blob: cfecf35da1ed64ec269b88be611e95919351327a [file] [log] [blame]
//===-- ABISysV_ppc.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABISysV_ppc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(ABISysV_ppc)
enum dwarf_regnums {
dwarf_r0 = 0,
dwarf_r1,
dwarf_r2,
dwarf_r3,
dwarf_r4,
dwarf_r5,
dwarf_r6,
dwarf_r7,
dwarf_r8,
dwarf_r9,
dwarf_r10,
dwarf_r11,
dwarf_r12,
dwarf_r13,
dwarf_r14,
dwarf_r15,
dwarf_r16,
dwarf_r17,
dwarf_r18,
dwarf_r19,
dwarf_r20,
dwarf_r21,
dwarf_r22,
dwarf_r23,
dwarf_r24,
dwarf_r25,
dwarf_r26,
dwarf_r27,
dwarf_r28,
dwarf_r29,
dwarf_r30,
dwarf_r31,
dwarf_f0,
dwarf_f1,
dwarf_f2,
dwarf_f3,
dwarf_f4,
dwarf_f5,
dwarf_f6,
dwarf_f7,
dwarf_f8,
dwarf_f9,
dwarf_f10,
dwarf_f11,
dwarf_f12,
dwarf_f13,
dwarf_f14,
dwarf_f15,
dwarf_f16,
dwarf_f17,
dwarf_f18,
dwarf_f19,
dwarf_f20,
dwarf_f21,
dwarf_f22,
dwarf_f23,
dwarf_f24,
dwarf_f25,
dwarf_f26,
dwarf_f27,
dwarf_f28,
dwarf_f29,
dwarf_f30,
dwarf_f31,
dwarf_cr,
dwarf_fpscr,
dwarf_xer = 101,
dwarf_lr = 108,
dwarf_ctr,
dwarf_pc,
dwarf_cfa,
};
// Note that the size and offset will be updated by platform-specific classes.
#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
{ \
#reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
nullptr, nullptr, nullptr, 0 \
}
static const RegisterInfo g_register_infos[] = {
// General purpose registers. eh_frame, DWARF,
// Generic, Process Plugin
DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r3, "arg1", dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r4, "arg2", dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r5, "arg3", dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r6, "arg4", dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r7, "arg5", dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r8, "arg6", dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r9, "arg7", dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r10, "arg8", dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
LLDB_INVALID_REGNUM),
DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
LLDB_INVALID_REGNUM),
DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
LLDB_INVALID_REGNUM),
{nullptr,
nullptr,
8,
0,
eEncodingUint,
eFormatHex,
{dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0}};
static const uint32_t k_num_register_infos =
llvm::array_lengthof(g_register_infos);
const lldb_private::RegisterInfo *
ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
count = k_num_register_infos;
return g_register_infos;
}
size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
// Static Functions
ABISP
ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
return ABISP(
new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
return ABISP();
}
bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
if (args.size() > 8) // TODO handle more than 8 arguments
return false;
for (size_t i = 0; i < args.size(); ++i) {
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i);
LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// First, align the SP
LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
sp -= 8;
Status error;
const RegisterInfo *pc_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
ProcessSP process_sp(thread.GetProcess());
RegisterValue reg_value;
LLDB_LOGF(log,
"Pushing the return address onto the stack: 0x%" PRIx64
": 0x%" PRIx64,
(uint64_t)sp, (uint64_t)return_addr);
// Save return address onto the stack
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
return false;
// %r1 is set to the actual stack value.
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
return false;
// %pc is set to the address of the called function.
LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
bool is_signed, Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument) {
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 6) {
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend(bit_width);
} else {
uint32_t byte_size = (bit_width + (8 - 1)) / 8;
Status error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
current_stack_argument, byte_size, is_signed, scalar, error)) {
current_stack_argument += byte_size;
return true;
}
return false;
}
return true;
}
bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
unsigned int num_values = values.GetSize();
unsigned int value_index;
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 48; // jump over return address
uint32_t argument_register_ids[8];
argument_register_ids[0] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
->kinds[eRegisterKindLLDB];
argument_register_ids[1] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
->kinds[eRegisterKindLLDB];
argument_register_ids[2] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
->kinds[eRegisterKindLLDB];
argument_register_ids[3] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
->kinds[eRegisterKindLLDB];
argument_register_ids[4] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
->kinds[eRegisterKindLLDB];
argument_register_ids[5] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
->kinds[eRegisterKindLLDB];
argument_register_ids[6] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
->kinds[eRegisterKindLLDB];
argument_register_ids[7] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0; value_index < num_values; ++value_index) {
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// We currently only support extracting values with Clang QualTypes. Do we
// care about others?
CompilerType compiler_type = value->GetCompilerType();
llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
if (!bit_size)
return false;
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType(is_signed))
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
else if (compiler_type.IsPointerType())
ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
}
return true;
}
Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
compiler_type.IsPointerType()) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8) {
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
set_it_simple = true;
} else {
error.SetErrorString("We don't support returning longer than 64 bit "
"integer values at present.");
}
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
if (is_complex)
error.SetErrorString(
"We don't support returning complex values at present");
else {
llvm::Optional<uint64_t> bit_width =
compiler_type.GetBitSize(frame_sp.get());
if (!bit_width) {
error.SetErrorString("can't get type size");
return error;
}
if (*bit_width <= 64) {
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
unsigned char buffer[16];
ByteOrder byte_order = data.GetByteOrder();
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
set_it_simple = true;
} else {
// FIXME - don't know how to do 80 bit long doubles yet.
error.SetErrorString(
"We don't support returning float values > 64 bits at present");
}
}
}
if (!set_it_simple) {
// Okay we've got a structure or something that doesn't fit in a simple
// register. We should figure out where it really goes, but we don't
// support this yet.
error.SetErrorString("We only support setting simple integer and float "
"return types at present.");
}
return error;
}
ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
// value.SetContext (Value::eContextTypeClangType, return_value_type);
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
if (type_flags & eTypeIsScalar) {
value.SetValueType(Value::ValueType::Scalar);
bool success = false;
if (type_flags & eTypeIsInteger) {
// Extract the register context so we can read arguments from registers
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (!byte_size)
return return_valobj_sp;
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
reg_ctx->GetRegisterInfoByName("r3", 0), 0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (*byte_size) {
default:
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
// Don't handle complex yet.
} else {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size <= sizeof(long double)) {
const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
RegisterValue f1_value;
if (reg_ctx->ReadRegister(f1_info, f1_value)) {
DataExtractor data;
if (f1_value.GetData(data)) {
lldb::offset_t offset = 0;
if (*byte_size == sizeof(float)) {
value.GetScalar() = (float)data.GetFloat(&offset);
success = true;
} else if (*byte_size == sizeof(double)) {
value.GetScalar() = (double)data.GetDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsPointer) {
unsigned r3_id =
reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
value.SetValueType(Value::ValueType::Scalar);
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsVector) {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size > 0) {
const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
if (altivec_reg) {
if (*byte_size <= altivec_reg->byte_size) {
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
Status error;
if (reg_value.GetAsMemoryData(
altivec_reg, heap_data_up->GetBytes(),
heap_data_up->GetByteSize(), byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
process_sp->GetTarget()
.GetArchitecture()
.GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
}
}
}
}
return return_valobj_sp;
}
ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
if (!return_compiler_type)
return return_valobj_sp;
ExecutionContext exe_ctx(thread.shared_from_this());
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp)
return return_valobj_sp;
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp)
return return_valobj_sp;
llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
if (!bit_width)
return return_valobj_sp;
if (return_compiler_type.IsAggregateType()) {
Target *target = exe_ctx.GetTargetPtr();
bool is_memory = true;
if (*bit_width <= 128) {
ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp(new DataBufferHeap(16, 0));
DataExtractor return_ext(data_sp, target_byte_order,
target->GetArchitecture().GetAddressByteSize());
const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
const RegisterInfo *rdx_info =
reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
RegisterValue r3_value, rdx_value;
reg_ctx_sp->ReadRegister(r3_info, r3_value);
reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
DataExtractor r3_data, rdx_data;
r3_value.GetData(r3_data);
rdx_value.GetData(rdx_data);
uint32_t fp_bytes =
0; // Tracks how much of the xmm registers we've consumed so far
uint32_t integer_bytes =
0; // Tracks how much of the r3/rds registers we've consumed so far
const uint32_t num_children = return_compiler_type.GetNumFields();
// Since we are in the small struct regime, assume we are not in memory.
is_memory = false;
for (uint32_t idx = 0; idx < num_children; idx++) {
std::string name;
uint64_t field_bit_offset = 0;
bool is_signed;
bool is_complex;
uint32_t count;
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
idx, name, &field_bit_offset, nullptr, nullptr);
llvm::Optional<uint64_t> field_bit_width =
field_compiler_type.GetBitSize(&thread);
if (!field_bit_width)
return return_valobj_sp;
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % *field_bit_width != 0) {
is_memory = true;
break;
}
uint32_t field_byte_width = *field_bit_width / 8;
uint32_t field_byte_offset = field_bit_offset / 8;
DataExtractor *copy_from_extractor = nullptr;
uint32_t copy_from_offset = 0;
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType()) {
if (integer_bytes < 8) {
if (integer_bytes + field_byte_width <= 8) {
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
} else {
// The next field wouldn't fit in the remaining space, so we
// pushed it to rdx.
copy_from_extractor = &rdx_data;
copy_from_offset = 0;
integer_bytes = 8 + field_byte_width;
}
} else if (integer_bytes + field_byte_width <= 16) {
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
} else {
// The last field didn't fit. I can't see how that would happen
// w/o the overall size being greater than 16 bytes. For now,
// return a nullptr return value object.
return return_valobj_sp;
}
} else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
// Structs with long doubles are always passed in memory.
if (*field_bit_width == 128) {
is_memory = true;
break;
} else if (*field_bit_width == 64) {
copy_from_offset = 0;
fp_bytes += field_byte_width;
} else if (*field_bit_width == 32) {
// This one is kind of complicated. If we are in an "eightbyte"
// with another float, we'll be stuffed into an xmm register with
// it. If we are in an "eightbyte" with one or more ints, then we
// will be stuffed into the appropriate GPR with them.
bool in_gpr;
if (field_byte_offset % 8 == 0) {
// We are at the beginning of one of the eightbytes, so check the
// next element (if any)
if (idx == num_children - 1)
in_gpr = false;
else {
uint64_t next_field_bit_offset = 0;
CompilerType next_field_compiler_type =
return_compiler_type.GetFieldAtIndex(idx + 1, name,
&next_field_bit_offset,
nullptr, nullptr);
if (next_field_compiler_type.IsIntegerOrEnumerationType(
is_signed))
in_gpr = true;
else {
copy_from_offset = 0;
in_gpr = false;
}
}
} else if (field_byte_offset % 4 == 0) {
// We are inside of an eightbyte, so see if the field before us
// is floating point: This could happen if somebody put padding
// in the structure.
if (idx == 0)
in_gpr = false;
else {
uint64_t prev_field_bit_offset = 0;
CompilerType prev_field_compiler_type =
return_compiler_type.GetFieldAtIndex(idx - 1, name,
&prev_field_bit_offset,
nullptr, nullptr);
if (prev_field_compiler_type.IsIntegerOrEnumerationType(
is_signed))
in_gpr = true;
else {
copy_from_offset = 4;
in_gpr = false;
}
}
} else {
is_memory = true;
continue;
}
// Okay, we've figured out whether we are in GPR or XMM, now figure
// out which one.
if (in_gpr) {
if (integer_bytes < 8) {
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
} else {
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
}
} else {
fp_bytes += field_byte_width;
}
}
}
// These two tests are just sanity checks. If I somehow get the type
// calculation wrong above it is better to just return nothing than to
// assert or crash.
if (!copy_from_extractor)
return return_valobj_sp;
if (copy_from_offset + field_byte_width >
copy_from_extractor->GetByteSize())
return return_valobj_sp;
copy_from_extractor->CopyByteOrderedData(
copy_from_offset, field_byte_width,
data_sp->GetBytes() + field_byte_offset, field_byte_width,
target_byte_order);
}
if (!is_memory) {
// The result is in our data buffer. Let's make a variable object out
// of it:
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), return_ext);
}
}
// FIXME: This is just taking a guess, r3 may very well no longer hold the
// return storage location.
// If we are going to do this right, when we make a new frame we should
// check to see if it uses a memory return, and if we are at the first
// instruction and if so stash away the return location. Then we would
// only return the memory return value if we know it is valid.
if (is_memory) {
unsigned r3_id =
reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
0);
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
}
}
return return_valobj_sp;
}
bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t lr_reg_num = dwarf_lr;
uint32_t sp_reg_num = dwarf_r1;
uint32_t pc_reg_num = dwarf_pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our Call Frame Address is the stack pointer value
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
// The previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow(row);
// All other registers are the same.
unwind_plan.SetSourceName("ppc at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t sp_reg_num = dwarf_r1;
uint32_t pc_reg_num = dwarf_lr;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 4;
row->SetUnspecifiedRegistersAreUndefined(true);
row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("ppc default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
unwind_plan.SetReturnAddressRegister(dwarf_lr);
return true;
}
bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
return !RegisterIsCalleeSaved(reg_info);
}
// See "Register Usage" in the
// "System V Application Binary Interface"
// "64-bit PowerPC ELF Application Binary Interface Supplement" current version
// is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
// elf64abi-1.9.pdf
bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (reg_info) {
// Preserved registers are :
// r1,r2,r13-r31
// f14-f31 (not yet)
// v20-v31 (not yet)
// vrsave (not yet)
const char *name = reg_info->name;
if (name[0] == 'r') {
if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
return true;
if (name[1] == '1' && name[2] > '2')
return true;
if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
return true;
}
if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
if (name[3] == '1' && name[4] >= '4')
return true;
if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
return true;
}
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
return true;
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
return true;
if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
return true;
}
return false;
}
void ABISysV_ppc::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"System V ABI for ppc targets", CreateInstance);
}
void ABISysV_ppc::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ABISysV_ppc::GetPluginNameStatic() {
static ConstString g_name("sysv-ppc");
return g_name;
}
// PluginInterface protocol
lldb_private::ConstString ABISysV_ppc::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ABISysV_ppc::GetPluginVersion() { return 1; }