blob: ea0c09a1596ab306f030eca8ada3b587caf32a0d [file] [log] [blame]
//===-- ABIMacOSX_arm64.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIMacOSX_arm64.h"
#include <vector>
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/Status.h"
#include "Utility/ARM64_DWARF_Registers.h"
using namespace lldb;
using namespace lldb_private;
static const char *pluginDesc = "Mac OS X ABI for arm64 targets";
size_t ABIMacOSX_arm64::GetRedZoneSize() const { return 128; }
// Static Functions
ABISP
ABIMacOSX_arm64::CreateInstance(ProcessSP process_sp, const ArchSpec &arch) {
const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
const llvm::Triple::VendorType vendor_type = arch.GetTriple().getVendor();
if (vendor_type == llvm::Triple::Apple) {
if (arch_type == llvm::Triple::aarch64 ||
arch_type == llvm::Triple::aarch64_32) {
return ABISP(
new ABIMacOSX_arm64(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
}
return ABISP();
}
bool ABIMacOSX_arm64::PrepareTrivialCall(
Thread &thread, lldb::addr_t sp, lldb::addr_t func_addr,
lldb::addr_t return_addr, llvm::ArrayRef<lldb::addr_t> args) const {
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%d = 0x%" PRIx64, static_cast<int>(i + 1), args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
const uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
const uint32_t ra_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
// x0 - x7 contain first 8 simple args
if (args.size() > 8) // TODO handle more than 6 arguments
return false;
for (size_t i = 0; i < args.size(); ++i) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i);
LLDB_LOGF(log, "About to write arg%d (0x%" PRIx64 ") into %s",
static_cast<int>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// Set "lr" to the return address
if (!reg_ctx->WriteRegisterFromUnsigned(
reg_ctx->GetRegisterInfoAtIndex(ra_reg_num), return_addr))
return false;
// Set "sp" to the requested value
if (!reg_ctx->WriteRegisterFromUnsigned(
reg_ctx->GetRegisterInfoAtIndex(sp_reg_num), sp))
return false;
// Set "pc" to the address requested
if (!reg_ctx->WriteRegisterFromUnsigned(
reg_ctx->GetRegisterInfoAtIndex(pc_reg_num), func_addr))
return false;
return true;
}
bool ABIMacOSX_arm64::GetArgumentValues(Thread &thread,
ValueList &values) const {
uint32_t num_values = values.GetSize();
ExecutionContext exe_ctx(thread.shared_from_this());
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
addr_t sp = 0;
for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx) {
// We currently only support extracting values with Clang QualTypes. Do we
// care about others?
Value *value = values.GetValueAtIndex(value_idx);
if (!value)
return false;
CompilerType value_type = value->GetCompilerType();
llvm::Optional<uint64_t> bit_size = value_type.GetBitSize(&thread);
if (!bit_size)
return false;
bool is_signed = false;
size_t bit_width = 0;
if (value_type.IsIntegerOrEnumerationType(is_signed)) {
bit_width = *bit_size;
} else if (value_type.IsPointerOrReferenceType()) {
bit_width = *bit_size;
} else {
// We only handle integer, pointer and reference types currently...
return false;
}
if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8)) {
if (value_idx < 8) {
// Arguments 1-6 are in x0-x5...
const RegisterInfo *reg_info = nullptr;
// Search by generic ID first, then fall back to by name
uint32_t arg_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx);
if (arg_reg_num != LLDB_INVALID_REGNUM) {
reg_info = reg_ctx->GetRegisterInfoAtIndex(arg_reg_num);
} else {
switch (value_idx) {
case 0:
reg_info = reg_ctx->GetRegisterInfoByName("x0");
break;
case 1:
reg_info = reg_ctx->GetRegisterInfoByName("x1");
break;
case 2:
reg_info = reg_ctx->GetRegisterInfoByName("x2");
break;
case 3:
reg_info = reg_ctx->GetRegisterInfoByName("x3");
break;
case 4:
reg_info = reg_ctx->GetRegisterInfoByName("x4");
break;
case 5:
reg_info = reg_ctx->GetRegisterInfoByName("x5");
break;
case 6:
reg_info = reg_ctx->GetRegisterInfoByName("x6");
break;
case 7:
reg_info = reg_ctx->GetRegisterInfoByName("x7");
break;
}
}
if (reg_info) {
RegisterValue reg_value;
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
if (is_signed)
reg_value.SignExtend(bit_width);
if (!reg_value.GetScalarValue(value->GetScalar()))
return false;
continue;
}
}
return false;
} else {
if (sp == 0) {
// Read the stack pointer if we already haven't read it
sp = reg_ctx->GetSP(0);
if (sp == 0)
return false;
}
// Arguments 5 on up are on the stack
const uint32_t arg_byte_size = (bit_width + (8 - 1)) / 8;
Status error;
if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory(
sp, arg_byte_size, is_signed, value->GetScalar(), error))
return false;
sp += arg_byte_size;
// Align up to the next 8 byte boundary if needed
if (sp % 8) {
sp >>= 3;
sp += 1;
sp <<= 3;
}
}
}
}
return true;
}
Status
ABIMacOSX_arm64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType return_value_type = new_value_sp->GetCompilerType();
if (!return_value_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
if (reg_ctx) {
DataExtractor data;
Status data_error;
const uint64_t byte_size = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
const uint32_t type_flags = return_value_type.GetTypeInfo(nullptr);
if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
// Extract the register context so we can read arguments from registers
lldb::offset_t offset = 0;
if (byte_size <= 16) {
const RegisterInfo *x0_info = reg_ctx->GetRegisterInfoByName("x0", 0);
if (byte_size <= 8) {
uint64_t raw_value = data.GetMaxU64(&offset, byte_size);
if (!reg_ctx->WriteRegisterFromUnsigned(x0_info, raw_value))
error.SetErrorString("failed to write register x0");
} else {
uint64_t raw_value = data.GetMaxU64(&offset, 8);
if (reg_ctx->WriteRegisterFromUnsigned(x0_info, raw_value)) {
const RegisterInfo *x1_info =
reg_ctx->GetRegisterInfoByName("x1", 0);
raw_value = data.GetMaxU64(&offset, byte_size - offset);
if (!reg_ctx->WriteRegisterFromUnsigned(x1_info, raw_value))
error.SetErrorString("failed to write register x1");
}
}
} else {
error.SetErrorString("We don't support returning longer than 128 bit "
"integer values at present.");
}
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
// Don't handle complex yet.
error.SetErrorString(
"returning complex float values are not supported");
} else {
const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
if (v0_info) {
if (byte_size <= 16) {
if (byte_size <= RegisterValue::GetMaxByteSize()) {
RegisterValue reg_value;
error = reg_value.SetValueFromData(v0_info, data, 0, true);
if (error.Success()) {
if (!reg_ctx->WriteRegister(v0_info, reg_value))
error.SetErrorString("failed to write register v0");
}
} else {
error.SetErrorStringWithFormat(
"returning float values with a byte size of %" PRIu64
" are not supported",
byte_size);
}
} else {
error.SetErrorString("returning float values longer than 128 "
"bits are not supported");
}
} else {
error.SetErrorString("v0 register is not available on this target");
}
}
}
} else if (type_flags & eTypeIsVector) {
if (byte_size > 0) {
const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
if (v0_info) {
if (byte_size <= v0_info->byte_size) {
RegisterValue reg_value;
error = reg_value.SetValueFromData(v0_info, data, 0, true);
if (error.Success()) {
if (!reg_ctx->WriteRegister(v0_info, reg_value))
error.SetErrorString("failed to write register v0");
}
}
}
}
}
} else {
error.SetErrorString("no registers are available");
}
return error;
}
bool ABIMacOSX_arm64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t lr_reg_num = arm64_dwarf::lr;
uint32_t sp_reg_num = arm64_dwarf::sp;
uint32_t pc_reg_num = arm64_dwarf::pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our previous Call Frame Address is the stack pointer
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
// Our previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow(row);
// All other registers are the same.
unwind_plan.SetSourceName("arm64 at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
bool ABIMacOSX_arm64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t fp_reg_num = arm64_dwarf::fp;
uint32_t pc_reg_num = arm64_dwarf::pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
row->SetOffset(0);
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("arm64-apple-darwin default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
return true;
}
// AAPCS64 (Procedure Call Standard for the ARM 64-bit Architecture) says
// registers x19 through x28 and sp are callee preserved. v8-v15 are non-
// volatile (and specifically only the lower 8 bytes of these regs), the rest
// of the fp/SIMD registers are volatile.
//
// v. https://github.com/ARM-software/abi-aa/blob/master/aapcs64/
// We treat x29 as callee preserved also, else the unwinder won't try to
// retrieve fp saves.
bool ABIMacOSX_arm64::RegisterIsVolatile(const RegisterInfo *reg_info) {
if (reg_info) {
const char *name = reg_info->name;
// Sometimes we'll be called with the "alternate" name for these registers;
// recognize them as non-volatile.
if (name[0] == 'p' && name[1] == 'c') // pc
return false;
if (name[0] == 'f' && name[1] == 'p') // fp
return false;
if (name[0] == 's' && name[1] == 'p') // sp
return false;
if (name[0] == 'l' && name[1] == 'r') // lr
return false;
if (name[0] == 'x') {
// Volatile registers: x0-x18, x30 (lr)
// Return false for the non-volatile gpr regs, true for everything else
switch (name[1]) {
case '1':
switch (name[2]) {
case '9':
return false; // x19 is non-volatile
default:
return true;
}
break;
case '2':
switch (name[2]) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
return false; // x20 - 28 are non-volatile
case '9':
return false; // x29 aka fp treat as non-volatile on Darwin
default:
return true;
}
case '3': // x30 aka lr treat as non-volatile
if (name[2] == '0')
return false;
break;
default:
return true;
}
} else if (name[0] == 'v' || name[0] == 's' || name[0] == 'd') {
// Volatile registers: v0-7, v16-v31
// Return false for non-volatile fp/SIMD regs, true for everything else
switch (name[1]) {
case '8':
case '9':
return false; // v8-v9 are non-volatile
case '1':
switch (name[2]) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
return false; // v10-v15 are non-volatile
default:
return true;
}
default:
return true;
}
}
}
return true;
}
static bool LoadValueFromConsecutiveGPRRegisters(
ExecutionContext &exe_ctx, RegisterContext *reg_ctx,
const CompilerType &value_type,
bool is_return_value, // false => parameter, true => return value
uint32_t &NGRN, // NGRN (see ABI documentation)
uint32_t &NSRN, // NSRN (see ABI documentation)
DataExtractor &data) {
llvm::Optional<uint64_t> byte_size =
value_type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
if (!byte_size || *byte_size == 0)
return false;
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
Status error;
CompilerType base_type;
const uint32_t homogeneous_count =
value_type.IsHomogeneousAggregate(&base_type);
if (homogeneous_count > 0 && homogeneous_count <= 8) {
// Make sure we have enough registers
if (NSRN < 8 && (8 - NSRN) >= homogeneous_count) {
if (!base_type)
return false;
llvm::Optional<uint64_t> base_byte_size =
base_type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
if (!base_byte_size)
return false;
uint32_t data_offset = 0;
for (uint32_t i = 0; i < homogeneous_count; ++i) {
char v_name[8];
::snprintf(v_name, sizeof(v_name), "v%u", NSRN);
const RegisterInfo *reg_info =
reg_ctx->GetRegisterInfoByName(v_name, 0);
if (reg_info == nullptr)
return false;
if (*base_byte_size > reg_info->byte_size)
return false;
RegisterValue reg_value;
if (!reg_ctx->ReadRegister(reg_info, reg_value))
return false;
// Make sure we have enough room in "heap_data_up"
if ((data_offset + *base_byte_size) <= heap_data_up->GetByteSize()) {
const size_t bytes_copied = reg_value.GetAsMemoryData(
reg_info, heap_data_up->GetBytes() + data_offset, *base_byte_size,
byte_order, error);
if (bytes_copied != *base_byte_size)
return false;
data_offset += bytes_copied;
++NSRN;
} else
return false;
}
data.SetByteOrder(byte_order);
data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize());
data.SetData(DataBufferSP(heap_data_up.release()));
return true;
}
}
const size_t max_reg_byte_size = 16;
if (*byte_size <= max_reg_byte_size) {
size_t bytes_left = *byte_size;
uint32_t data_offset = 0;
while (data_offset < *byte_size) {
if (NGRN >= 8)
return false;
uint32_t reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN);
if (reg_num == LLDB_INVALID_REGNUM)
return false;
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(reg_num);
if (reg_info == nullptr)
return false;
RegisterValue reg_value;
if (!reg_ctx->ReadRegister(reg_info, reg_value))
return false;
const size_t curr_byte_size = std::min<size_t>(8, bytes_left);
const size_t bytes_copied = reg_value.GetAsMemoryData(
reg_info, heap_data_up->GetBytes() + data_offset, curr_byte_size,
byte_order, error);
if (bytes_copied == 0)
return false;
if (bytes_copied >= bytes_left)
break;
data_offset += bytes_copied;
bytes_left -= bytes_copied;
++NGRN;
}
} else {
const RegisterInfo *reg_info = nullptr;
if (is_return_value) {
// We are assuming we are decoding this immediately after returning from
// a function call and that the address of the structure is in x8
reg_info = reg_ctx->GetRegisterInfoByName("x8", 0);
} else {
// We are assuming we are stopped at the first instruction in a function
// and that the ABI is being respected so all parameters appear where
// they should be (functions with no external linkage can legally violate
// the ABI).
if (NGRN >= 8)
return false;
uint32_t reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + NGRN);
if (reg_num == LLDB_INVALID_REGNUM)
return false;
reg_info = reg_ctx->GetRegisterInfoAtIndex(reg_num);
if (reg_info == nullptr)
return false;
++NGRN;
}
if (reg_info == nullptr)
return false;
const lldb::addr_t value_addr =
reg_ctx->ReadRegisterAsUnsigned(reg_info, LLDB_INVALID_ADDRESS);
if (value_addr == LLDB_INVALID_ADDRESS)
return false;
if (exe_ctx.GetProcessRef().ReadMemory(
value_addr, heap_data_up->GetBytes(), heap_data_up->GetByteSize(),
error) != heap_data_up->GetByteSize()) {
return false;
}
}
data.SetByteOrder(byte_order);
data.SetAddressByteSize(exe_ctx.GetProcessRef().GetAddressByteSize());
data.SetData(DataBufferSP(heap_data_up.release()));
return true;
}
ValueObjectSP ABIMacOSX_arm64::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
ExecutionContext exe_ctx(thread.shared_from_this());
if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr)
return return_valobj_sp;
// value.SetContext (Value::eContextTypeClangType, return_compiler_type);
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (!byte_size)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo(nullptr);
if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
value.SetValueType(Value::ValueType::Scalar);
bool success = false;
if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
// Extract the register context so we can read arguments from registers
if (*byte_size <= 8) {
const RegisterInfo *x0_reg_info =
reg_ctx->GetRegisterInfoByName("x0", 0);
if (x0_reg_info) {
uint64_t raw_value =
thread.GetRegisterContext()->ReadRegisterAsUnsigned(x0_reg_info,
0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (*byte_size) {
default:
break;
case 16: // uint128_t
// In register x0 and x1
{
const RegisterInfo *x1_reg_info =
reg_ctx->GetRegisterInfoByName("x1", 0);
if (x1_reg_info) {
if (*byte_size <=
x0_reg_info->byte_size + x1_reg_info->byte_size) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order =
exe_ctx.GetProcessRef().GetByteOrder();
RegisterValue x0_reg_value;
RegisterValue x1_reg_value;
if (reg_ctx->ReadRegister(x0_reg_info, x0_reg_value) &&
reg_ctx->ReadRegister(x1_reg_info, x1_reg_value)) {
Status error;
if (x0_reg_value.GetAsMemoryData(
x0_reg_info, heap_data_up->GetBytes() + 0, 8,
byte_order, error) &&
x1_reg_value.GetAsMemoryData(
x1_reg_info, heap_data_up->GetBytes() + 8, 8,
byte_order, error)) {
DataExtractor data(
DataBufferSP(heap_data_up.release()), byte_order,
exe_ctx.GetProcessRef().GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
return return_valobj_sp;
}
}
}
}
}
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
}
}
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
// Don't handle complex yet.
} else {
if (*byte_size <= sizeof(long double)) {
const RegisterInfo *v0_reg_info =
reg_ctx->GetRegisterInfoByName("v0", 0);
RegisterValue v0_value;
if (reg_ctx->ReadRegister(v0_reg_info, v0_value)) {
DataExtractor data;
if (v0_value.GetData(data)) {
lldb::offset_t offset = 0;
if (*byte_size == sizeof(float)) {
value.GetScalar() = data.GetFloat(&offset);
success = true;
} else if (*byte_size == sizeof(double)) {
value.GetScalar() = data.GetDouble(&offset);
success = true;
} else if (*byte_size == sizeof(long double)) {
value.GetScalar() = data.GetLongDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsVector) {
if (*byte_size > 0) {
const RegisterInfo *v0_info = reg_ctx->GetRegisterInfoByName("v0", 0);
if (v0_info) {
if (*byte_size <= v0_info->byte_size) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = exe_ctx.GetProcessRef().GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(v0_info, reg_value)) {
Status error;
if (reg_value.GetAsMemoryData(v0_info, heap_data_up->GetBytes(),
heap_data_up->GetByteSize(),
byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
exe_ctx.GetProcessRef().GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
}
}
} else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass) {
DataExtractor data;
uint32_t NGRN = 0; // Search ABI docs for NGRN
uint32_t NSRN = 0; // Search ABI docs for NSRN
const bool is_return_value = true;
if (LoadValueFromConsecutiveGPRRegisters(
exe_ctx, reg_ctx, return_compiler_type, is_return_value, NGRN, NSRN,
data)) {
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
return return_valobj_sp;
}
void ABIMacOSX_arm64::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(), pluginDesc,
CreateInstance);
}
void ABIMacOSX_arm64::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
// PluginInterface protocol
ConstString ABIMacOSX_arm64::GetPluginNameStatic() {
static ConstString g_plugin_name("ABIMacOSX_arm64");
return g_plugin_name;
}
uint32_t ABIMacOSX_arm64::GetPluginVersion() { return 1; }