blob: 767dc59b67808ed02bf905a4a825988db1cf1303 [file] [log] [blame]
//===-- MachTask.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//----------------------------------------------------------------------
//
// MachTask.cpp
// debugserver
//
// Created by Greg Clayton on 12/5/08.
//
//===----------------------------------------------------------------------===//
#include "MachTask.h"
// C Includes
#include <mach-o/dyld_images.h>
#include <mach/mach_vm.h>
#import <sys/sysctl.h>
#if defined(__APPLE__)
#include <pthread.h>
#include <sched.h>
#endif
// C++ Includes
#include <iomanip>
#include <sstream>
// Other libraries and framework includes
// Project includes
#include "CFUtils.h"
#include "DNB.h"
#include "DNBDataRef.h"
#include "DNBError.h"
#include "DNBLog.h"
#include "MachProcess.h"
#ifdef WITH_SPRINGBOARD
#include <CoreFoundation/CoreFoundation.h>
#include <SpringBoardServices/SBSWatchdogAssertion.h>
#include <SpringBoardServices/SpringBoardServer.h>
#endif
#ifdef WITH_BKS
extern "C" {
#import <BackBoardServices/BKSWatchdogAssertion.h>
#import <BackBoardServices/BackBoardServices.h>
#import <Foundation/Foundation.h>
}
#endif
#include <AvailabilityMacros.h>
#ifdef LLDB_ENERGY
#include <mach/mach_time.h>
#include <pmenergy.h>
#include <pmsample.h>
#endif
extern "C" int
proc_get_cpumon_params(pid_t pid, int *percentage,
int *interval); // <libproc_internal.h> SPI
//----------------------------------------------------------------------
// MachTask constructor
//----------------------------------------------------------------------
MachTask::MachTask(MachProcess *process)
: m_process(process), m_task(TASK_NULL), m_vm_memory(),
m_exception_thread(0), m_exception_port(MACH_PORT_NULL),
m_exec_will_be_suspended(false), m_do_double_resume(false) {
memset(&m_exc_port_info, 0, sizeof(m_exc_port_info));
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
MachTask::~MachTask() { Clear(); }
//----------------------------------------------------------------------
// MachTask::Suspend
//----------------------------------------------------------------------
kern_return_t MachTask::Suspend() {
DNBError err;
task_t task = TaskPort();
err = ::task_suspend(task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::task_suspend ( target_task = 0x%4.4x )", task);
return err.Status();
}
//----------------------------------------------------------------------
// MachTask::Resume
//----------------------------------------------------------------------
kern_return_t MachTask::Resume() {
struct task_basic_info task_info;
task_t task = TaskPort();
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
DNBError err;
err = BasicInfo(task, &task_info);
if (err.Success()) {
if (m_do_double_resume && task_info.suspend_count == 2) {
err = ::task_resume(task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::task_resume double-resume after exec-start-stopped "
"( target_task = 0x%4.4x )", task);
}
m_do_double_resume = false;
// task_resume isn't counted like task_suspend calls are, are, so if the
// task is not suspended, don't try and resume it since it is already
// running
if (task_info.suspend_count > 0) {
err = ::task_resume(task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::task_resume ( target_task = 0x%4.4x )", task);
}
}
return err.Status();
}
//----------------------------------------------------------------------
// MachTask::ExceptionPort
//----------------------------------------------------------------------
mach_port_t MachTask::ExceptionPort() const { return m_exception_port; }
//----------------------------------------------------------------------
// MachTask::ExceptionPortIsValid
//----------------------------------------------------------------------
bool MachTask::ExceptionPortIsValid() const {
return MACH_PORT_VALID(m_exception_port);
}
//----------------------------------------------------------------------
// MachTask::Clear
//----------------------------------------------------------------------
void MachTask::Clear() {
// Do any cleanup needed for this task
m_task = TASK_NULL;
m_exception_thread = 0;
m_exception_port = MACH_PORT_NULL;
m_exec_will_be_suspended = false;
m_do_double_resume = false;
}
//----------------------------------------------------------------------
// MachTask::SaveExceptionPortInfo
//----------------------------------------------------------------------
kern_return_t MachTask::SaveExceptionPortInfo() {
return m_exc_port_info.Save(TaskPort());
}
//----------------------------------------------------------------------
// MachTask::RestoreExceptionPortInfo
//----------------------------------------------------------------------
kern_return_t MachTask::RestoreExceptionPortInfo() {
return m_exc_port_info.Restore(TaskPort());
}
//----------------------------------------------------------------------
// MachTask::ReadMemory
//----------------------------------------------------------------------
nub_size_t MachTask::ReadMemory(nub_addr_t addr, nub_size_t size, void *buf) {
nub_size_t n = 0;
task_t task = TaskPort();
if (task != TASK_NULL) {
n = m_vm_memory.Read(task, addr, buf, size);
DNBLogThreadedIf(LOG_MEMORY, "MachTask::ReadMemory ( addr = 0x%8.8llx, "
"size = %llu, buf = %p) => %llu bytes read",
(uint64_t)addr, (uint64_t)size, buf, (uint64_t)n);
if (DNBLogCheckLogBit(LOG_MEMORY_DATA_LONG) ||
(DNBLogCheckLogBit(LOG_MEMORY_DATA_SHORT) && size <= 8)) {
DNBDataRef data((uint8_t *)buf, n, false);
data.Dump(0, static_cast<DNBDataRef::offset_t>(n), addr,
DNBDataRef::TypeUInt8, 16);
}
}
return n;
}
//----------------------------------------------------------------------
// MachTask::WriteMemory
//----------------------------------------------------------------------
nub_size_t MachTask::WriteMemory(nub_addr_t addr, nub_size_t size,
const void *buf) {
nub_size_t n = 0;
task_t task = TaskPort();
if (task != TASK_NULL) {
n = m_vm_memory.Write(task, addr, buf, size);
DNBLogThreadedIf(LOG_MEMORY, "MachTask::WriteMemory ( addr = 0x%8.8llx, "
"size = %llu, buf = %p) => %llu bytes written",
(uint64_t)addr, (uint64_t)size, buf, (uint64_t)n);
if (DNBLogCheckLogBit(LOG_MEMORY_DATA_LONG) ||
(DNBLogCheckLogBit(LOG_MEMORY_DATA_SHORT) && size <= 8)) {
DNBDataRef data((const uint8_t *)buf, n, false);
data.Dump(0, static_cast<DNBDataRef::offset_t>(n), addr,
DNBDataRef::TypeUInt8, 16);
}
}
return n;
}
//----------------------------------------------------------------------
// MachTask::MemoryRegionInfo
//----------------------------------------------------------------------
int MachTask::GetMemoryRegionInfo(nub_addr_t addr, DNBRegionInfo *region_info) {
task_t task = TaskPort();
if (task == TASK_NULL)
return -1;
int ret = m_vm_memory.GetMemoryRegionInfo(task, addr, region_info);
DNBLogThreadedIf(LOG_MEMORY, "MachTask::MemoryRegionInfo ( addr = 0x%8.8llx "
") => %i (start = 0x%8.8llx, size = 0x%8.8llx, "
"permissions = %u)",
(uint64_t)addr, ret, (uint64_t)region_info->addr,
(uint64_t)region_info->size, region_info->permissions);
return ret;
}
#define TIME_VALUE_TO_TIMEVAL(a, r) \
do { \
(r)->tv_sec = (a)->seconds; \
(r)->tv_usec = (a)->microseconds; \
} while (0)
// We should consider moving this into each MacThread.
static void get_threads_profile_data(DNBProfileDataScanType scanType,
task_t task, nub_process_t pid,
std::vector<uint64_t> &threads_id,
std::vector<std::string> &threads_name,
std::vector<uint64_t> &threads_used_usec) {
kern_return_t kr;
thread_act_array_t threads;
mach_msg_type_number_t tcnt;
kr = task_threads(task, &threads, &tcnt);
if (kr != KERN_SUCCESS)
return;
for (mach_msg_type_number_t i = 0; i < tcnt; i++) {
thread_identifier_info_data_t identifier_info;
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
kr = ::thread_info(threads[i], THREAD_IDENTIFIER_INFO,
(thread_info_t)&identifier_info, &count);
if (kr != KERN_SUCCESS)
continue;
thread_basic_info_data_t basic_info;
count = THREAD_BASIC_INFO_COUNT;
kr = ::thread_info(threads[i], THREAD_BASIC_INFO,
(thread_info_t)&basic_info, &count);
if (kr != KERN_SUCCESS)
continue;
if ((basic_info.flags & TH_FLAGS_IDLE) == 0) {
nub_thread_t tid =
MachThread::GetGloballyUniqueThreadIDForMachPortID(threads[i]);
threads_id.push_back(tid);
if ((scanType & eProfileThreadName) &&
(identifier_info.thread_handle != 0)) {
struct proc_threadinfo proc_threadinfo;
int len = ::proc_pidinfo(pid, PROC_PIDTHREADINFO,
identifier_info.thread_handle,
&proc_threadinfo, PROC_PIDTHREADINFO_SIZE);
if (len && proc_threadinfo.pth_name[0]) {
threads_name.push_back(proc_threadinfo.pth_name);
} else {
threads_name.push_back("");
}
} else {
threads_name.push_back("");
}
struct timeval tv;
struct timeval thread_tv;
TIME_VALUE_TO_TIMEVAL(&basic_info.user_time, &thread_tv);
TIME_VALUE_TO_TIMEVAL(&basic_info.system_time, &tv);
timeradd(&thread_tv, &tv, &thread_tv);
uint64_t used_usec = thread_tv.tv_sec * 1000000ULL + thread_tv.tv_usec;
threads_used_usec.push_back(used_usec);
}
mach_port_deallocate(mach_task_self(), threads[i]);
}
mach_vm_deallocate(mach_task_self(), (mach_vm_address_t)(uintptr_t)threads,
tcnt * sizeof(*threads));
}
#define RAW_HEXBASE std::setfill('0') << std::hex << std::right
#define DECIMAL std::dec << std::setfill(' ')
std::string MachTask::GetProfileData(DNBProfileDataScanType scanType) {
std::string result;
static int32_t numCPU = -1;
struct host_cpu_load_info host_info;
if (scanType & eProfileHostCPU) {
int32_t mib[] = {CTL_HW, HW_AVAILCPU};
size_t len = sizeof(numCPU);
if (numCPU == -1) {
if (sysctl(mib, sizeof(mib) / sizeof(int32_t), &numCPU, &len, NULL, 0) !=
0)
return result;
}
mach_port_t localHost = mach_host_self();
mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT;
kern_return_t kr = host_statistics(localHost, HOST_CPU_LOAD_INFO,
(host_info_t)&host_info, &count);
if (kr != KERN_SUCCESS)
return result;
}
task_t task = TaskPort();
if (task == TASK_NULL)
return result;
pid_t pid = m_process->ProcessID();
struct task_basic_info task_info;
DNBError err;
err = BasicInfo(task, &task_info);
if (!err.Success())
return result;
uint64_t elapsed_usec = 0;
uint64_t task_used_usec = 0;
if (scanType & eProfileCPU) {
// Get current used time.
struct timeval current_used_time;
struct timeval tv;
TIME_VALUE_TO_TIMEVAL(&task_info.user_time, &current_used_time);
TIME_VALUE_TO_TIMEVAL(&task_info.system_time, &tv);
timeradd(&current_used_time, &tv, &current_used_time);
task_used_usec =
current_used_time.tv_sec * 1000000ULL + current_used_time.tv_usec;
struct timeval current_elapsed_time;
int res = gettimeofday(&current_elapsed_time, NULL);
if (res == 0) {
elapsed_usec = current_elapsed_time.tv_sec * 1000000ULL +
current_elapsed_time.tv_usec;
}
}
std::vector<uint64_t> threads_id;
std::vector<std::string> threads_name;
std::vector<uint64_t> threads_used_usec;
if (scanType & eProfileThreadsCPU) {
get_threads_profile_data(scanType, task, pid, threads_id, threads_name,
threads_used_usec);
}
vm_statistics64_data_t vminfo;
uint64_t physical_memory = 0;
uint64_t anonymous = 0;
uint64_t phys_footprint = 0;
uint64_t memory_cap = 0;
if (m_vm_memory.GetMemoryProfile(scanType, task, task_info,
m_process->GetCPUType(), pid, vminfo,
physical_memory, anonymous,
phys_footprint, memory_cap)) {
std::ostringstream profile_data_stream;
if (scanType & eProfileHostCPU) {
profile_data_stream << "num_cpu:" << numCPU << ';';
profile_data_stream << "host_user_ticks:"
<< host_info.cpu_ticks[CPU_STATE_USER] << ';';
profile_data_stream << "host_sys_ticks:"
<< host_info.cpu_ticks[CPU_STATE_SYSTEM] << ';';
profile_data_stream << "host_idle_ticks:"
<< host_info.cpu_ticks[CPU_STATE_IDLE] << ';';
}
if (scanType & eProfileCPU) {
profile_data_stream << "elapsed_usec:" << elapsed_usec << ';';
profile_data_stream << "task_used_usec:" << task_used_usec << ';';
}
if (scanType & eProfileThreadsCPU) {
const size_t num_threads = threads_id.size();
for (size_t i = 0; i < num_threads; i++) {
profile_data_stream << "thread_used_id:" << std::hex << threads_id[i]
<< std::dec << ';';
profile_data_stream << "thread_used_usec:" << threads_used_usec[i]
<< ';';
if (scanType & eProfileThreadName) {
profile_data_stream << "thread_used_name:";
const size_t len = threads_name[i].size();
if (len) {
const char *thread_name = threads_name[i].c_str();
// Make sure that thread name doesn't interfere with our delimiter.
profile_data_stream << RAW_HEXBASE << std::setw(2);
const uint8_t *ubuf8 = (const uint8_t *)(thread_name);
for (size_t j = 0; j < len; j++) {
profile_data_stream << (uint32_t)(ubuf8[j]);
}
// Reset back to DECIMAL.
profile_data_stream << DECIMAL;
}
profile_data_stream << ';';
}
}
}
if (scanType & eProfileHostMemory)
profile_data_stream << "total:" << physical_memory << ';';
if (scanType & eProfileMemory) {
static vm_size_t pagesize = vm_kernel_page_size;
// This mimicks Activity Monitor.
uint64_t total_used_count =
(physical_memory / pagesize) -
(vminfo.free_count - vminfo.speculative_count) -
vminfo.external_page_count - vminfo.purgeable_count;
profile_data_stream << "used:" << total_used_count * pagesize << ';';
if (scanType & eProfileMemoryAnonymous) {
profile_data_stream << "anonymous:" << anonymous << ';';
}
profile_data_stream << "phys_footprint:" << phys_footprint << ';';
}
if (scanType & eProfileMemoryCap) {
profile_data_stream << "mem_cap:" << memory_cap << ';';
}
#ifdef LLDB_ENERGY
if (scanType & eProfileEnergy) {
struct rusage_info_v2 info;
int rc = proc_pid_rusage(pid, RUSAGE_INFO_V2, (rusage_info_t *)&info);
if (rc == 0) {
uint64_t now = mach_absolute_time();
pm_task_energy_data_t pm_energy;
memset(&pm_energy, 0, sizeof(pm_energy));
/*
* Disable most features of pm_sample_pid. It will gather
* network/GPU/WindowServer information; fill in the rest.
*/
pm_sample_task_and_pid(task, pid, &pm_energy, now,
PM_SAMPLE_ALL & ~PM_SAMPLE_NAME &
~PM_SAMPLE_INTERVAL & ~PM_SAMPLE_CPU &
~PM_SAMPLE_DISK);
pm_energy.sti.total_user = info.ri_user_time;
pm_energy.sti.total_system = info.ri_system_time;
pm_energy.sti.task_interrupt_wakeups = info.ri_interrupt_wkups;
pm_energy.sti.task_platform_idle_wakeups = info.ri_pkg_idle_wkups;
pm_energy.diskio_bytesread = info.ri_diskio_bytesread;
pm_energy.diskio_byteswritten = info.ri_diskio_byteswritten;
pm_energy.pageins = info.ri_pageins;
uint64_t total_energy =
(uint64_t)(pm_energy_impact(&pm_energy) * NSEC_PER_SEC);
// uint64_t process_age = now - info.ri_proc_start_abstime;
// uint64_t avg_energy = 100.0 * (double)total_energy /
// (double)process_age;
profile_data_stream << "energy:" << total_energy << ';';
}
}
#endif
if (scanType & eProfileEnergyCPUCap) {
int percentage = -1;
int interval = -1;
int result = proc_get_cpumon_params(pid, &percentage, &interval);
if ((result == 0) && (percentage >= 0) && (interval >= 0)) {
profile_data_stream << "cpu_cap_p:" << percentage << ';';
profile_data_stream << "cpu_cap_t:" << interval << ';';
}
}
profile_data_stream << "--end--;";
result = profile_data_stream.str();
}
return result;
}
//----------------------------------------------------------------------
// MachTask::TaskPortForProcessID
//----------------------------------------------------------------------
task_t MachTask::TaskPortForProcessID(DNBError &err, bool force) {
if (((m_task == TASK_NULL) || force) && m_process != NULL)
m_task = MachTask::TaskPortForProcessID(m_process->ProcessID(), err);
return m_task;
}
//----------------------------------------------------------------------
// MachTask::TaskPortForProcessID
//----------------------------------------------------------------------
task_t MachTask::TaskPortForProcessID(pid_t pid, DNBError &err,
uint32_t num_retries,
uint32_t usec_interval) {
if (pid != INVALID_NUB_PROCESS) {
DNBError err;
mach_port_t task_self = mach_task_self();
task_t task = TASK_NULL;
for (uint32_t i = 0; i < num_retries; i++) {
DNBLog("[LaunchAttach] (%d) about to task_for_pid(%d)", getpid(), pid);
err = ::task_for_pid(task_self, pid, &task);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail()) {
char str[1024];
::snprintf(str, sizeof(str), "::task_for_pid ( target_tport = 0x%4.4x, "
"pid = %d, &task ) => err = 0x%8.8x (%s)",
task_self, pid, err.Status(),
err.AsString() ? err.AsString() : "success");
if (err.Fail()) {
err.SetErrorString(str);
DNBLogError(
"[LaunchAttach] MachTask::TaskPortForProcessID task_for_pid(%d) "
"failed: %s",
pid, str);
}
err.LogThreaded(str);
}
if (err.Success()) {
DNBLog("[LaunchAttach] (%d) successfully task_for_pid(%d)'ed", getpid(),
pid);
return task;
}
// Sleep a bit and try again
::usleep(usec_interval);
}
}
return TASK_NULL;
}
//----------------------------------------------------------------------
// MachTask::BasicInfo
//----------------------------------------------------------------------
kern_return_t MachTask::BasicInfo(struct task_basic_info *info) {
return BasicInfo(TaskPort(), info);
}
//----------------------------------------------------------------------
// MachTask::BasicInfo
//----------------------------------------------------------------------
kern_return_t MachTask::BasicInfo(task_t task, struct task_basic_info *info) {
if (info == NULL)
return KERN_INVALID_ARGUMENT;
DNBError err;
mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT;
err = ::task_info(task, TASK_BASIC_INFO, (task_info_t)info, &count);
const bool log_process = DNBLogCheckLogBit(LOG_TASK);
if (log_process || err.Fail())
err.LogThreaded("::task_info ( target_task = 0x%4.4x, flavor = "
"TASK_BASIC_INFO, task_info_out => %p, task_info_outCnt => "
"%u )",
task, info, count);
if (DNBLogCheckLogBit(LOG_TASK) && DNBLogCheckLogBit(LOG_VERBOSE) &&
err.Success()) {
float user = (float)info->user_time.seconds +
(float)info->user_time.microseconds / 1000000.0f;
float system = (float)info->user_time.seconds +
(float)info->user_time.microseconds / 1000000.0f;
DNBLogThreaded("task_basic_info = { suspend_count = %i, virtual_size = "
"0x%8.8llx, resident_size = 0x%8.8llx, user_time = %f, "
"system_time = %f }",
info->suspend_count, (uint64_t)info->virtual_size,
(uint64_t)info->resident_size, user, system);
}
return err.Status();
}
//----------------------------------------------------------------------
// MachTask::IsValid
//
// Returns true if a task is a valid task port for a current process.
//----------------------------------------------------------------------
bool MachTask::IsValid() const { return MachTask::IsValid(TaskPort()); }
//----------------------------------------------------------------------
// MachTask::IsValid
//
// Returns true if a task is a valid task port for a current process.
//----------------------------------------------------------------------
bool MachTask::IsValid(task_t task) {
if (task != TASK_NULL) {
struct task_basic_info task_info;
return BasicInfo(task, &task_info) == KERN_SUCCESS;
}
return false;
}
bool MachTask::StartExceptionThread(bool unmask_signals, DNBError &err) {
DNBLogThreadedIf(LOG_EXCEPTIONS, "MachTask::%s ( )", __FUNCTION__);
task_t task = TaskPortForProcessID(err);
if (MachTask::IsValid(task)) {
// Got the mach port for the current process
mach_port_t task_self = mach_task_self();
// Allocate an exception port that we will use to track our child process
err = ::mach_port_allocate(task_self, MACH_PORT_RIGHT_RECEIVE,
&m_exception_port);
if (err.Fail())
return false;
// Add the ability to send messages on the new exception port
err = ::mach_port_insert_right(task_self, m_exception_port,
m_exception_port, MACH_MSG_TYPE_MAKE_SEND);
if (err.Fail())
return false;
// Save the original state of the exception ports for our child process
SaveExceptionPortInfo();
// We weren't able to save the info for our exception ports, we must stop...
if (m_exc_port_info.mask == 0) {
err.SetErrorString("failed to get exception port info");
return false;
}
if (unmask_signals) {
m_exc_port_info.mask = m_exc_port_info.mask &
~(EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION |
EXC_MASK_ARITHMETIC);
}
// Set the ability to get all exceptions on this port
err = ::task_set_exception_ports(
task, m_exc_port_info.mask, m_exception_port,
EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES, THREAD_STATE_NONE);
if (DNBLogCheckLogBit(LOG_EXCEPTIONS) || err.Fail()) {
err.LogThreaded("::task_set_exception_ports ( task = 0x%4.4x, "
"exception_mask = 0x%8.8x, new_port = 0x%4.4x, behavior "
"= 0x%8.8x, new_flavor = 0x%8.8x )",
task, m_exc_port_info.mask, m_exception_port,
(EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES),
THREAD_STATE_NONE);
}
if (err.Fail())
return false;
// Create the exception thread
err = ::pthread_create(&m_exception_thread, NULL, MachTask::ExceptionThread,
this);
return err.Success();
} else {
DNBLogError("MachTask::%s (): task invalid, exception thread start failed.",
__FUNCTION__);
}
return false;
}
kern_return_t MachTask::ShutDownExcecptionThread() {
DNBError err;
err = RestoreExceptionPortInfo();
// NULL our our exception port and let our exception thread exit
mach_port_t exception_port = m_exception_port;
m_exception_port = 0;
err.SetError(::pthread_cancel(m_exception_thread), DNBError::POSIX);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::pthread_cancel ( thread = %p )", m_exception_thread);
err.SetError(::pthread_join(m_exception_thread, NULL), DNBError::POSIX);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::pthread_join ( thread = %p, value_ptr = NULL)",
m_exception_thread);
// Deallocate our exception port that we used to track our child process
mach_port_t task_self = mach_task_self();
err = ::mach_port_deallocate(task_self, exception_port);
if (DNBLogCheckLogBit(LOG_TASK) || err.Fail())
err.LogThreaded("::mach_port_deallocate ( task = 0x%4.4x, name = 0x%4.4x )",
task_self, exception_port);
m_exec_will_be_suspended = false;
m_do_double_resume = false;
return err.Status();
}
void *MachTask::ExceptionThread(void *arg) {
if (arg == NULL)
return NULL;
MachTask *mach_task = (MachTask *)arg;
MachProcess *mach_proc = mach_task->Process();
DNBLogThreadedIf(LOG_EXCEPTIONS,
"MachTask::%s ( arg = %p ) starting thread...", __FUNCTION__,
arg);
#if defined(__APPLE__)
pthread_setname_np("exception monitoring thread");
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
struct sched_param thread_param;
int thread_sched_policy;
if (pthread_getschedparam(pthread_self(), &thread_sched_policy,
&thread_param) == 0) {
thread_param.sched_priority = 47;
pthread_setschedparam(pthread_self(), thread_sched_policy, &thread_param);
}
#endif
#endif
// We keep a count of the number of consecutive exceptions received so
// we know to grab all exceptions without a timeout. We do this to get a
// bunch of related exceptions on our exception port so we can process
// then together. When we have multiple threads, we can get an exception
// per thread and they will come in consecutively. The main loop in this
// thread can stop periodically if needed to service things related to this
// process.
// flag set in the options, so we will wait forever for an exception on
// our exception port. After we get one exception, we then will use the
// MACH_RCV_TIMEOUT option with a zero timeout to grab all other current
// exceptions for our process. After we have received the last pending
// exception, we will get a timeout which enables us to then notify
// our main thread that we have an exception bundle available. We then wait
// for the main thread to tell this exception thread to start trying to get
// exceptions messages again and we start again with a mach_msg read with
// infinite timeout.
uint32_t num_exceptions_received = 0;
DNBError err;
task_t task = mach_task->TaskPort();
mach_msg_timeout_t periodic_timeout = 0;
#if defined(WITH_SPRINGBOARD) && !defined(WITH_BKS)
mach_msg_timeout_t watchdog_elapsed = 0;
mach_msg_timeout_t watchdog_timeout = 60 * 1000;
pid_t pid = mach_proc->ProcessID();
CFReleaser<SBSWatchdogAssertionRef> watchdog;
if (mach_proc->ProcessUsingSpringBoard()) {
// Request a renewal for every 60 seconds if we attached using SpringBoard
watchdog.reset(::SBSWatchdogAssertionCreateForPID(NULL, pid, 60));
DNBLogThreadedIf(
LOG_TASK, "::SBSWatchdogAssertionCreateForPID (NULL, %4.4x, 60 ) => %p",
pid, watchdog.get());
if (watchdog.get()) {
::SBSWatchdogAssertionRenew(watchdog.get());
CFTimeInterval watchdogRenewalInterval =
::SBSWatchdogAssertionGetRenewalInterval(watchdog.get());
DNBLogThreadedIf(
LOG_TASK,
"::SBSWatchdogAssertionGetRenewalInterval ( %p ) => %g seconds",
watchdog.get(), watchdogRenewalInterval);
if (watchdogRenewalInterval > 0.0) {
watchdog_timeout = (mach_msg_timeout_t)watchdogRenewalInterval * 1000;
if (watchdog_timeout > 3000)
watchdog_timeout -= 1000; // Give us a second to renew our timeout
else if (watchdog_timeout > 1000)
watchdog_timeout -=
250; // Give us a quarter of a second to renew our timeout
}
}
if (periodic_timeout == 0 || periodic_timeout > watchdog_timeout)
periodic_timeout = watchdog_timeout;
}
#endif // #if defined (WITH_SPRINGBOARD) && !defined (WITH_BKS)
#ifdef WITH_BKS
CFReleaser<BKSWatchdogAssertionRef> watchdog;
if (mach_proc->ProcessUsingBackBoard()) {
pid_t pid = mach_proc->ProcessID();
CFAllocatorRef alloc = kCFAllocatorDefault;
watchdog.reset(::BKSWatchdogAssertionCreateForPID(alloc, pid));
}
#endif // #ifdef WITH_BKS
while (mach_task->ExceptionPortIsValid()) {
::pthread_testcancel();
MachException::Message exception_message;
if (num_exceptions_received > 0) {
// No timeout, just receive as many exceptions as we can since we already
// have one and we want
// to get all currently available exceptions for this task
err = exception_message.Receive(
mach_task->ExceptionPort(),
MACH_RCV_MSG | MACH_RCV_INTERRUPT | MACH_RCV_TIMEOUT, 1);
} else if (periodic_timeout > 0) {
// We need to stop periodically in this loop, so try and get a mach
// message with a valid timeout (ms)
err = exception_message.Receive(mach_task->ExceptionPort(),
MACH_RCV_MSG | MACH_RCV_INTERRUPT |
MACH_RCV_TIMEOUT,
periodic_timeout);
} else {
// We don't need to parse all current exceptions or stop periodically,
// just wait for an exception forever.
err = exception_message.Receive(mach_task->ExceptionPort(),
MACH_RCV_MSG | MACH_RCV_INTERRUPT, 0);
}
if (err.Status() == MACH_RCV_INTERRUPTED) {
// If we have no task port we should exit this thread
if (!mach_task->ExceptionPortIsValid()) {
DNBLogThreadedIf(LOG_EXCEPTIONS, "thread cancelled...");
break;
}
// Make sure our task is still valid
if (MachTask::IsValid(task)) {
// Task is still ok
DNBLogThreadedIf(LOG_EXCEPTIONS,
"interrupted, but task still valid, continuing...");
continue;
} else {
DNBLogThreadedIf(LOG_EXCEPTIONS, "task has exited...");
mach_proc->SetState(eStateExited);
// Our task has died, exit the thread.
break;
}
} else if (err.Status() == MACH_RCV_TIMED_OUT) {
if (num_exceptions_received > 0) {
// We were receiving all current exceptions with a timeout of zero
// it is time to go back to our normal looping mode
num_exceptions_received = 0;
// Notify our main thread we have a complete exception message
// bundle available and get the possibly updated task port back
// from the process in case we exec'ed and our task port changed
task = mach_proc->ExceptionMessageBundleComplete();
// in case we use a timeout value when getting exceptions...
// Make sure our task is still valid
if (MachTask::IsValid(task)) {
// Task is still ok
DNBLogThreadedIf(LOG_EXCEPTIONS, "got a timeout, continuing...");
continue;
} else {
DNBLogThreadedIf(LOG_EXCEPTIONS, "task has exited...");
mach_proc->SetState(eStateExited);
// Our task has died, exit the thread.
break;
}
}
#if defined(WITH_SPRINGBOARD) && !defined(WITH_BKS)
if (watchdog.get()) {
watchdog_elapsed += periodic_timeout;
if (watchdog_elapsed >= watchdog_timeout) {
DNBLogThreadedIf(LOG_TASK, "SBSWatchdogAssertionRenew ( %p )",
watchdog.get());
::SBSWatchdogAssertionRenew(watchdog.get());
watchdog_elapsed = 0;
}
}
#endif
} else if (err.Status() != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_EXCEPTIONS, "got some other error, do something "
"about it??? nah, continuing for "
"now...");
// TODO: notify of error?
} else {
if (exception_message.CatchExceptionRaise(task)) {
if (exception_message.state.task_port != task) {
if (exception_message.state.IsValid()) {
// We exec'ed and our task port changed on us.
DNBLogThreadedIf(LOG_EXCEPTIONS,
"task port changed from 0x%4.4x to 0x%4.4x",
task, exception_message.state.task_port);
task = exception_message.state.task_port;
mach_task->TaskPortChanged(exception_message.state.task_port);
}
}
++num_exceptions_received;
mach_proc->ExceptionMessageReceived(exception_message);
}
}
}
#if defined(WITH_SPRINGBOARD) && !defined(WITH_BKS)
if (watchdog.get()) {
// TODO: change SBSWatchdogAssertionRelease to SBSWatchdogAssertionCancel
// when we
// all are up and running on systems that support it. The SBS framework has
// a #define
// that will forward SBSWatchdogAssertionRelease to
// SBSWatchdogAssertionCancel for now
// so it should still build either way.
DNBLogThreadedIf(LOG_TASK, "::SBSWatchdogAssertionRelease(%p)",
watchdog.get());
::SBSWatchdogAssertionRelease(watchdog.get());
}
#endif // #if defined (WITH_SPRINGBOARD) && !defined (WITH_BKS)
DNBLogThreadedIf(LOG_EXCEPTIONS, "MachTask::%s (%p): thread exiting...",
__FUNCTION__, arg);
return NULL;
}
// So the TASK_DYLD_INFO used to just return the address of the all image infos
// as a single member called "all_image_info". Then someone decided it would be
// a good idea to rename this first member to "all_image_info_addr" and add a
// size member called "all_image_info_size". This of course can not be detected
// using code or #defines. So to hack around this problem, we define our own
// version of the TASK_DYLD_INFO structure so we can guarantee what is inside
// it.
struct hack_task_dyld_info {
mach_vm_address_t all_image_info_addr;
mach_vm_size_t all_image_info_size;
};
nub_addr_t MachTask::GetDYLDAllImageInfosAddress(DNBError &err) {
struct hack_task_dyld_info dyld_info;
mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT;
// Make sure that COUNT isn't bigger than our hacked up struct
// hack_task_dyld_info.
// If it is, then make COUNT smaller to match.
if (count > (sizeof(struct hack_task_dyld_info) / sizeof(natural_t)))
count = (sizeof(struct hack_task_dyld_info) / sizeof(natural_t));
task_t task = TaskPortForProcessID(err);
if (err.Success()) {
err = ::task_info(task, TASK_DYLD_INFO, (task_info_t)&dyld_info, &count);
if (err.Success()) {
// We now have the address of the all image infos structure
return dyld_info.all_image_info_addr;
}
}
return INVALID_NUB_ADDRESS;
}
//----------------------------------------------------------------------
// MachTask::AllocateMemory
//----------------------------------------------------------------------
nub_addr_t MachTask::AllocateMemory(size_t size, uint32_t permissions) {
mach_vm_address_t addr;
task_t task = TaskPort();
if (task == TASK_NULL)
return INVALID_NUB_ADDRESS;
DNBError err;
err = ::mach_vm_allocate(task, &addr, size, TRUE);
if (err.Status() == KERN_SUCCESS) {
// Set the protections:
vm_prot_t mach_prot = VM_PROT_NONE;
if (permissions & eMemoryPermissionsReadable)
mach_prot |= VM_PROT_READ;
if (permissions & eMemoryPermissionsWritable)
mach_prot |= VM_PROT_WRITE;
if (permissions & eMemoryPermissionsExecutable)
mach_prot |= VM_PROT_EXECUTE;
err = ::mach_vm_protect(task, addr, size, 0, mach_prot);
if (err.Status() == KERN_SUCCESS) {
m_allocations.insert(std::make_pair(addr, size));
return addr;
}
::mach_vm_deallocate(task, addr, size);
}
return INVALID_NUB_ADDRESS;
}
//----------------------------------------------------------------------
// MachTask::DeallocateMemory
//----------------------------------------------------------------------
nub_bool_t MachTask::DeallocateMemory(nub_addr_t addr) {
task_t task = TaskPort();
if (task == TASK_NULL)
return false;
// We have to stash away sizes for the allocations...
allocation_collection::iterator pos, end = m_allocations.end();
for (pos = m_allocations.begin(); pos != end; pos++) {
if ((*pos).first == addr) {
size_t size = (*pos).second;
m_allocations.erase(pos);
#define ALWAYS_ZOMBIE_ALLOCATIONS 0
if (ALWAYS_ZOMBIE_ALLOCATIONS ||
getenv("DEBUGSERVER_ZOMBIE_ALLOCATIONS")) {
::mach_vm_protect(task, addr, size, 0, VM_PROT_NONE);
return true;
} else
return ::mach_vm_deallocate(task, addr, size) == KERN_SUCCESS;
}
}
return false;
}
void MachTask::TaskPortChanged(task_t task)
{
m_task = task;
// If we've just exec'd to a new process, and it
// is started suspended, we'll need to do two
// task_resume's to get the inferior process to
// continue.
if (m_exec_will_be_suspended)
m_do_double_resume = true;
else
m_do_double_resume = false;
m_exec_will_be_suspended = false;
}