbtable_ptr_offset + data.GetAddressByteSize() > size)
return LLDB_INVALID_ADDRESS;
return data.GetAddress(&vbtable_ptr_offset);
}
static int64_t ReadVBaseOffsetFromVTable(Process &process,
VTableContextBase &vtable_ctx,
lldb::addr_t vtable_ptr,
const CXXRecordDecl *cxx_record_decl,
const CXXRecordDecl *base_class_decl) {
if (vtable_ctx.isMicrosoft()) {
clang::MicrosoftVTableContext &msoft_vtable_ctx =
static_cast<clang::MicrosoftVTableContext &>(vtable_ctx);
// Get the index into the virtual base table. The
// index is the index in uint32_t from vbtable_ptr
const unsigned vbtable_index =
msoft_vtable_ctx.getVBTableIndex(cxx_record_decl, base_class_decl);
const lldb::addr_t base_offset_addr = vtable_ptr + vbtable_index * 4;
Status err;
return process.ReadSignedIntegerFromMemory(base_offset_addr, 4, INT64_MAX,
err);
}
clang::ItaniumVTableContext &itanium_vtable_ctx =
static_cast<clang::ItaniumVTableContext &>(vtable_ctx);
clang::CharUnits base_offset_offset =
itanium_vtable_ctx.getVirtualBaseOffsetOffset(cxx_record_decl,
base_class_decl);
const lldb::addr_t base_offset_addr =
vtable_ptr + base_offset_offset.getQuantity();
const uint32_t base_offset_size = process.GetAddressByteSize();
Status err;
return process.ReadSignedIntegerFromMemory(base_offset_addr, base_offset_size,
INT64_MAX, err);
}
static bool GetVBaseBitOffset(VTableContextBase &vtable_ctx,
ValueObject &valobj,
const ASTRecordLayout &record_layout,
const CXXRecordDecl *cxx_record_decl,
const CXXRecordDecl *base_class_decl,
int32_t &bit_offset) {
ExecutionContext exe_ctx(valobj.GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (!process)
return false;
lldb::addr_t vtable_ptr =
GetVTableAddress(*process, vtable_ctx, valobj, record_layout);
if (vtable_ptr == LLDB_INVALID_ADDRESS)
return false;
auto base_offset = ReadVBaseOffsetFromVTable(
*process, vtable_ctx, vtable_ptr, cxx_record_decl, base_class_decl);
if (base_offset == INT64_MAX)
return false;
bit_offset = base_offset * 8;
return true;
}
typedef lldb_private::ThreadSafeDenseMap<clang::ASTContext *, TypeSystemClang *>
ClangASTMap;
static ClangASTMap &GetASTMap() {
static ClangASTMap *g_map_ptr = nullptr;
static llvm::once_flag g_once_flag;
llvm::call_once(g_once_flag, []() {
g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins
});
return *g_map_ptr;
}
TypePayloadClang::TypePayloadClang(OptionalClangModuleID owning_module,
bool is_complete_objc_class)
: m_payload(owning_module.GetValue()) {
SetIsCompleteObjCClass(is_complete_objc_class);
}
void TypePayloadClang::SetOwningModule(OptionalClangModuleID id) {
assert(id.GetValue() < ObjCClassBit);
bool is_complete = IsCompleteObjCClass();
m_payload = id.GetValue();
SetIsCompleteObjCClass(is_complete);
}
static void SetMemberOwningModule(clang::Decl *member,
const clang::Decl *parent) {
if (!member || !parent)
return;
OptionalClangModuleID id(parent->getOwningModuleID());
if (!id.HasValue())
return;
member->setFromASTFile();
member->setOwningModuleID(id.GetValue());
member->setModuleOwnershipKind(clang::Decl::ModuleOwnershipKind::Visible);
if (llvm::isa<clang::NamedDecl>(member))
if (auto *dc = llvm::dyn_cast<clang::DeclContext>(parent)) {
dc->setHasExternalVisibleStorage(true);
// This triggers ExternalASTSource::FindExternalVisibleDeclsByName() to be
// called when searching for members.
dc->setHasExternalLexicalStorage(true);
}
}
char TypeSystemClang::ID;
bool TypeSystemClang::IsOperator(llvm::StringRef name,
clang::OverloadedOperatorKind &op_kind) {
// All operators have to start with "operator".
if (!name.consume_front("operator"))
return false;
// Remember if there was a space after "operator". This is necessary to
// check for collisions with strangely named functions like "operatorint()".
bool space_after_operator = name.consume_front(" ");
op_kind = StringSwitch<clang::OverloadedOperatorKind>(name)
.Case("+", clang::OO_Plus)
.Case("+=", clang::OO_PlusEqual)
.Case("++", clang::OO_PlusPlus)
.Case("-", clang::OO_Minus)
.Case("-=", clang::OO_MinusEqual)
.Case("--", clang::OO_MinusMinus)
.Case("->", clang::OO_Arrow)
.Case("->*", clang::OO_ArrowStar)
.Case("*", clang::OO_Star)
.Case("*=", clang::OO_StarEqual)
.Case("/", clang::OO_Slash)
.Case("/=", clang::OO_SlashEqual)
.Case("%", clang::OO_Percent)
.Case("%=", clang::OO_PercentEqual)
.Case("^", clang::OO_Caret)
.Case("^=", clang::OO_CaretEqual)
.Case("&", clang::OO_Amp)
.Case("&=", clang::OO_AmpEqual)
.Case("&&", clang::OO_AmpAmp)
.Case("|", clang::OO_Pipe)
.Case("|=", clang::OO_PipeEqual)
.Case("||", clang::OO_PipePipe)
.Case("~", clang::OO_Tilde)
.Case("!", clang::OO_Exclaim)
.Case("!=", clang::OO_ExclaimEqual)
.Case("=", clang::OO_Equal)
.Case("==", clang::OO_EqualEqual)
.Case("<", clang::OO_Less)
.Case("<=>", clang::OO_Spaceship)
.Case("<<", clang::OO_LessLess)
.Case("<<=", clang::OO_LessLessEqual)
.Case("<=", clang::OO_LessEqual)
.Case(">", clang::OO_Greater)
.Case(">>", clang::OO_GreaterGreater)
.Case(">>=", clang::OO_GreaterGreaterEqual)
.Case(">=", clang::OO_GreaterEqual)
.Case("()", clang::OO_Call)
.Case("[]", clang::OO_Subscript)
.Case(",", clang::OO_Comma)
.Default(clang::NUM_OVERLOADED_OPERATORS);
// We found a fitting operator, so we can exit now.
if (op_kind != clang::NUM_OVERLOADED_OPERATORS)
return true;
// After the "operator " or "operator" part is something unknown. This means
// it's either one of the named operators (new/delete), a conversion operator
// (e.g. operator bool) or a function which name starts with "operator"
// (e.g. void operatorbool).
// If it's a function that starts with operator it can't have a space after
// "operator" because identifiers can't contain spaces.
// E.g. "operator int" (conversion operator)
// vs. "operatorint" (function with colliding name).
if (!space_after_operator)
return false; // not an operator.
// Now the operator is either one of the named operators or a conversion
// operator.
op_kind = StringSwitch<clang::OverloadedOperatorKind>(name)
.Case("new", clang::OO_New)
.Case("new[]", clang::OO_Array_New)
.Case("delete", clang::OO_Delete)
.Case("delete[]", clang::OO_Array_Delete)
// conversion operators hit this case.
.Default(clang::NUM_OVERLOADED_OPERATORS);
return true;
}
clang::AccessSpecifier
TypeSystemClang::ConvertAccessTypeToAccessSpecifier(AccessType access) {
switch (access) {
default:
break;
case eAccessNone:
return AS_none;
case eAccessPublic:
return AS_public;
case eAccessPrivate:
return AS_private;
case eAccessProtected:
return AS_protected;
}
return AS_none;
}
static void ParseLangArgs(LangOptions &Opts, ArchSpec arch) {
// FIXME: Cleanup per-file based stuff.
std::vector<std::string> Includes;
LangOptions::setLangDefaults(Opts, clang::Language::ObjCXX, arch.GetTriple(),
Includes, clang::LangStandard::lang_gnucxx98);
Opts.setValueVisibilityMode(DefaultVisibility);
// Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs is
// specified, or -std is set to a conforming mode.
Opts.Trigraphs = !Opts.GNUMode;
Opts.CharIsSigned = arch.CharIsSignedByDefault();
Opts.OptimizeSize = 0;
// FIXME: Eliminate this dependency.
// unsigned Opt =
// Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
// Opts.Optimize = Opt != 0;
unsigned Opt = 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
//
// FIXME: This is affected by other options (-fno-inline).
Opts.NoInlineDefine = !Opt;
// This is needed to allocate the extra space for the owning module
// on each decl.
Opts.ModulesLocalVisibility = 1;
}
TypeSystemClang::TypeSystemClang(llvm::StringRef name,
llvm::Triple target_triple) {
m_display_name = name.str();
if (!target_triple.str().empty())
SetTargetTriple(target_triple.str());
// The caller didn't pass an ASTContext so create a new one for this
// TypeSystemClang.
CreateASTContext();
LogCreation();
}
TypeSystemClang::TypeSystemClang(llvm::StringRef name,
ASTContext &existing_ctxt) {
m_display_name = name.str();
SetTargetTriple(existing_ctxt.getTargetInfo().getTriple().str());
m_ast_up.reset(&existing_ctxt);
GetASTMap().Insert(&existing_ctxt, this);
LogCreation();
}
// Destructor
TypeSystemClang::~TypeSystemClang() { Finalize(); }
lldb::TypeSystemSP TypeSystemClang::CreateInstance(lldb::LanguageType language,
lldb_private::Module *module,
Target *target) {
if (!TypeSystemClangSupportsLanguage(language))
return lldb::TypeSystemSP();
ArchSpec arch;
if (module)
arch = module->GetArchitecture();
else if (target)
arch = target->GetArchitecture();
if (!arch.IsValid())
return lldb::TypeSystemSP();
llvm::Triple triple = arch.GetTriple();
// LLVM wants this to be set to iOS or MacOSX; if we're working on
// a bare-boards type image, change the triple for llvm's benefit.
if (triple.getVendor() == llvm::Triple::Apple &&
triple.getOS() == llvm::Triple::UnknownOS) {
if (triple.getArch() == llvm::Triple::arm ||
triple.getArch() == llvm::Triple::aarch64 ||
triple.getArch() == llvm::Triple::aarch64_32 ||
triple.getArch() == llvm::Triple::thumb) {
triple.setOS(llvm::Triple::IOS);
} else {
triple.setOS(llvm::Triple::MacOSX);
}
}
if (module) {
std::string ast_name =
"ASTContext for '" + module->GetFileSpec().GetPath() + "'";
return std::make_shared<TypeSystemClang>(ast_name, triple);
} else if (target && target->IsValid())
return std::make_shared<ScratchTypeSystemClang>(*target, triple);
return lldb::TypeSystemSP();
}
LanguageSet TypeSystemClang::GetSupportedLanguagesForTypes() {
LanguageSet languages;
languages.Insert(lldb::eLanguageTypeC89);
languages.Insert(lldb::eLanguageTypeC);
languages.Insert(lldb::eLanguageTypeC11);
languages.Insert(lldb::eLanguageTypeC_plus_plus);
languages.Insert(lldb::eLanguageTypeC99);
languages.Insert(lldb::eLanguageTypeObjC);
languages.Insert(lldb::eLanguageTypeObjC_plus_plus);
languages.Insert(lldb::eLanguageTypeC_plus_plus_03);
languages.Insert(lldb::eLanguageTypeC_plus_plus_11);
languages.Insert(lldb::eLanguageTypeC11);
languages.Insert(lldb::eLanguageTypeC_plus_plus_14);
languages.Insert(lldb::eLanguageTypeC_plus_plus_17);
languages.Insert(lldb::eLanguageTypeC_plus_plus_20);
return languages;
}
LanguageSet TypeSystemClang::GetSupportedLanguagesForExpressions() {
LanguageSet languages;
languages.Insert(lldb::eLanguageTypeC_plus_plus);
languages.Insert(lldb::eLanguageTypeObjC_plus_plus);
languages.Insert(lldb::eLanguageTypeC_plus_plus_03);
languages.Insert(lldb::eLanguageTypeC_plus_plus_11);
languages.Insert(lldb::eLanguageTypeC_plus_plus_14);
languages.Insert(lldb::eLanguageTypeC_plus_plus_17);
languages.Insert(lldb::eLanguageTypeC_plus_plus_20);
return languages;
}
void TypeSystemClang::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "clang base AST context plug-in", CreateInstance,
GetSupportedLanguagesForTypes(), GetSupportedLanguagesForExpressions());
}
void TypeSystemClang::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
void TypeSystemClang::Finalize() {
assert(m_ast_up);
GetASTMap().Erase(m_ast_up.get());
if (!m_ast_owned)
m_ast_up.release();
m_builtins_up.reset();
m_selector_table_up.reset();
m_identifier_table_up.reset();
m_target_info_up.reset();
m_target_options_rp.reset();
m_diagnostics_engine_up.reset();
m_source_manager_up.reset();
m_language_options_up.reset();
}
void TypeSystemClang::setSema(Sema *s) {
// Ensure that the new sema actually belongs to our ASTContext.
assert(s == nullptr || &s->getASTContext() == m_ast_up.get());
m_sema = s;
}
const char *TypeSystemClang::GetTargetTriple() {
return m_target_triple.c_str();
}
void TypeSystemClang::SetTargetTriple(llvm::StringRef target_triple) {
m_target_triple = target_triple.str();
}
void TypeSystemClang::SetExternalSource(
llvm::IntrusiveRefCntPtr<ExternalASTSource> &ast_source_up) {
ASTContext &ast = getASTContext();
ast.getTranslationUnitDecl()->setHasExternalLexicalStorage(true);
ast.setExternalSource(ast_source_up);
}
ASTContext &TypeSystemClang::getASTContext() const {
assert(m_ast_up);
return *m_ast_up;
}
class NullDiagnosticConsumer : public DiagnosticConsumer {
public:
NullDiagnosticConsumer() { m_log = GetLog(LLDBLog::Expressions); }
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &info) override {
if (m_log) {
llvm::SmallVector<char, 32> diag_str(10);
info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
LLDB_LOGF(m_log, "Compiler diagnostic: %s\n", diag_str.data());
}
}
DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
return new NullDiagnosticConsumer();
}
private:
Log *m_log;
};
void TypeSystemClang::CreateASTContext() {
assert(!m_ast_up);
m_ast_owned = true;
m_language_options_up = std::make_unique<LangOptions>();
ParseLangArgs(*m_language_options_up, ArchSpec(GetTargetTriple()));
m_identifier_table_up =
std::make_unique<IdentifierTable>(*m_language_options_up, nullptr);
m_builtins_up = std::make_unique<Builtin::Context>();
m_selector_table_up = std::make_unique<SelectorTable>();
clang::FileSystemOptions file_system_options;
m_file_manager_up = std::make_unique<clang::FileManager>(
file_system_options, FileSystem::Instance().GetVirtualFileSystem());
llvm::IntrusiveRefCntPtr<DiagnosticIDs> diag_id_sp(new DiagnosticIDs());
m_diagnostics_engine_up =
std::make_unique<DiagnosticsEngine>(diag_id_sp, new DiagnosticOptions());
m_source_manager_up = std::make_unique<clang::SourceManager>(
*m_diagnostics_engine_up, *m_file_manager_up);
m_ast_up = std::make_unique<ASTContext>(
*m_language_options_up, *m_source_manager_up, *m_identifier_table_up,
*m_selector_table_up, *m_builtins_up, TU_Complete);
m_diagnostic_consumer_up = std::make_unique<NullDiagnosticConsumer>();
m_ast_up->getDiagnostics().setClient(m_diagnostic_consumer_up.get(), false);
// This can be NULL if we don't know anything about the architecture or if
// the target for an architecture isn't enabled in the llvm/clang that we
// built
TargetInfo *target_info = getTargetInfo();
if (target_info)
m_ast_up->InitBuiltinTypes(*target_info);
else {
std::string err =
llvm::formatv(
"Failed to initialize builtin ASTContext types for target '{0}'. "
"Printing variables may behave unexpectedly.",
m_target_triple)
.str();
LLDB_LOG(GetLog(LLDBLog::Expressions), err.c_str());
static std::once_flag s_uninitialized_target_warning;
Debugger::ReportWarning(std::move(err), /*debugger_id=*/std::nullopt,
&s_uninitialized_target_warning);
}
GetASTMap().Insert(m_ast_up.get(), this);
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source_up(
new ClangExternalASTSourceCallbacks(*this));
SetExternalSource(ast_source_up);
}
TypeSystemClang *TypeSystemClang::GetASTContext(clang::ASTContext *ast) {
TypeSystemClang *clang_ast = GetASTMap().Lookup(ast);
return clang_ast;
}
clang::MangleContext *TypeSystemClang::getMangleContext() {
if (m_mangle_ctx_up == nullptr)
m_mangle_ctx_up.reset(getASTContext().createMangleContext());
return m_mangle_ctx_up.get();
}
std::shared_ptr<clang::TargetOptions> &TypeSystemClang::getTargetOptions() {
if (m_target_options_rp == nullptr && !m_target_triple.empty()) {
m_target_options_rp = std::make_shared<clang::TargetOptions>();
if (m_target_options_rp != nullptr)
m_target_options_rp->Triple = m_target_triple;
}
return m_target_options_rp;
}
TargetInfo *TypeSystemClang::getTargetInfo() {
// target_triple should be something like "x86_64-apple-macosx"
if (m_target_info_up == nullptr && !m_target_triple.empty())
m_target_info_up.reset(TargetInfo::CreateTargetInfo(
getASTContext().getDiagnostics(), getTargetOptions()));
return m_target_info_up.get();
}
#pragma mark Basic Types
static inline bool QualTypeMatchesBitSize(const uint64_t bit_size,
ASTContext &ast, QualType qual_type) {
uint64_t qual_type_bit_size = ast.getTypeSize(qual_type);
return qual_type_bit_size == bit_size;
}
CompilerType
TypeSystemClang::GetBuiltinTypeForEncodingAndBitSize(Encoding encoding,
size_t bit_size) {
ASTContext &ast = getASTContext();
if (!ast.VoidPtrTy)
return {};
switch (encoding) {
case eEncodingInvalid:
if (QualTypeMatchesBitSize(bit_size, ast, ast.VoidPtrTy))
return GetType(ast.VoidPtrTy);
break;
case eEncodingUint:
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
break;
case eEncodingSint:
if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
return GetType(ast.SignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
return GetType(ast.ShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
return GetType(ast.IntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
return GetType(ast.LongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
return GetType(ast.LongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
return GetType(ast.Int128Ty);
break;
case eEncodingIEEE754:
if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
return GetType(ast.FloatTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
return GetType(ast.DoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
return GetType(ast.LongDoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.HalfTy))
return GetType(ast.HalfTy);
break;
case eEncodingVector:
// Sanity check that bit_size is a multiple of 8's.
if (bit_size && !(bit_size & 0x7u))
return GetType(ast.getExtVectorType(ast.UnsignedCharTy, bit_size / 8));
break;
}
return CompilerType();
}
lldb::BasicType TypeSystemClang::GetBasicTypeEnumeration(llvm::StringRef name) {
static const llvm::StringMap<lldb::BasicType> g_type_map = {
// "void"
{"void", eBasicTypeVoid},
// "char"
{"char", eBasicTypeChar},
{"signed char", eBasicTypeSignedChar},
{"unsigned char", eBasicTypeUnsignedChar},
{"wchar_t", eBasicTypeWChar},
{"signed wchar_t", eBasicTypeSignedWChar},
{"unsigned wchar_t", eBasicTypeUnsignedWChar},
// "short"
{"short", eBasicTypeShort},
{"short int", eBasicTypeShort},
{"unsigned short", eBasicTypeUnsignedShort},
{"unsigned short int", eBasicTypeUnsignedShort},
// "int"
{"int", eBasicTypeInt},
{"signed int", eBasicTypeInt},
{"unsigned int", eBasicTypeUnsignedInt},
{"unsigned", eBasicTypeUnsignedInt},
// "long"
{"long", eBasicTypeLong},
{"long int", eBasicTypeLong},
{"unsigned long", eBasicTypeUnsignedLong},
{"unsigned long int", eBasicTypeUnsignedLong},
// "long long"
{"long long", eBasicTypeLongLong},
{"long long int", eBasicTypeLongLong},
{"unsigned long long", eBasicTypeUnsignedLongLong},
{"unsigned long long int", eBasicTypeUnsignedLongLong},
// "int128"
{"__int128_t", eBasicTypeInt128},
{"__uint128_t", eBasicTypeUnsignedInt128},
// "bool"
{"bool", eBasicTypeBool},
{"_Bool", eBasicTypeBool},
// Miscellaneous
{"float", eBasicTypeFloat},
{"double", eBasicTypeDouble},
{"long double", eBasicTypeLongDouble},
{"id", eBasicTypeObjCID},
{"SEL", eBasicTypeObjCSel},
{"nullptr", eBasicTypeNullPtr},
};
auto iter = g_type_map.find(name);
if (iter == g_type_map.end())
return eBasicTypeInvalid;
return iter->second;
}
uint32_t TypeSystemClang::GetPointerByteSize() {
if (m_pointer_byte_size == 0)
if (auto size = GetBasicType(lldb::eBasicTypeVoid)
.GetPointerType()
.GetByteSize(nullptr))
m_pointer_byte_size = *size;
return m_pointer_byte_size;
}
CompilerType TypeSystemClang::GetBasicType(lldb::BasicType basic_type) {
clang::ASTContext &ast = getASTContext();
lldb::opaque_compiler_type_t clang_type =
GetOpaqueCompilerType(&ast, basic_type);
if (clang_type)
return CompilerType(weak_from_this(), clang_type);
return CompilerType();
}
CompilerType TypeSystemClang::GetBuiltinTypeForDWARFEncodingAndBitSize(
llvm::StringRef type_name, uint32_t dw_ate, uint32_t bit_size) {
ASTContext &ast = getASTContext();
if (!ast.VoidPtrTy)
return {};
switch (dw_ate) {
default:
break;
case DW_ATE_address:
if (QualTypeMatchesBitSize(bit_size, ast, ast.VoidPtrTy))
return GetType(ast.VoidPtrTy);
break;
case DW_ATE_boolean:
if (QualTypeMatchesBitSize(bit_size, ast, ast.BoolTy))
return GetType(ast.BoolTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
break;
case DW_ATE_lo_user:
// This has been seen to mean DW_AT_complex_integer
if (type_name.contains("complex")) {
CompilerType complex_int_clang_type =
GetBuiltinTypeForDWARFEncodingAndBitSize("int", DW_ATE_signed,
bit_size / 2);
return GetType(
ast.getComplexType(ClangUtil::GetQualType(complex_int_clang_type)));
}
break;
case DW_ATE_complex_float: {
CanQualType FloatComplexTy = ast.getComplexType(ast.FloatTy);
if (QualTypeMatchesBitSize(bit_size, ast, FloatComplexTy))
return GetType(FloatComplexTy);
CanQualType DoubleComplexTy = ast.getComplexType(ast.DoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, DoubleComplexTy))
return GetType(DoubleComplexTy);
CanQualType LongDoubleComplexTy = ast.getComplexType(ast.LongDoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, LongDoubleComplexTy))
return GetType(LongDoubleComplexTy);
CompilerType complex_float_clang_type =
GetBuiltinTypeForDWARFEncodingAndBitSize("float", DW_ATE_float,
bit_size / 2);
return GetType(
ast.getComplexType(ClangUtil::GetQualType(complex_float_clang_type)));
}
case DW_ATE_float:
if (type_name == "float" &&
QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
return GetType(ast.FloatTy);
if (type_name == "double" &&
QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
return GetType(ast.DoubleTy);
if (type_name == "long double" &&
QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
return GetType(ast.LongDoubleTy);
// Fall back to not requiring a name match
if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
return GetType(ast.FloatTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
return GetType(ast.DoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
return GetType(ast.LongDoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.HalfTy))
return GetType(ast.HalfTy);
break;
case DW_ATE_signed:
if (!type_name.empty()) {
if (type_name == "wchar_t" &&
QualTypeMatchesBitSize(bit_size, ast, ast.WCharTy) &&
(getTargetInfo() &&
TargetInfo::isTypeSigned(getTargetInfo()->getWCharType())))
return GetType(ast.WCharTy);
if (type_name == "void" &&
QualTypeMatchesBitSize(bit_size, ast, ast.VoidTy))
return GetType(ast.VoidTy);
if (type_name.contains("long long") &&
QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
return GetType(ast.LongLongTy);
if (type_name.contains("long") &&
QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
return GetType(ast.LongTy);
if (type_name.contains("short") &&
QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
return GetType(ast.ShortTy);
if (type_name.contains("char")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
return GetType(ast.SignedCharTy);
}
if (type_name.contains("int")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
return GetType(ast.IntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
return GetType(ast.Int128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
return GetType(ast.ShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
return GetType(ast.IntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
return GetType(ast.LongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
return GetType(ast.LongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
return GetType(ast.Int128Ty);
break;
case DW_ATE_signed_char:
if (type_name == "char") {
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
}
if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
return GetType(ast.SignedCharTy);
break;
case DW_ATE_unsigned:
if (!type_name.empty()) {
if (type_name == "wchar_t") {
if (QualTypeMatchesBitSize(bit_size, ast, ast.WCharTy)) {
if (!(getTargetInfo() &&
TargetInfo::isTypeSigned(getTargetInfo()->getWCharType())))
return GetType(ast.WCharTy);
}
}
if (type_name.contains("long long")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
} else if (type_name.contains("long")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
} else if (type_name.contains("short")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
} else if (type_name.contains("char")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
} else if (type_name.contains("int")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
break;
case DW_ATE_unsigned_char:
if (type_name == "char") {
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
}
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
break;
case DW_ATE_imaginary_float:
break;
case DW_ATE_UTF:
switch (bit_size) {
case 8:
return GetType(ast.Char8Ty);
case 16:
return GetType(ast.Char16Ty);
case 32:
return GetType(ast.Char32Ty);
default:
if (!type_name.empty()) {
if (type_name == "char16_t")
return GetType(ast.Char16Ty);
if (type_name == "char32_t")
return GetType(ast.Char32Ty);
if (type_name == "char8_t")
return GetType(ast.Char8Ty);
}
}
break;
}
Log *log = GetLog(LLDBLog::Types);
LLDB_LOG(log,
"error: need to add support for DW_TAG_base_type '{0}' "
"encoded with DW_ATE = {1:x}, bit_size = {2}",
type_name, dw_ate, bit_size);
return CompilerType();
}
CompilerType TypeSystemClang::GetCStringType(bool is_const) {
ASTContext &ast = getASTContext();
QualType char_type(ast.CharTy);
if (is_const)
char_type.addConst();
return GetType(ast.getPointerType(char_type));
}
bool TypeSystemClang::AreTypesSame(CompilerType type1, CompilerType type2,
bool ignore_qualifiers) {
auto ast = type1.GetTypeSystem().dyn_cast_or_null<TypeSystemClang>();
if (!ast || type1.GetTypeSystem() != type2.GetTypeSystem())
return false;
if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType())
return true;
QualType type1_qual = ClangUtil::GetQualType(type1);
QualType type2_qual = ClangUtil::GetQualType(type2);
if (ignore_qualifiers) {
type1_qual = type1_qual.getUnqualifiedType();
type2_qual = type2_qual.getUnqualifiedType();
}
return ast->getASTContext().hasSameType(type1_qual, type2_qual);
}
CompilerType TypeSystemClang::GetTypeForDecl(void *opaque_decl) {
if (!opaque_decl)
return CompilerType();
clang::Decl *decl = static_cast<clang::Decl *>(opaque_decl);
if (auto *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl))
return GetTypeForDecl(named_decl);
return CompilerType();
}
CompilerDeclContext TypeSystemClang::CreateDeclContext(DeclContext *ctx) {
// Check that the DeclContext actually belongs to this ASTContext.
assert(&ctx->getParentASTContext() == &getASTContext());
return CompilerDeclContext(this, ctx);
}
CompilerType TypeSystemClang::GetTypeForDecl(clang::NamedDecl *decl) {
if (clang::ObjCInterfaceDecl *interface_decl =
llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
return GetTypeForDecl(interface_decl);
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
return GetTypeForDecl(tag_decl);
if (clang::ValueDecl *value_decl = llvm::dyn_cast<clang::ValueDecl>(decl))
return GetTypeForDecl(value_decl);
return CompilerType();
}
CompilerType TypeSystemClang::GetTypeForDecl(TagDecl *decl) {
return GetType(getASTContext().getTagDeclType(decl));
}
CompilerType TypeSystemClang::GetTypeForDecl(ObjCInterfaceDecl *decl) {
return GetType(getASTContext().getObjCInterfaceType(decl));
}
CompilerType TypeSystemClang::GetTypeForDecl(clang::ValueDecl *value_decl) {
return GetType(value_decl->getType());
}
#pragma mark Structure, Unions, Classes
void TypeSystemClang::SetOwningModule(clang::Decl *decl,
OptionalClangModuleID owning_module) {
if (!decl || !owning_module.HasValue())
return;
decl->setFromASTFile();
decl->setOwningModuleID(owning_module.GetValue());
decl->setModuleOwnershipKind(clang::Decl::ModuleOwnershipKind::Visible);
}
OptionalClangModuleID
TypeSystemClang::GetOrCreateClangModule(llvm::StringRef name,
OptionalClangModuleID parent,
bool is_framework, bool is_explicit) {
// Get the external AST source which holds the modules.
auto *ast_source = llvm::dyn_cast_or_null<ClangExternalASTSourceCallbacks>(
getASTContext().getExternalSource());
assert(ast_source && "external ast source was lost");
if (!ast_source)
return {};
// Lazily initialize the module map.
if (!m_header_search_up) {
auto HSOpts = std::make_shared<clang::HeaderSearchOptions>();
m_header_search_up = std::make_unique<clang::HeaderSearch>(
HSOpts, *m_source_manager_up, *m_diagnostics_engine_up,
*m_language_options_up, m_target_info_up.get());
m_module_map_up = std::make_unique<clang::ModuleMap>(
*m_source_manager_up, *m_diagnostics_engine_up, *m_language_options_up,
m_target_info_up.get(), *m_header_search_up);
}
// Get or create the module context.
bool created;
clang::Module *module;
auto parent_desc = ast_source->getSourceDescriptor(parent.GetValue());
std::tie(module, created) = m_module_map_up->findOrCreateModule(
name, parent_desc ? parent_desc->getModuleOrNull() : nullptr,
is_framework, is_explicit);
if (!created)
return ast_source->GetIDForModule(module);
return ast_source->RegisterModule(module);
}
CompilerType TypeSystemClang::CreateRecordType(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
AccessType access_type, llvm::StringRef name, int kind,
LanguageType language, std::optional<ClangASTMetadata> metadata,
bool exports_symbols) {
ASTContext &ast = getASTContext();
if (decl_ctx == nullptr)
decl_ctx = ast.getTranslationUnitDecl();
if (language == eLanguageTypeObjC ||
language == eLanguageTypeObjC_plus_plus) {
bool isInternal = false;
return CreateObjCClass(name, decl_ctx, owning_module, isInternal, metadata);
}
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use the
// CXXRecordDecl class since we often don't know from debug information if
// something is struct or a class, so we default to always use the more
// complete definition just in case.
bool has_name = !name.empty();
CXXRecordDecl *decl = CXXRecordDecl::CreateDeserialized(ast, GlobalDeclID());
decl->setTagKind(static_cast<TagDecl::TagKind>(kind));
decl->setDeclContext(decl_ctx);
if (has_name)
decl->setDeclName(&ast.Idents.get(name));
SetOwningModule(decl, owning_module);
if (!has_name) {
// In C++ a lambda is also represented as an unnamed class. This is
// different from an *anonymous class* that the user wrote:
//
// struct A {
// // anonymous class (GNU/MSVC extension)
// struct {
// int x;
// };
// // unnamed class within a class
// struct {
// int y;
// } B;
// };
//
// void f() {
// // unammed class outside of a class
// struct {
// int z;
// } C;
// }
//
// Anonymous classes is a GNU/MSVC extension that clang supports. It
// requires the anonymous class be embedded within a class. So the new
// heuristic verifies this condition.
if (isa<CXXRecordDecl>(decl_ctx) && exports_symbols)
decl->setAnonymousStructOrUnion(true);
}
if (metadata)
SetMetadata(decl, *metadata);
if (access_type != eAccessNone)
decl->setAccess(ConvertAccessTypeToAccessSpecifier(access_type));
if (decl_ctx)
decl_ctx->addDecl(decl);
return GetType(ast.getTagDeclType(decl));
}
namespace {
/// Returns true iff the given TemplateArgument should be represented as an
/// NonTypeTemplateParmDecl in the AST.
bool IsValueParam(const clang::TemplateArgument &argument) {
return argument.getKind() == TemplateArgument::Integral;
}
void AddAccessSpecifierDecl(clang::CXXRecordDecl *cxx_record_decl,
ASTContext &ct,
clang::AccessSpecifier previous_access,
clang::AccessSpecifier access_specifier) {
if (!cxx_record_decl->isClass() && !cxx_record_decl->isStruct())
return;
if (previous_access != access_specifier) {
// For struct, don't add AS_public if it's the first AccessSpecDecl.
// For class, don't add AS_private if it's the first AccessSpecDecl.
if ((cxx_record_decl->isStruct() &&
previous_access == clang::AccessSpecifier::AS_none &&
access_specifier == clang::AccessSpecifier::AS_public) ||
(cxx_record_decl->isClass() &&
previous_access == clang::AccessSpecifier::AS_none &&
access_specifier == clang::AccessSpecifier::AS_private)) {
return;
}
cxx_record_decl->addDecl(
AccessSpecDecl::Create(ct, access_specifier, cxx_record_decl,
SourceLocation(), SourceLocation()));
}
}
} // namespace
static TemplateParameterList *CreateTemplateParameterList(
ASTContext &ast,
const TypeSystemClang::TemplateParameterInfos &template_param_infos,
llvm::SmallVector<NamedDecl *, 8> &template_param_decls) {
const bool parameter_pack = false;
const bool is_typename = false;
const unsigned depth = 0;
const size_t num_template_params = template_param_infos.Size();
DeclContext *const decl_context =
ast.getTranslationUnitDecl(); // Is this the right decl context?,
auto const &args = template_param_infos.GetArgs();
auto const &names = template_param_infos.GetNames();
for (size_t i = 0; i < num_template_params; ++i) {
const char *name = names[i];
IdentifierInfo *identifier_info = nullptr;
if (name && name[0])
identifier_info = &ast.Idents.get(name);
TemplateArgument const &targ = args[i];
if (IsValueParam(targ)) {
QualType template_param_type = targ.getIntegralType();
template_param_decls.push_back(NonTypeTemplateParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth, i,
identifier_info, template_param_type, parameter_pack,
ast.getTrivialTypeSourceInfo(template_param_type)));
} else {
template_param_decls.push_back(TemplateTypeParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth, i,
identifier_info, is_typename, parameter_pack));
}
}
if (template_param_infos.hasParameterPack()) {
IdentifierInfo *identifier_info = nullptr;
if (template_param_infos.HasPackName())
identifier_info = &ast.Idents.get(template_param_infos.GetPackName());
const bool parameter_pack_true = true;
if (!template_param_infos.GetParameterPack().IsEmpty() &&
IsValueParam(template_param_infos.GetParameterPack().Front())) {
QualType template_param_type =
template_param_infos.GetParameterPack().Front().getIntegralType();
template_param_decls.push_back(NonTypeTemplateParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth,
num_template_params, identifier_info, template_param_type,
parameter_pack_true,
ast.getTrivialTypeSourceInfo(template_param_type)));
} else {
template_param_decls.push_back(TemplateTypeParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth,
num_template_params, identifier_info, is_typename,
parameter_pack_true));
}
}
clang::Expr *const requires_clause = nullptr; // TODO: Concepts
TemplateParameterList *template_param_list = TemplateParameterList::Create(
ast, SourceLocation(), SourceLocation(), template_param_decls,
SourceLocation(), requires_clause);
return template_param_list;
}
clang::FunctionTemplateDecl *TypeSystemClang::CreateFunctionTemplateDecl(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
clang::FunctionDecl *func_decl,
const TemplateParameterInfos &template_param_infos) {
// /// Create a function template node.
ASTContext &ast = getASTContext();
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList(
ast, template_param_infos, template_param_decls);
FunctionTemplateDecl *func_tmpl_decl =
FunctionTemplateDecl::CreateDeserialized(ast, GlobalDeclID());
func_tmpl_decl->setDeclContext(decl_ctx);
func_tmpl_decl->setLocation(func_decl->getLocation());
func_tmpl_decl->setDeclName(func_decl->getDeclName());
func_tmpl_decl->setTemplateParameters(template_param_list);
func_tmpl_decl->init(func_decl);
SetOwningModule(func_tmpl_decl, owning_module);
for (size_t i = 0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count; ++i) {
// TODO: verify which decl context we should put template_param_decls into..
template_param_decls[i]->setDeclContext(func_decl);
}
// Function templates inside a record need to have an access specifier.
// It doesn't matter what access specifier we give the template as LLDB
// anyway allows accessing everything inside a record.
if (decl_ctx->isRecord())
func_tmpl_decl->setAccess(clang::AccessSpecifier::AS_public);
return func_tmpl_decl;
}
void TypeSystemClang::CreateFunctionTemplateSpecializationInfo(
FunctionDecl *func_decl, clang::FunctionTemplateDecl *func_tmpl_decl,
const TemplateParameterInfos &infos) {
TemplateArgumentList *template_args_ptr = TemplateArgumentList::CreateCopy(
func_decl->getASTContext(), infos.GetArgs());
func_decl->setFunctionTemplateSpecialization(func_tmpl_decl,
template_args_ptr, nullptr);
}
/// Returns true if the given template parameter can represent the given value.
/// For example, `typename T` can represent `int` but not integral values such
/// as `int I = 3`.
static bool TemplateParameterAllowsValue(NamedDecl *param,
const TemplateArgument &value) {
if (llvm::isa<TemplateTypeParmDecl>(param)) {
// Compare the argument kind, i.e. ensure that <typename> != <int>.
if (value.getKind() != TemplateArgument::Type)
return false;
} else if (auto *type_param =
llvm::dyn_cast<NonTypeTemplateParmDecl>(param)) {
// Compare the argument kind, i.e. ensure that <typename> != <int>.
if (!IsValueParam(value))
return false;
// Compare the integral type, i.e. ensure that <int> != <char>.
if (type_param->getType() != value.getIntegralType())
return false;
} else {
// There is no way to create other parameter decls at the moment, so we
// can't reach this case during normal LLDB usage. Log that this happened
// and assert.
Log *log = GetLog(LLDBLog::Expressions);
LLDB_LOG(log,
"Don't know how to compare template parameter to passed"
" value. Decl kind of parameter is: {0}",
param->getDeclKindName());
lldbassert(false && "Can't compare this TemplateParmDecl subclass");
// In release builds just fall back to marking the parameter as not
// accepting the value so that we don't try to fit an instantiation to a
// template that doesn't fit. E.g., avoid that `S<1>` is being connected to
// `template<typename T> struct S;`.
return false;
}
return true;
}
/// Returns true if the given class template declaration could produce an
/// instantiation with the specified values.
/// For example, `<typename T>` allows the arguments `float`, but not for
/// example `bool, float` or `3` (as an integer parameter value).
static bool ClassTemplateAllowsToInstantiationArgs(
ClassTemplateDecl *class_template_decl,
const TypeSystemClang::TemplateParameterInfos &instantiation_values) {
TemplateParameterList &params = *class_template_decl->getTemplateParameters();
// Save some work by iterating only once over the found parameters and
// calculate the information related to parameter packs.
// Contains the first pack parameter (or non if there are none).
std::optional<NamedDecl *> pack_parameter;
// Contains the number of non-pack parameters.
size_t non_pack_params = params.size();
for (size_t i = 0; i < params.size(); ++i) {
NamedDecl *param = params.getParam(i);
if (param->isParameterPack()) {
pack_parameter = param;
non_pack_params = i;
break;
}
}
// The found template needs to have compatible non-pack template arguments.
// E.g., ensure that <typename, typename> != <typename>.
// The pack parameters are compared later.
if (non_pack_params != instantiation_values.Size())
return false;
// Ensure that <typename...> != <typename>.
if (pack_parameter.has_value() != instantiation_values.hasParameterPack())
return false;
// Compare the first pack parameter that was found with the first pack
// parameter value. The special case of having an empty parameter pack value
// always fits to a pack parameter.
// E.g., ensure that <int...> != <typename...>.
if (pack_parameter && !instantiation_values.GetParameterPack().IsEmpty() &&
!TemplateParameterAllowsValue(
*pack_parameter, instantiation_values.GetParameterPack().Front()))
return false;
// Compare all the non-pack parameters now.
// E.g., ensure that <int> != <long>.
for (const auto pair :
llvm::zip_first(instantiation_values.GetArgs(), params)) {
const TemplateArgument &passed_arg = std::get<0>(pair);
NamedDecl *found_param = std::get<1>(pair);
if (!TemplateParameterAllowsValue(found_param, passed_arg))
return false;
}
return class_template_decl;
}
ClassTemplateDecl *TypeSystemClang::CreateClassTemplateDecl(
DeclContext *decl_ctx, OptionalClangModuleID owning_module,
lldb::AccessType access_type, llvm::StringRef class_name, int kind,
const TemplateParameterInfos &template_param_infos) {
ASTContext &ast = getASTContext();
ClassTemplateDecl *class_template_decl = nullptr;
if (decl_ctx == nullptr)
decl_ctx = ast.getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast.Idents.get(class_name);
DeclarationName decl_name(&identifier_info);
// Search the AST for an existing ClassTemplateDecl that could be reused.
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result) {
class_template_decl = dyn_cast<clang::ClassTemplateDecl>(decl);
if (!class_template_decl)
continue;
// The class template has to be able to represents the instantiation
// values we received. Without this we might end up putting an instantiation
// with arguments such as <int, int> to a template such as:
// template<typename T> struct S;
// Connecting the instantiation to an incompatible template could cause
// problems later on.
if (!ClassTemplateAllowsToInstantiationArgs(class_template_decl,
template_param_infos))
continue;
return class_template_decl;
}
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList(
ast, template_param_infos, template_param_decls);
CXXRecordDecl *template_cxx_decl =
CXXRecordDecl::CreateDeserialized(ast, GlobalDeclID());
template_cxx_decl->setTagKind(static_cast<TagDecl::TagKind>(kind));
// What decl context do we use here? TU? The actual decl context?
template_cxx_decl->setDeclContext(decl_ctx);
template_cxx_decl->setDeclName(decl_name);
SetOwningModule(template_cxx_decl, owning_module);
for (size_t i = 0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count; ++i) {
template_param_decls[i]->setDeclContext(template_cxx_decl);
}
// With templated classes, we say that a class is templated with
// specializations, but that the bare class has no functions.
// template_cxx_decl->startDefinition();
// template_cxx_decl->completeDefinition();
class_template_decl =
ClassTemplateDecl::CreateDeserialized(ast, GlobalDeclID());
// What decl context do we use here? TU? The actual decl context?
class_template_decl->setDeclContext(decl_ctx);
class_template_decl->setDeclName(decl_name);
class_template_decl->setTemplateParameters(template_param_list);
class_template_decl->init(template_cxx_decl);
template_cxx_decl->setDescribedClassTemplate(class_template_decl);
SetOwningModule(class_template_decl, owning_module);
if (access_type != eAccessNone)
class_template_decl->setAccess(
ConvertAccessTypeToAccessSpecifier(access_type));
decl_ctx->addDecl(class_template_decl);
VerifyDecl(class_template_decl);
return class_template_decl;
}
TemplateTemplateParmDecl *
TypeSystemClang::CreateTemplateTemplateParmDecl(const char *template_name) {
ASTContext &ast = getASTContext();
auto *decl_ctx = ast.getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast.Idents.get(template_name);
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TypeSystemClang::TemplateParameterInfos template_param_infos;
TemplateParameterList *template_param_list = CreateTemplateParameterList(
ast, template_param_infos, template_param_decls);
// LLDB needs to create those decls only to be able to display a
// type that includes a template template argument. Only the name matters for
// this purpose, so we use dummy values for the other characteristics of the
// type.
return TemplateTemplateParmDecl::Create(ast, decl_ctx, SourceLocation(),
/*Depth=*/0, /*Position=*/0,
/*IsParameterPack=*/false,
&identifier_info, /*Typename=*/false,
template_param_list);
}
ClassTemplateSpecializationDecl *
TypeSystemClang::CreateClassTemplateSpecializationDecl(
DeclContext *decl_ctx, OptionalClangModuleID owning_module,
ClassTemplateDecl *class_template_decl, int kind,
const TemplateParameterInfos &template_param_infos) {
ASTContext &ast = getASTContext();
llvm::SmallVector<clang::TemplateArgument, 2> args(
template_param_infos.Size() +
(template_param_infos.hasParameterPack() ? 1 : 0));
auto const &orig_args = template_param_infos.GetArgs();
std::copy(orig_args.begin(), orig_args.end(), args.begin());
if (template_param_infos.hasParameterPack()) {
args[args.size() - 1] = TemplateArgument::CreatePackCopy(
ast, template_param_infos.GetParameterPackArgs());
}
ClassTemplateSpecializationDecl *class_template_specialization_decl =
ClassTemplateSpecializationDecl::CreateDeserialized(ast, GlobalDeclID());
class_template_specialization_decl->setTagKind(
static_cast<TagDecl::TagKind>(kind));
class_template_specialization_decl->setDeclContext(decl_ctx);
class_template_specialization_decl->setInstantiationOf(class_template_decl);
class_template_specialization_decl->setTemplateArgs(
TemplateArgumentList::CreateCopy(ast, args));
ast.getTypeDeclType(class_template_specialization_decl, nullptr);
class_template_specialization_decl->setDeclName(
class_template_decl->getDeclName());
SetOwningModule(class_template_specialization_decl, owning_module);
decl_ctx->addDecl(class_template_specialization_decl);
class_template_specialization_decl->setSpecializationKind(
TSK_ExplicitSpecialization);
return class_template_specialization_decl;
}
CompilerType TypeSystemClang::CreateClassTemplateSpecializationType(
ClassTemplateSpecializationDecl *class_template_specialization_decl) {
if (class_template_specialization_decl) {
ASTContext &ast = getASTContext();
return GetType(ast.getTagDeclType(class_template_specialization_decl));
}
return CompilerType();
}
static inline bool check_op_param(bool is_method,
clang::OverloadedOperatorKind op_kind,
bool unary, bool binary,
uint32_t num_params) {
// Special-case call since it can take any number of operands
if (op_kind == OO_Call)
return true;
// The parameter count doesn't include "this"
if (is_method)
++num_params;
if (num_params == 1)
return unary;
if (num_params == 2)
return binary;
else
return false;
}
bool TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
bool is_method, clang::OverloadedOperatorKind op_kind,
uint32_t num_params) {
switch (op_kind) {
default:
break;
// C++ standard allows any number of arguments to new/delete
case OO_New:
case OO_Array_New:
case OO_Delete:
case OO_Array_Delete:
return true;
}
#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \
case OO_##Name: \
return check_op_param(is_method, op_kind, Unary, Binary, num_params);
switch (op_kind) {
#include "clang/Basic/OperatorKinds.def"
default:
break;
}
return false;
}
clang::AccessSpecifier
TypeSystemClang::UnifyAccessSpecifiers(clang::AccessSpecifier lhs,
clang::AccessSpecifier rhs) {
// Make the access equal to the stricter of the field and the nested field's
// access
if (lhs == AS_none || rhs == AS_none)
return AS_none;
if (lhs == AS_private || rhs == AS_private)
return AS_private;
if (lhs == AS_protected || rhs == AS_protected)
return AS_protected;
return AS_public;
}
bool TypeSystemClang::FieldIsBitfield(FieldDecl *field,
uint32_t &bitfield_bit_size) {
ASTContext &ast = getASTContext();
if (field == nullptr)
return false;
if (field->isBitField()) {
Expr *bit_width_expr = field->getBitWidth();
if (bit_width_expr) {
if (std::optional<llvm::APSInt> bit_width_apsint =
bit_width_expr->getIntegerConstantExpr(ast)) {
bitfield_bit_size = bit_width_apsint->getLimitedValue(UINT32_MAX);
return true;
}
}
}
return false;
}
bool TypeSystemClang::RecordHasFields(const RecordDecl *record_decl) {
if (record_decl == nullptr)
return false;
if (!record_decl->field_empty())
return true;
// No fields, lets check this is a CXX record and check the base classes
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(
base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl))
return true;
}
}
// We always want forcefully completed types to show up so we can print a
// message in the summary that indicates that the type is incomplete.
// This will help users know when they are running into issues with
// -flimit-debug-info instead of just seeing nothing if this is a base class
// (since we were hiding empty base classes), or nothing when you turn open
// an valiable whose type was incomplete.
if (std::optional<ClangASTMetadata> meta_data = GetMetadata(record_decl);
meta_data && meta_data->IsForcefullyCompleted())
return true;
return false;
}
#pragma mark Objective-C Classes
CompilerType TypeSystemClang::CreateObjCClass(
llvm::StringRef name, clang::DeclContext *decl_ctx,
OptionalClangModuleID owning_module, bool isInternal,
std::optional<ClangASTMetadata> metadata) {
ASTContext &ast = getASTContext();
assert(!name.empty());
if (!decl_ctx)
decl_ctx = ast.getTranslationUnitDecl();
ObjCInterfaceDecl *decl =
ObjCInterfaceDecl::CreateDeserialized(ast, GlobalDeclID());
decl->setDeclContext(decl_ctx);
decl->setDeclName(&ast.Idents.get(name));
decl->setImplicit(isInternal);
SetOwningModule(decl, owning_module);
if (metadata)
SetMetadata(decl, *metadata);
return GetType(ast.getObjCInterfaceType(decl));
}
bool TypeSystemClang::BaseSpecifierIsEmpty(const CXXBaseSpecifier *b) {
return !TypeSystemClang::RecordHasFields(b->getType()->getAsCXXRecordDecl());
}
uint32_t
TypeSystemClang::GetNumBaseClasses(const CXXRecordDecl *cxx_record_decl,
bool omit_empty_base_classes) {
uint32_t num_bases = 0;
if (cxx_record_decl) {
if (omit_empty_base_classes) {
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
// Skip empty base classes
if (BaseSpecifierIsEmpty(base_class))
continue;
++num_bases;
}
} else
num_bases = cxx_record_decl->getNumBases();
}
return num_bases;
}
#pragma mark Namespace Declarations
NamespaceDecl *TypeSystemClang::GetUniqueNamespaceDeclaration(
const char *name, clang::DeclContext *decl_ctx,
OptionalClangModuleID owning_module, bool is_inline) {
NamespaceDecl *namespace_decl = nullptr;
ASTContext &ast = getASTContext();
TranslationUnitDecl *translation_unit_decl = ast.getTranslationUnitDecl();
if (!decl_ctx)
decl_ctx = translation_unit_decl;
if (name) {
IdentifierInfo &identifier_info = ast.Idents.get(name);
DeclarationName decl_name(&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result) {
namespace_decl = dyn_cast<clang::NamespaceDecl>(decl);
if (namespace_decl)
return namespace_decl;
}
namespace_decl = NamespaceDecl::Create(ast, decl_ctx, is_inline,
SourceLocation(), SourceLocation(),
&identifier_info, nullptr, false);
decl_ctx->addDecl(namespace_decl);
} else {
if (decl_ctx == translation_unit_decl) {
namespace_decl = translation_unit_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl =
NamespaceDecl::Create(ast, decl_ctx, false, SourceLocation(),
SourceLocation(), nullptr, nullptr, false);
translation_unit_decl->setAnonymousNamespace(namespace_decl);
translation_unit_decl->addDecl(namespace_decl);
assert(namespace_decl == translation_unit_decl->getAnonymousNamespace());
} else {
NamespaceDecl *parent_namespace_decl = cast<NamespaceDecl>(decl_ctx);
if (parent_namespace_decl) {
namespace_decl = parent_namespace_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl =
NamespaceDecl::Create(ast, decl_ctx, false, SourceLocation(),
SourceLocation(), nullptr, nullptr, false);
parent_namespace_decl->setAnonymousNamespace(namespace_decl);
parent_namespace_decl->addDecl(namespace_decl);
assert(namespace_decl ==
parent_namespace_decl->getAnonymousNamespace());
} else {
assert(false && "GetUniqueNamespaceDeclaration called with no name and "
"no namespace as decl_ctx");
}
}
}
// Note: namespaces can span multiple modules, so perhaps this isn't a good
// idea.
SetOwningModule(namespace_decl, owning_module);
VerifyDecl(namespace_decl);
return namespace_decl;
}
clang::BlockDecl *
TypeSystemClang::CreateBlockDeclaration(clang::DeclContext *ctx,
OptionalClangModuleID owning_module) {
if (ctx) {
clang::BlockDecl *decl =
clang::BlockDecl::CreateDeserialized(getASTContext(), GlobalDeclID());
decl->setDeclContext(ctx);
ctx->addDecl(decl);
SetOwningModule(decl, owning_module);
return decl;
}
return nullptr;
}
clang::DeclContext *FindLCABetweenDecls(clang::DeclContext *left,
clang::DeclContext *right,
clang::DeclContext *root) {
if (root == nullptr)
return nullptr;
std::set<clang::DeclContext *> path_left;
for (clang::DeclContext *d = left; d != nullptr; d = d->getParent())
path_left.insert(d);
for (clang::DeclContext *d = right; d != nullptr; d = d->getParent())
if (path_left.find(d) != path_left.end())
return d;
return nullptr;
}
clang::UsingDirectiveDecl *TypeSystemClang::CreateUsingDirectiveDeclaration(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
clang::NamespaceDecl *ns_decl) {
if (decl_ctx && ns_decl) {
auto *translation_unit = getASTContext().getTranslationUnitDecl();
clang::UsingDirectiveDecl *using_decl = clang::UsingDirectiveDecl::Create(
getASTContext(), decl_ctx, clang::SourceLocation(),
clang::SourceLocation(), clang::NestedNameSpecifierLoc(),
clang::SourceLocation(), ns_decl,
FindLCABetweenDecls(decl_ctx, ns_decl,
translation_unit));
decl_ctx->addDecl(using_decl);
SetOwningModule(using_decl, owning_module);
return using_decl;
}
return nullptr;
}
clang::UsingDecl *
TypeSystemClang::CreateUsingDeclaration(clang::DeclContext *current_decl_ctx,
OptionalClangModuleID owning_module,
clang::NamedDecl *target) {
if (current_decl_ctx && target) {
clang::UsingDecl *using_decl = clang::UsingDecl::Create(
getASTContext(), current_decl_ctx, clang::SourceLocation(),
clang::NestedNameSpecifierLoc(), clang::DeclarationNameInfo(), false);
SetOwningModule(using_decl, owning_module);
clang::UsingShadowDecl *shadow_decl = clang::UsingShadowDecl::Create(
getASTContext(), current_decl_ctx, clang::SourceLocation(),
target->getDeclName(), using_decl, target);
SetOwningModule(shadow_decl, owning_module);
using_decl->addShadowDecl(shadow_decl);
current_decl_ctx->addDecl(using_decl);
return using_decl;
}
return nullptr;
}
clang::VarDecl *TypeSystemClang::CreateVariableDeclaration(
clang::DeclContext *decl_context, OptionalClangModuleID owning_module,
const char *name, clang::QualType type) {
if (decl_context) {
clang::VarDecl *var_decl =
clang::VarDecl::CreateDeserialized(getASTContext(), GlobalDeclID());
var_decl->setDeclContext(decl_context);
if (name && name[0])
var_decl->setDeclName(&getASTContext().Idents.getOwn(name));
var_decl->setType(type);
SetOwningModule(var_decl, owning_module);
var_decl->setAccess(clang::AS_public);
decl_context->addDecl(var_decl);
return var_decl;
}
return nullptr;
}
lldb::opaque_compiler_type_t
TypeSystemClang::GetOpaqueCompilerType(clang::ASTContext *ast,
lldb::BasicType basic_type) {
switch (basic_type) {
case eBasicTypeVoid:
return ast->VoidTy.getAsOpaquePtr();
case eBasicTypeChar:
return ast->CharTy.getAsOpaquePtr();
case eBasicTypeSignedChar:
return ast->SignedCharTy.getAsOpaquePtr();
case eBasicTypeUnsignedChar:
return ast->UnsignedCharTy.getAsOpaquePtr();
case eBasicTypeWChar:
return ast->getWCharType().getAsOpaquePtr();
case eBasicTypeSignedWChar:
return ast->getSignedWCharType().getAsOpaquePtr();
case eBasicTypeUnsignedWChar:
return ast->getUnsignedWCharType().getAsOpaquePtr();
case eBasicTypeChar8:
return ast->Char8Ty.getAsOpaquePtr();
case eBasicTypeChar16:
return ast->Char16Ty.getAsOpaquePtr();
case eBasicTypeChar32:
return ast->Char32Ty.getAsOpaquePtr();
case eBasicTypeShort:
return ast->ShortTy.getAsOpaquePtr();
case eBasicTypeUnsignedShort:
return ast->UnsignedShortTy.getAsOpaquePtr();
case eBasicTypeInt:
return ast->IntTy.getAsOpaquePtr();
case eBasicTypeUnsignedInt:
return ast->UnsignedIntTy.getAsOpaquePtr();
case eBasicTypeLong:
return ast->LongTy.getAsOpaquePtr();
case eBasicTypeUnsignedLong:
return ast->UnsignedLongTy.getAsOpaquePtr();
case eBasicTypeLongLong:
return ast->LongLongTy.getAsOpaquePtr();
case eBasicTypeUnsignedLongLong:
return ast->UnsignedLongLongTy.getAsOpaquePtr();
case eBasicTypeInt128:
return ast->Int128Ty.getAsOpaquePtr();
case eBasicTypeUnsignedInt128:
return ast->UnsignedInt128Ty.getAsOpaquePtr();
case eBasicTypeBool:
return ast->BoolTy.getAsOpaquePtr();
case eBasicTypeHalf:
return ast->HalfTy.getAsOpaquePtr();
case eBasicTypeFloat:
return ast->FloatTy.getAsOpaquePtr();
case eBasicTypeDouble:
return ast->DoubleTy.getAsOpaquePtr();
case eBasicTypeLongDouble:
return ast->LongDoubleTy.getAsOpaquePtr();
case eBasicTypeFloatComplex:
return ast->getComplexType(ast->FloatTy).getAsOpaquePtr();
case eBasicTypeDoubleComplex:
return ast->getComplexType(ast->DoubleTy).getAsOpaquePtr();
case eBasicTypeLongDoubleComplex:
return ast->getComplexType(ast->LongDoubleTy).getAsOpaquePtr();
case eBasicTypeObjCID:
return ast->getObjCIdType().getAsOpaquePtr();
case eBasicTypeObjCClass:
return ast->getObjCClassType().getAsOpaquePtr();
case eBasicTypeObjCSel:
return ast->getObjCSelType().getAsOpaquePtr();
case eBasicTypeNullPtr:
return ast->NullPtrTy.getAsOpaquePtr();
default:
return nullptr;
}
}
#pragma mark Function Types
clang::DeclarationName
TypeSystemClang::GetDeclarationName(llvm::StringRef name,
const CompilerType &function_clang_type) {
clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
if (!IsOperator(name, op_kind) || op_kind == clang::NUM_OVERLOADED_OPERATORS)
return DeclarationName(&getASTContext().Idents.get(
name)); // Not operator, but a regular function.
// Check the number of operator parameters. Sometimes we have seen bad DWARF
// that doesn't correctly describe operators and if we try to create a method
// and add it to the class, clang will assert and crash, so we need to make
// sure things are acceptable.
clang::QualType method_qual_type(ClangUtil::GetQualType(function_clang_type));
const clang::FunctionProtoType *function_type =
llvm::dyn_cast<clang::FunctionProtoType>(method_qual_type.getTypePtr());
if (function_type == nullptr)
return clang::DeclarationName();
const bool is_method = false;
const unsigned int num_params = function_type->getNumParams();
if (!TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
is_method, op_kind, num_params))
return clang::DeclarationName();
return getASTContext().DeclarationNames.getCXXOperatorName(op_kind);
}
PrintingPolicy TypeSystemClang::GetTypePrintingPolicy() {
clang::PrintingPolicy printing_policy(getASTContext().getPrintingPolicy());
printing_policy.SuppressTagKeyword = true;
// Inline namespaces are important for some type formatters (e.g., libc++
// and libstdc++ are differentiated by their inline namespaces).
printing_policy.SuppressInlineNamespace = false;
printing_policy.SuppressUnwrittenScope = false;
// Default arguments are also always important for type formatters. Otherwise
// we would need to always specify two type names for the setups where we do
// know the default arguments and where we don't know default arguments.
//
// For example, without this we would need to have formatters for both:
// std::basic_string<char>
// and
// std::basic_string<char, std::char_traits<char>, std::allocator<char> >
// to support setups where LLDB was able to reconstruct default arguments
// (and we then would have suppressed them from the type name) and also setups
// where LLDB wasn't able to reconstruct the default arguments.
printing_policy.SuppressDefaultTemplateArgs = false;
return printing_policy;
}
std::string TypeSystemClang::GetTypeNameForDecl(const NamedDecl *named_decl,
bool qualified) {
clang::PrintingPolicy printing_policy = GetTypePrintingPolicy();
std::string result;
llvm::raw_string_ostream os(result);
named_decl->getNameForDiagnostic(os, printing_policy, qualified);
return result;
}
FunctionDecl *TypeSystemClang::CreateFunctionDeclaration(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
llvm::StringRef name, const CompilerType &function_clang_type,
clang::StorageClass storage, bool is_inline) {
FunctionDecl *func_decl = nullptr;
ASTContext &ast = getASTContext();
if (!decl_ctx)
decl_ctx = ast.getTranslationUnitDecl();
const bool hasWrittenPrototype = true;
const bool isConstexprSpecified = false;
clang::DeclarationName declarationName =
GetDeclarationName(name, function_clang_type);
func_decl = FunctionDecl::CreateDeserialized(ast, GlobalDeclID());
func_decl->setDeclContext(decl_ctx);
func_decl->setDeclName(declarationName);
func_decl->setType(ClangUtil::GetQualType(function_clang_type));
func_decl->setStorageClass(storage);
func_decl->setInlineSpecified(is_inline);
func_decl->setHasWrittenPrototype(hasWrittenPrototype);
func_decl->setConstexprKind(isConstexprSpecified
? ConstexprSpecKind::Constexpr
: ConstexprSpecKind::Unspecified);
SetOwningModule(func_decl, owning_module);
decl_ctx->addDecl(func_decl);
VerifyDecl(func_decl);
return func_decl;
}
CompilerType TypeSystemClang::CreateFunctionType(
const CompilerType &result_type, const CompilerType *args,
unsigned num_args, bool is_variadic, unsigned type_quals,
clang::CallingConv cc, clang::RefQualifierKind ref_qual) {
if (!result_type || !ClangUtil::IsClangType(result_type))
return CompilerType(); // invalid return type
std::vector<QualType> qual_type_args;
if (num_args > 0 && args == nullptr)
return CompilerType(); // invalid argument array passed in
// Verify that all arguments are valid and the right type
for (unsigned i = 0; i < num_args; ++i) {
if (args[i]) {
// Make sure we have a clang type in args[i] and not a type from another
// language whose name might match
const bool is_clang_type = ClangUtil::IsClangType(args[i]);
lldbassert(is_clang_type);
if (is_clang_type)
qual_type_args.push_back(ClangUtil::GetQualType(args[i]));
else
return CompilerType(); // invalid argument type (must be a clang type)
} else
return CompilerType(); // invalid argument type (empty)
}
// TODO: Detect calling convention in DWARF?
FunctionProtoType::ExtProtoInfo proto_info;
proto_info.ExtInfo = cc;
proto_info.Variadic = is_variadic;
proto_info.ExceptionSpec = EST_None;
proto_info.TypeQuals = clang::Qualifiers::fromFastMask(type_quals);
proto_info.RefQualifier = ref_qual;
return GetType(getASTContext().getFunctionType(
ClangUtil::GetQualType(result_type), qual_type_args, proto_info));
}
ParmVarDecl *TypeSystemClang::CreateParameterDeclaration(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
const char *name, const CompilerType &param_type, int storage,
bool add_decl) {
ASTContext &ast = getASTContext();
auto *decl = ParmVarDecl::CreateDeserialized(ast, GlobalDeclID());
decl->setDeclContext(decl_ctx);
if (name && name[0])
decl->setDeclName(&ast.Idents.get(name));
decl->setType(ClangUtil::GetQualType(param_type));
decl->setStorageClass(static_cast<clang::StorageClass>(storage));
SetOwningModule(decl, owning_module);
if (add_decl)
decl_ctx->addDecl(decl);
return decl;
}
void TypeSystemClang::SetFunctionParameters(
FunctionDecl *function_decl, llvm::ArrayRef<ParmVarDecl *> params) {
if (function_decl)
function_decl->setParams(params);
}
CompilerType
TypeSystemClang::CreateBlockPointerType(const CompilerType &function_type) {
QualType block_type = m_ast_up->getBlockPointerType(
clang::QualType::getFromOpaquePtr(function_type.GetOpaqueQualType()));
return GetType(block_type);
}
#pragma mark Array Types
CompilerType
TypeSystemClang::CreateArrayType(const CompilerType &element_type,
std::optional<size_t> element_count,
bool is_vector) {
if (!element_type.IsValid())
return {};
ASTContext &ast = getASTContext();
// Unknown number of elements; this is an incomplete array
// (e.g., variable length array with non-constant bounds, or
// a flexible array member).
if (!element_count)
return GetType(
ast.getIncompleteArrayType(ClangUtil::GetQualType(element_type),
clang::ArraySizeModifier::Normal, 0));
if (is_vector)
return GetType(ast.getExtVectorType(ClangUtil::GetQualType(element_type),
*element_count));
llvm::APInt ap_element_count(64, *element_count);
return GetType(ast.getConstantArrayType(ClangUtil::GetQualType(element_type),
ap_element_count, nullptr,
clang::ArraySizeModifier::Normal, 0));
}
CompilerType TypeSystemClang::CreateStructForIdentifier(
llvm::StringRef type_name,
const std::initializer_list<std::pair<const char *, CompilerType>>
&type_fields,
bool packed) {
CompilerType type;
if (!type_name.empty() &&
(type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name))
.IsValid()) {
lldbassert(0 && "Trying to create a type for an existing name");
return type;
}
type = CreateRecordType(
nullptr, OptionalClangModuleID(), lldb::eAccessPublic, type_name,
llvm::to_underlying(clang::TagTypeKind::Struct), lldb::eLanguageTypeC);
StartTagDeclarationDefinition(type);
for (const auto &field : type_fields)
AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic,
0);
if (packed)
SetIsPacked(type);
CompleteTagDeclarationDefinition(type);
return type;
}
CompilerType TypeSystemClang::GetOrCreateStructForIdentifier(
llvm::StringRef type_name,
const std::initializer_list<std::pair<const char *, CompilerType>>
&type_fields,
bool packed) {
CompilerType type;
if ((type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name)).IsValid())
return type;
return CreateStructForIdentifier(type_name, type_fields, packed);
}
#pragma mark Enumeration Types
CompilerType TypeSystemClang::CreateEnumerationType(
llvm::StringRef name, clang::DeclContext *decl_ctx,
OptionalClangModuleID owning_module, const Declaration &decl,
const CompilerType &integer_clang_type, bool is_scoped) {
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext &ast = getASTContext();
// TODO: ask about these...
// const bool IsFixed = false;
EnumDecl *enum_decl = EnumDecl::CreateDeserialized(ast, GlobalDeclID());
enum_decl->setDeclContext(decl_ctx);
if (!name.empty())
enum_decl->setDeclName(&ast.Idents.get(name));
enum_decl->setScoped(is_scoped);
enum_decl->setScopedUsingClassTag(is_scoped);
enum_decl->setFixed(false);
SetOwningModule(enum_decl, owning_module);
if (decl_ctx)
decl_ctx->addDecl(enum_decl);
// TODO: check if we should be setting the promotion type too?
enum_decl->setIntegerType(ClangUtil::GetQualType(integer_clang_type));
enum_decl->setAccess(AS_public); // TODO respect what's in the debug info
return GetType(ast.getTagDeclType(enum_decl));
}
CompilerType TypeSystemClang::GetIntTypeFromBitSize(size_t bit_size,
bool is_signed) {
clang::ASTContext &ast = getASTContext();
if (!ast.VoidPtrTy)
return {};
if (is_signed) {
if (bit_size == ast.getTypeSize(ast.SignedCharTy))
return GetType(ast.SignedCharTy);
if (bit_size == ast.getTypeSize(ast.ShortTy))
return GetType(ast.ShortTy);
if (bit_size == ast.getTypeSize(ast.IntTy))
return GetType(ast.IntTy);
if (bit_size == ast.getTypeSize(ast.LongTy))
return GetType(ast.LongTy);
if (bit_size == ast.getTypeSize(ast.LongLongTy))
return GetType(ast.LongLongTy);
if (bit_size == ast.getTypeSize(ast.Int128Ty))
return GetType(ast.Int128Ty);
} else {
if (bit_size == ast.getTypeSize(ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (bit_size == ast.getTypeSize(ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (bit_size == ast.getTypeSize(ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (bit_size == ast.getTypeSize(ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
if (bit_size == ast.getTypeSize(ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
if (bit_size == ast.getTypeSize(ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
}
return CompilerType();
}
CompilerType TypeSystemClang::GetPointerSizedIntType(bool is_signed) {
if (!getASTContext().VoidPtrTy)
return {};
return GetIntTypeFromBitSize(
getASTContext().getTypeSize(getASTContext().VoidPtrTy), is_signed);
}
void TypeSystemClang::DumpDeclContextHiearchy(clang::DeclContext *decl_ctx) {
if (decl_ctx) {
DumpDeclContextHiearchy(decl_ctx->getParent());
clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl_ctx);
if (named_decl) {
printf("%20s: %s\n", decl_ctx->getDeclKindName(),
named_decl->getDeclName().getAsString().c_str());
} else {
printf("%20s\n", decl_ctx->getDeclKindName());
}
}
}
void TypeSystemClang::DumpDeclHiearchy(clang::Decl *decl) {
if (decl == nullptr)
return;
DumpDeclContextHiearchy(decl->getDeclContext());
clang::RecordDecl *record_decl = llvm::dyn_cast<clang::RecordDecl>(decl);
if (record_decl) {
printf("%20s: %s%s\n", decl->getDeclKindName(),
record_decl->getDeclName().getAsString().c_str(),
record_decl->isInjectedClassName() ? " (injected class name)" : "");
} else {
clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl);
if (named_decl) {
printf("%20s: %s\n", decl->getDeclKindName(),
named_decl->getDeclName().getAsString().c_str());
} else {
printf("%20s\n", decl->getDeclKindName());
}
}
}
bool TypeSystemClang::GetCompleteDecl(clang::ASTContext *ast,
clang::Decl *decl) {
if (!decl)
return false;
ExternalASTSource *ast_source = ast->getExternalSource();
if (!ast_source)
return false;
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl)) {
if (tag_decl->isCompleteDefinition())
return true;
if (!tag_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(tag_decl);
return !tag_decl->getTypeForDecl()->isIncompleteType();
} else if (clang::ObjCInterfaceDecl *objc_interface_decl =
llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl)) {
if (objc_interface_decl->getDefinition())
return true;
if (!objc_interface_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(objc_interface_decl);
return !objc_interface_decl->getTypeForDecl()->isIncompleteType();
} else {
return false;
}
}
void TypeSystemClang::SetMetadataAsUserID(const clang::Decl *decl,
user_id_t user_id) {
ClangASTMetadata meta_data;
meta_data.SetUserID(user_id);
SetMetadata(decl, meta_data);
}
void TypeSystemClang::SetMetadataAsUserID(const clang::Type *type,
user_id_t user_id) {
ClangASTMetadata meta_data;
meta_data.SetUserID(user_id);
SetMetadata(type, meta_data);
}
void TypeSystemClang::SetMetadata(const clang::Decl *object,
ClangASTMetadata metadata) {
m_decl_metadata[object] = metadata;
}
void TypeSystemClang::SetMetadata(const clang::Type *object,
ClangASTMetadata metadata) {
m_type_metadata[object] = metadata;
}
std::optional<ClangASTMetadata>
TypeSystemClang::GetMetadata(const clang::Decl *object) {
auto It = m_decl_metadata.find(object);
if (It != m_decl_metadata.end())
return It->second;
return std::nullopt;
}
std::optional<ClangASTMetadata>
TypeSystemClang::GetMetadata(const clang::Type *object) {
auto It = m_type_metadata.find(object);
if (It != m_type_metadata.end())
return It->second;
return std::nullopt;
}
void TypeSystemClang::SetCXXRecordDeclAccess(const clang::CXXRecordDecl *object,
clang::AccessSpecifier access) {
if (access == clang::AccessSpecifier::AS_none)
m_cxx_record_decl_access.erase(object);
else
m_cxx_record_decl_access[object] = access;
}
clang::AccessSpecifier
TypeSystemClang::GetCXXRecordDeclAccess(const clang::CXXRecordDecl *object) {
auto It = m_cxx_record_decl_access.find(object);
if (It != m_cxx_record_decl_access.end())
return It->second;
return clang::AccessSpecifier::AS_none;
}
clang::DeclContext *
TypeSystemClang::GetDeclContextForType(const CompilerType &type) {
return GetDeclContextForType(ClangUtil::GetQualType(type));
}
CompilerDeclContext
TypeSystemClang::GetCompilerDeclContextForType(const CompilerType &type) {
if (auto *decl_context = GetDeclContextForType(type))
return CreateDeclContext(decl_context);
return CompilerDeclContext();
}
/// Aggressively desugar the provided type, skipping past various kinds of
/// syntactic sugar and other constructs one typically wants to ignore.
/// The \p mask argument allows one to skip certain kinds of simplifications,
/// when one wishes to handle a certain kind of type directly.
static QualType
RemoveWrappingTypes(QualType type, ArrayRef<clang::Type::TypeClass> mask = {}) {
while (true) {
if (find(mask, type->getTypeClass()) != mask.end())
return type;
switch (type->getTypeClass()) {
// This is not fully correct as _Atomic is more than sugar, but it is
// sufficient for the purposes we care about.
case clang::Type::Atomic:
type = cast<clang::AtomicType>(type)->getValueType();
break;
case clang::Type::Auto:
case clang::Type::Decltype:
case clang::Type::Elaborated:
case clang::Type::Paren:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::TemplateSpecialization:
case clang::Type::Typedef:
case clang::Type::TypeOf:
case clang::Type::TypeOfExpr:
case clang::Type::Using:
type = type->getLocallyUnqualifiedSingleStepDesugaredType();
break;
default:
return type;
}
}
}
clang::DeclContext *
TypeSystemClang::GetDeclContextForType(clang::QualType type) {
if (type.isNull())
return nullptr;
clang::QualType qual_type = RemoveWrappingTypes(type.getCanonicalType());
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::ObjCInterface:
return llvm::cast<clang::ObjCObjectType>(qual_type.getTypePtr())
->getInterface();
case clang::Type::ObjCObjectPointer:
return GetDeclContextForType(
llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
->getPointeeType());
case clang::Type::Record:
return llvm::cast<clang::RecordType>(qual_type)->getDecl();
case clang::Type::Enum:
return llvm::cast<clang::EnumType>(qual_type)->getDecl();
default:
break;
}
// No DeclContext in this type...
return nullptr;
}
/// Returns the clang::RecordType of the specified \ref qual_type. This
/// function will try to complete the type if necessary (and allowed
/// by the specified \ref allow_completion). If we fail to return a *complete*
/// type, returns nullptr.
static const clang::RecordType *GetCompleteRecordType(clang::ASTContext *ast,
clang::QualType qual_type,
bool allow_completion) {
assert(qual_type->isRecordType());
const auto *tag_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
// RecordType with no way of completing it, return the plain
// TagType.
if (!cxx_record_decl || !cxx_record_decl->hasExternalLexicalStorage())
return tag_type;
const bool is_complete = cxx_record_decl->isCompleteDefinition();
const bool fields_loaded =
cxx_record_decl->hasLoadedFieldsFromExternalStorage();
// Already completed this type, nothing to be done.
if (is_complete && fields_loaded)
return tag_type;
if (!allow_completion)
return nullptr;
// Call the field_begin() accessor to for it to use the external source
// to load the fields...
//
// TODO: if we need to complete the type but have no external source,
// shouldn't we error out instead?
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source) {
external_ast_source->CompleteType(cxx_record_decl);
if (cxx_record_decl->isCompleteDefinition()) {
cxx_record_decl->field_begin();
cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true);
}
}
return tag_type;
}
/// Returns the clang::EnumType of the specified \ref qual_type. This
/// function will try to complete the type if necessary (and allowed
/// by the specified \ref allow_completion). If we fail to return a *complete*
/// type, returns nullptr.
static const clang::EnumType *GetCompleteEnumType(clang::ASTContext *ast,
clang::QualType qual_type,
bool allow_completion) {
assert(qual_type->isEnumeralType());
assert(ast);
const clang::EnumType *enum_type =
llvm::cast<clang::EnumType>(qual_type.getTypePtr());
auto *tag_decl = enum_type->getAsTagDecl();
assert(tag_decl);
// Already completed, nothing to be done.
if (tag_decl->getDefinition())
return enum_type;
if (!allow_completion)
return nullptr;
// No definition but can't complete it, error out.
if (!tag_decl->hasExternalLexicalStorage())
return nullptr;
// We can't complete the type without an external source.
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (!external_ast_source)
return nullptr;
external_ast_source->CompleteType(tag_decl);
return enum_type;
}
/// Returns the clang::ObjCObjectType of the specified \ref qual_type. This
/// function will try to complete the type if necessary (and allowed
/// by the specified \ref allow_completion). If we fail to return a *complete*
/// type, returns nullptr.
static const clang::ObjCObjectType *
GetCompleteObjCObjectType(clang::ASTContext *ast, QualType qual_type,
bool allow_completion) {
assert(qual_type->isObjCObjectType());
assert(ast);
const clang::ObjCObjectType *objc_class_type =
llvm::cast<clang::ObjCObjectType>(qual_type);
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
// We currently can't complete objective C types through the newly added
// ASTContext because it only supports TagDecl objects right now...
if (!class_interface_decl)
return objc_class_type;
// Already complete, nothing to be done.
if (class_interface_decl->getDefinition())
return objc_class_type;
if (!allow_completion)
return nullptr;
// No definition but can't complete it, error out.
if (!class_interface_decl->hasExternalLexicalStorage())
return nullptr;
// We can't complete the type without an external source.
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (!external_ast_source)
return nullptr;
external_ast_source->CompleteType(class_interface_decl);
return objc_class_type;
}
static bool GetCompleteQualType(clang::ASTContext *ast,
clang::QualType qual_type,
bool allow_completion = true) {
qual_type = RemoveWrappingTypes(qual_type);
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray: {
const clang::ArrayType *array_type =
llvm::dyn_cast<clang::ArrayType>(qual_type.getTypePtr());
if (array_type)
return GetCompleteQualType(ast, array_type->getElementType(),
allow_completion);
} break;
case clang::Type::Record: {
if (const auto *RT =
GetCompleteRecordType(ast, qual_type, allow_completion))
return !RT->isIncompleteType();
return false;
} break;
case clang::Type::Enum: {
if (const auto *ET = GetCompleteEnumType(ast, qual_type, allow_completion))
return !ET->isIncompleteType();
return false;
} break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface: {
if (const auto *OT =
GetCompleteObjCObjectType(ast, qual_type, allow_completion))
return !OT->isIncompleteType();
return false;
} break;
case clang::Type::Attributed:
return GetCompleteQualType(
ast, llvm::cast<clang::AttributedType>(qual_type)->getModifiedType(),
allow_completion);
case clang::Type::MemberPointer:
// MS C++ ABI requires type of the class to be complete of which the pointee
// is a member.
if (ast->getTargetInfo().getCXXABI().isMicrosoft()) {
auto *MPT = qual_type.getTypePtr()->castAs<clang::MemberPointerType>();
if (MPT->getClass()->isRecordType())
GetCompleteRecordType(ast, clang::QualType(MPT->getClass(), 0),
allow_completion);
return !qual_type.getTypePtr()->isIncompleteType();
}
break;
default:
break;
}
return true;
}
static clang::ObjCIvarDecl::AccessControl
ConvertAccessTypeToObjCIvarAccessControl(AccessType access) {
switch (access) {
case eAccessNone:
return clang::ObjCIvarDecl::None;
case eAccessPublic:
return clang::ObjCIvarDecl::Public;
case eAccessPrivate:
return clang::ObjCIvarDecl::Private;
case eAccessProtected:
return clang::ObjCIvarDecl::Protected;
case eAccessPackage:
return clang::ObjCIvarDecl::Package;
}
return clang::ObjCIvarDecl::None;
}
// Tests
#ifndef NDEBUG
bool TypeSystemClang::Verify(lldb::opaque_compiler_type_t type) {
return !type || llvm::isa<clang::Type>(GetQualType(type).getTypePtr());
}
#endif
bool TypeSystemClang::