blob: e26515789d0f58b4ba8506e4551a3940ba824d67 [file] [log] [blame]
//===-- TypeSystemClang.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TypeSystemClang.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
#include <mutex>
#include <string>
#include <vector>
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTImporter.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Sema/Sema.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Threading.h"
#include "Plugins/ExpressionParser/Clang/ClangASTImporter.h"
#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
#include "Plugins/ExpressionParser/Clang/ClangExternalASTSourceCallbacks.h"
#include "Plugins/ExpressionParser/Clang/ClangFunctionCaller.h"
#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
#include "Plugins/ExpressionParser/Clang/ClangUserExpression.h"
#include "Plugins/ExpressionParser/Clang/ClangUtil.h"
#include "Plugins/ExpressionParser/Clang/ClangUtilityFunction.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/Flags.h"
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/ThreadSafeDenseMap.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Scalar.h"
#include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
#include "Plugins/SymbolFile/DWARF/DWARFASTParserClang.h"
#include "Plugins/SymbolFile/PDB/PDBASTParser.h"
#include <stdio.h>
#include <mutex>
using namespace lldb;
using namespace lldb_private;
using namespace clang;
using llvm::StringSwitch;
LLDB_PLUGIN_DEFINE(TypeSystemClang)
namespace {
static void VerifyDecl(clang::Decl *decl) {
assert(decl && "VerifyDecl called with nullptr?");
#ifndef NDEBUG
// We don't care about the actual access value here but only want to trigger
// that Clang calls its internal Decl::AccessDeclContextSanity check.
decl->getAccess();
#endif
}
static inline bool
TypeSystemClangSupportsLanguage(lldb::LanguageType language) {
return language == eLanguageTypeUnknown || // Clang is the default type system
lldb_private::Language::LanguageIsC(language) ||
lldb_private::Language::LanguageIsCPlusPlus(language) ||
lldb_private::Language::LanguageIsObjC(language) ||
lldb_private::Language::LanguageIsPascal(language) ||
// Use Clang for Rust until there is a proper language plugin for it
language == eLanguageTypeRust ||
language == eLanguageTypeExtRenderScript ||
// Use Clang for D until there is a proper language plugin for it
language == eLanguageTypeD ||
// Open Dylan compiler debug info is designed to be Clang-compatible
language == eLanguageTypeDylan;
}
// Checks whether m1 is an overload of m2 (as opposed to an override). This is
// called by addOverridesForMethod to distinguish overrides (which share a
// vtable entry) from overloads (which require distinct entries).
bool isOverload(clang::CXXMethodDecl *m1, clang::CXXMethodDecl *m2) {
// FIXME: This should detect covariant return types, but currently doesn't.
lldbassert(&m1->getASTContext() == &m2->getASTContext() &&
"Methods should have the same AST context");
clang::ASTContext &context = m1->getASTContext();
const auto *m1Type = llvm::cast<clang::FunctionProtoType>(
context.getCanonicalType(m1->getType()));
const auto *m2Type = llvm::cast<clang::FunctionProtoType>(
context.getCanonicalType(m2->getType()));
auto compareArgTypes = [&context](const clang::QualType &m1p,
const clang::QualType &m2p) {
return context.hasSameType(m1p.getUnqualifiedType(),
m2p.getUnqualifiedType());
};
// FIXME: In C++14 and later, we can just pass m2Type->param_type_end()
// as a fourth parameter to std::equal().
return (m1->getNumParams() != m2->getNumParams()) ||
!std::equal(m1Type->param_type_begin(), m1Type->param_type_end(),
m2Type->param_type_begin(), compareArgTypes);
}
// If decl is a virtual method, walk the base classes looking for methods that
// decl overrides. This table of overridden methods is used by IRGen to
// determine the vtable layout for decl's parent class.
void addOverridesForMethod(clang::CXXMethodDecl *decl) {
if (!decl->isVirtual())
return;
clang::CXXBasePaths paths;
llvm::SmallVector<clang::NamedDecl *, 4> decls;
auto find_overridden_methods =
[&decls, decl](const clang::CXXBaseSpecifier *specifier,
clang::CXXBasePath &path) {
if (auto *base_record = llvm::dyn_cast<clang::CXXRecordDecl>(
specifier->getType()->getAs<clang::RecordType>()->getDecl())) {
clang::DeclarationName name = decl->getDeclName();
// If this is a destructor, check whether the base class destructor is
// virtual.
if (name.getNameKind() == clang::DeclarationName::CXXDestructorName)
if (auto *baseDtorDecl = base_record->getDestructor()) {
if (baseDtorDecl->isVirtual()) {
path.Decls = baseDtorDecl;
decls.push_back(baseDtorDecl);
return true;
} else
return false;
}
// Otherwise, search for name in the base class.
for (path.Decls = base_record->lookup(name); !path.Decls.empty();
path.Decls = path.Decls.slice(1)) {
if (auto *method_decl =
llvm::dyn_cast<clang::CXXMethodDecl>(path.Decls.front()))
if (method_decl->isVirtual() && !isOverload(decl, method_decl)) {
path.Decls = method_decl;
decls.push_back(method_decl);
return true;
}
}
}
return false;
};
if (decl->getParent()->lookupInBases(find_overridden_methods, paths)) {
for (auto *overridden_decl : decls)
decl->addOverriddenMethod(
llvm::cast<clang::CXXMethodDecl>(overridden_decl));
}
}
}
static lldb::addr_t GetVTableAddress(Process &process,
VTableContextBase &vtable_ctx,
ValueObject &valobj,
const ASTRecordLayout &record_layout) {
// Retrieve type info
CompilerType pointee_type;
CompilerType this_type(valobj.GetCompilerType());
uint32_t type_info = this_type.GetTypeInfo(&pointee_type);
if (!type_info)
return LLDB_INVALID_ADDRESS;
// Check if it's a pointer or reference
bool ptr_or_ref = false;
if (type_info & (eTypeIsPointer | eTypeIsReference)) {
ptr_or_ref = true;
type_info = pointee_type.GetTypeInfo();
}
// We process only C++ classes
const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus;
if ((type_info & cpp_class) != cpp_class)
return LLDB_INVALID_ADDRESS;
// Calculate offset to VTable pointer
lldb::offset_t vbtable_ptr_offset =
vtable_ctx.isMicrosoft() ? record_layout.getVBPtrOffset().getQuantity()
: 0;
if (ptr_or_ref) {
// We have a pointer / ref to object, so read
// VTable pointer from process memory
if (valobj.GetAddressTypeOfChildren() != eAddressTypeLoad)
return LLDB_INVALID_ADDRESS;
auto vbtable_ptr_addr = valobj.GetValueAsUnsigned(LLDB_INVALID_ADDRESS);
if (vbtable_ptr_addr == LLDB_INVALID_ADDRESS)
return LLDB_INVALID_ADDRESS;
vbtable_ptr_addr += vbtable_ptr_offset;
Status err;
return process.ReadPointerFromMemory(vbtable_ptr_addr, err);
}
// We have an object already read from process memory,
// so just extract VTable pointer from it
DataExtractor data;
Status err;
auto size = valobj.GetData(data, err);
if (err.Fail() || vbtable_ptr_offset + data.GetAddressByteSize() > size)
return LLDB_INVALID_ADDRESS;
return data.GetAddress(&vbtable_ptr_offset);
}
static int64_t ReadVBaseOffsetFromVTable(Process &process,
VTableContextBase &vtable_ctx,
lldb::addr_t vtable_ptr,
const CXXRecordDecl *cxx_record_decl,
const CXXRecordDecl *base_class_decl) {
if (vtable_ctx.isMicrosoft()) {
clang::MicrosoftVTableContext &msoft_vtable_ctx =
static_cast<clang::MicrosoftVTableContext &>(vtable_ctx);
// Get the index into the virtual base table. The
// index is the index in uint32_t from vbtable_ptr
const unsigned vbtable_index =
msoft_vtable_ctx.getVBTableIndex(cxx_record_decl, base_class_decl);
const lldb::addr_t base_offset_addr = vtable_ptr + vbtable_index * 4;
Status err;
return process.ReadSignedIntegerFromMemory(base_offset_addr, 4, INT64_MAX,
err);
}
clang::ItaniumVTableContext &itanium_vtable_ctx =
static_cast<clang::ItaniumVTableContext &>(vtable_ctx);
clang::CharUnits base_offset_offset =
itanium_vtable_ctx.getVirtualBaseOffsetOffset(cxx_record_decl,
base_class_decl);
const lldb::addr_t base_offset_addr =
vtable_ptr + base_offset_offset.getQuantity();
const uint32_t base_offset_size = process.GetAddressByteSize();
Status err;
return process.ReadSignedIntegerFromMemory(base_offset_addr, base_offset_size,
INT64_MAX, err);
}
static bool GetVBaseBitOffset(VTableContextBase &vtable_ctx,
ValueObject &valobj,
const ASTRecordLayout &record_layout,
const CXXRecordDecl *cxx_record_decl,
const CXXRecordDecl *base_class_decl,
int32_t &bit_offset) {
ExecutionContext exe_ctx(valobj.GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (!process)
return false;
lldb::addr_t vtable_ptr =
GetVTableAddress(*process, vtable_ctx, valobj, record_layout);
if (vtable_ptr == LLDB_INVALID_ADDRESS)
return false;
auto base_offset = ReadVBaseOffsetFromVTable(
*process, vtable_ctx, vtable_ptr, cxx_record_decl, base_class_decl);
if (base_offset == INT64_MAX)
return false;
bit_offset = base_offset * 8;
return true;
}
typedef lldb_private::ThreadSafeDenseMap<clang::ASTContext *, TypeSystemClang *>
ClangASTMap;
static ClangASTMap &GetASTMap() {
static ClangASTMap *g_map_ptr = nullptr;
static llvm::once_flag g_once_flag;
llvm::call_once(g_once_flag, []() {
g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins
});
return *g_map_ptr;
}
TypePayloadClang::TypePayloadClang(OptionalClangModuleID owning_module,
bool is_complete_objc_class)
: m_payload(owning_module.GetValue()) {
SetIsCompleteObjCClass(is_complete_objc_class);
}
void TypePayloadClang::SetOwningModule(OptionalClangModuleID id) {
assert(id.GetValue() < ObjCClassBit);
bool is_complete = IsCompleteObjCClass();
m_payload = id.GetValue();
SetIsCompleteObjCClass(is_complete);
}
static void SetMemberOwningModule(clang::Decl *member,
const clang::Decl *parent) {
if (!member || !parent)
return;
OptionalClangModuleID id(parent->getOwningModuleID());
if (!id.HasValue())
return;
member->setFromASTFile();
member->setOwningModuleID(id.GetValue());
member->setModuleOwnershipKind(clang::Decl::ModuleOwnershipKind::Visible);
if (llvm::isa<clang::NamedDecl>(member))
if (auto *dc = llvm::dyn_cast<clang::DeclContext>(parent)) {
dc->setHasExternalVisibleStorage(true);
// This triggers ExternalASTSource::FindExternalVisibleDeclsByName() to be
// called when searching for members.
dc->setHasExternalLexicalStorage(true);
}
}
char TypeSystemClang::ID;
bool TypeSystemClang::IsOperator(llvm::StringRef name,
clang::OverloadedOperatorKind &op_kind) {
// All operators have to start with "operator".
if (!name.consume_front("operator"))
return false;
// Remember if there was a space after "operator". This is necessary to
// check for collisions with strangely named functions like "operatorint()".
bool space_after_operator = name.consume_front(" ");
op_kind = StringSwitch<clang::OverloadedOperatorKind>(name)
.Case("+", clang::OO_Plus)
.Case("+=", clang::OO_PlusEqual)
.Case("++", clang::OO_PlusPlus)
.Case("-", clang::OO_Minus)
.Case("-=", clang::OO_MinusEqual)
.Case("--", clang::OO_MinusMinus)
.Case("->", clang::OO_Arrow)
.Case("->*", clang::OO_ArrowStar)
.Case("*", clang::OO_Star)
.Case("*=", clang::OO_StarEqual)
.Case("/", clang::OO_Slash)
.Case("/=", clang::OO_SlashEqual)
.Case("%", clang::OO_Percent)
.Case("%=", clang::OO_PercentEqual)
.Case("^", clang::OO_Caret)
.Case("^=", clang::OO_CaretEqual)
.Case("&", clang::OO_Amp)
.Case("&=", clang::OO_AmpEqual)
.Case("&&", clang::OO_AmpAmp)
.Case("|", clang::OO_Pipe)
.Case("|=", clang::OO_PipeEqual)
.Case("||", clang::OO_PipePipe)
.Case("~", clang::OO_Tilde)
.Case("!", clang::OO_Exclaim)
.Case("!=", clang::OO_ExclaimEqual)
.Case("=", clang::OO_Equal)
.Case("==", clang::OO_EqualEqual)
.Case("<", clang::OO_Less)
.Case("<<", clang::OO_LessLess)
.Case("<<=", clang::OO_LessLessEqual)
.Case("<=", clang::OO_LessEqual)
.Case(">", clang::OO_Greater)
.Case(">>", clang::OO_GreaterGreater)
.Case(">>=", clang::OO_GreaterGreaterEqual)
.Case(">=", clang::OO_GreaterEqual)
.Case("()", clang::OO_Call)
.Case("[]", clang::OO_Subscript)
.Case(",", clang::OO_Comma)
.Default(clang::NUM_OVERLOADED_OPERATORS);
// We found a fitting operator, so we can exit now.
if (op_kind != clang::NUM_OVERLOADED_OPERATORS)
return true;
// After the "operator " or "operator" part is something unknown. This means
// it's either one of the named operators (new/delete), a conversion operator
// (e.g. operator bool) or a function which name starts with "operator"
// (e.g. void operatorbool).
// If it's a function that starts with operator it can't have a space after
// "operator" because identifiers can't contain spaces.
// E.g. "operator int" (conversion operator)
// vs. "operatorint" (function with colliding name).
if (!space_after_operator)
return false; // not an operator.
// Now the operator is either one of the named operators or a conversion
// operator.
op_kind = StringSwitch<clang::OverloadedOperatorKind>(name)
.Case("new", clang::OO_New)
.Case("new[]", clang::OO_Array_New)
.Case("delete", clang::OO_Delete)
.Case("delete[]", clang::OO_Array_Delete)
// conversion operators hit this case.
.Default(clang::NUM_OVERLOADED_OPERATORS);
return true;
}
clang::AccessSpecifier
TypeSystemClang::ConvertAccessTypeToAccessSpecifier(AccessType access) {
switch (access) {
default:
break;
case eAccessNone:
return AS_none;
case eAccessPublic:
return AS_public;
case eAccessPrivate:
return AS_private;
case eAccessProtected:
return AS_protected;
}
return AS_none;
}
static void ParseLangArgs(LangOptions &Opts, InputKind IK, const char *triple) {
// FIXME: Cleanup per-file based stuff.
// Set some properties which depend solely on the input kind; it would be
// nice to move these to the language standard, and have the driver resolve
// the input kind + language standard.
if (IK.getLanguage() == clang::Language::Asm) {
Opts.AsmPreprocessor = 1;
} else if (IK.isObjectiveC()) {
Opts.ObjC = 1;
}
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (LangStd == LangStandard::lang_unspecified) {
// Based on the base language, pick one.
switch (IK.getLanguage()) {
case clang::Language::Unknown:
case clang::Language::LLVM_IR:
case clang::Language::RenderScript:
llvm_unreachable("Invalid input kind!");
case clang::Language::OpenCL:
LangStd = LangStandard::lang_opencl10;
break;
case clang::Language::CUDA:
LangStd = LangStandard::lang_cuda;
break;
case clang::Language::Asm:
case clang::Language::C:
case clang::Language::ObjC:
LangStd = LangStandard::lang_gnu99;
break;
case clang::Language::CXX:
case clang::Language::ObjCXX:
LangStd = LangStandard::lang_gnucxx98;
break;
case clang::Language::HIP:
LangStd = LangStandard::lang_hip;
break;
}
}
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
Opts.LineComment = Std.hasLineComments();
Opts.C99 = Std.isC99();
Opts.CPlusPlus = Std.isCPlusPlus();
Opts.CPlusPlus11 = Std.isCPlusPlus11();
Opts.Digraphs = Std.hasDigraphs();
Opts.GNUMode = Std.isGNUMode();
Opts.GNUInline = !Std.isC99();
Opts.HexFloats = Std.hasHexFloats();
Opts.ImplicitInt = Std.hasImplicitInt();
Opts.WChar = true;
// OpenCL has some additional defaults.
if (LangStd == LangStandard::lang_opencl10) {
Opts.OpenCL = 1;
Opts.AltiVec = 1;
Opts.CXXOperatorNames = 1;
Opts.setLaxVectorConversions(LangOptions::LaxVectorConversionKind::All);
}
// OpenCL and C++ both have bool, true, false keywords.
Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
Opts.setValueVisibilityMode(DefaultVisibility);
// Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs is
// specified, or -std is set to a conforming mode.
Opts.Trigraphs = !Opts.GNUMode;
Opts.CharIsSigned = ArchSpec(triple).CharIsSignedByDefault();
Opts.OptimizeSize = 0;
// FIXME: Eliminate this dependency.
// unsigned Opt =
// Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
// Opts.Optimize = Opt != 0;
unsigned Opt = 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
//
// FIXME: This is affected by other options (-fno-inline).
Opts.NoInlineDefine = !Opt;
// This is needed to allocate the extra space for the owning module
// on each decl.
Opts.ModulesLocalVisibility = 1;
}
TypeSystemClang::TypeSystemClang(llvm::StringRef name,
llvm::Triple target_triple) {
m_display_name = name.str();
if (!target_triple.str().empty())
SetTargetTriple(target_triple.str());
// The caller didn't pass an ASTContext so create a new one for this
// TypeSystemClang.
CreateASTContext();
}
TypeSystemClang::TypeSystemClang(llvm::StringRef name,
ASTContext &existing_ctxt) {
m_display_name = name.str();
SetTargetTriple(existing_ctxt.getTargetInfo().getTriple().str());
m_ast_up.reset(&existing_ctxt);
GetASTMap().Insert(&existing_ctxt, this);
}
// Destructor
TypeSystemClang::~TypeSystemClang() { Finalize(); }
ConstString TypeSystemClang::GetPluginNameStatic() {
return ConstString("clang");
}
ConstString TypeSystemClang::GetPluginName() {
return TypeSystemClang::GetPluginNameStatic();
}
uint32_t TypeSystemClang::GetPluginVersion() { return 1; }
lldb::TypeSystemSP TypeSystemClang::CreateInstance(lldb::LanguageType language,
lldb_private::Module *module,
Target *target) {
if (!TypeSystemClangSupportsLanguage(language))
return lldb::TypeSystemSP();
ArchSpec arch;
if (module)
arch = module->GetArchitecture();
else if (target)
arch = target->GetArchitecture();
if (!arch.IsValid())
return lldb::TypeSystemSP();
llvm::Triple triple = arch.GetTriple();
// LLVM wants this to be set to iOS or MacOSX; if we're working on
// a bare-boards type image, change the triple for llvm's benefit.
if (triple.getVendor() == llvm::Triple::Apple &&
triple.getOS() == llvm::Triple::UnknownOS) {
if (triple.getArch() == llvm::Triple::arm ||
triple.getArch() == llvm::Triple::aarch64 ||
triple.getArch() == llvm::Triple::aarch64_32 ||
triple.getArch() == llvm::Triple::thumb) {
triple.setOS(llvm::Triple::IOS);
} else {
triple.setOS(llvm::Triple::MacOSX);
}
}
if (module) {
std::string ast_name =
"ASTContext for '" + module->GetFileSpec().GetPath() + "'";
return std::make_shared<TypeSystemClang>(ast_name, triple);
} else if (target && target->IsValid())
return std::make_shared<ScratchTypeSystemClang>(*target, triple);
return lldb::TypeSystemSP();
}
LanguageSet TypeSystemClang::GetSupportedLanguagesForTypes() {
LanguageSet languages;
languages.Insert(lldb::eLanguageTypeC89);
languages.Insert(lldb::eLanguageTypeC);
languages.Insert(lldb::eLanguageTypeC11);
languages.Insert(lldb::eLanguageTypeC_plus_plus);
languages.Insert(lldb::eLanguageTypeC99);
languages.Insert(lldb::eLanguageTypeObjC);
languages.Insert(lldb::eLanguageTypeObjC_plus_plus);
languages.Insert(lldb::eLanguageTypeC_plus_plus_03);
languages.Insert(lldb::eLanguageTypeC_plus_plus_11);
languages.Insert(lldb::eLanguageTypeC11);
languages.Insert(lldb::eLanguageTypeC_plus_plus_14);
return languages;
}
LanguageSet TypeSystemClang::GetSupportedLanguagesForExpressions() {
LanguageSet languages;
languages.Insert(lldb::eLanguageTypeC_plus_plus);
languages.Insert(lldb::eLanguageTypeObjC_plus_plus);
languages.Insert(lldb::eLanguageTypeC_plus_plus_03);
languages.Insert(lldb::eLanguageTypeC_plus_plus_11);
languages.Insert(lldb::eLanguageTypeC_plus_plus_14);
return languages;
}
void TypeSystemClang::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "clang base AST context plug-in", CreateInstance,
GetSupportedLanguagesForTypes(), GetSupportedLanguagesForExpressions());
}
void TypeSystemClang::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
void TypeSystemClang::Finalize() {
assert(m_ast_up);
GetASTMap().Erase(m_ast_up.get());
if (!m_ast_owned)
m_ast_up.release();
m_builtins_up.reset();
m_selector_table_up.reset();
m_identifier_table_up.reset();
m_target_info_up.reset();
m_target_options_rp.reset();
m_diagnostics_engine_up.reset();
m_source_manager_up.reset();
m_language_options_up.reset();
}
void TypeSystemClang::setSema(Sema *s) {
// Ensure that the new sema actually belongs to our ASTContext.
assert(s == nullptr || &s->getASTContext() == m_ast_up.get());
m_sema = s;
}
const char *TypeSystemClang::GetTargetTriple() {
return m_target_triple.c_str();
}
void TypeSystemClang::SetTargetTriple(llvm::StringRef target_triple) {
m_target_triple = target_triple.str();
}
void TypeSystemClang::SetExternalSource(
llvm::IntrusiveRefCntPtr<ExternalASTSource> &ast_source_up) {
ASTContext &ast = getASTContext();
ast.setExternalSource(ast_source_up);
ast.getTranslationUnitDecl()->setHasExternalLexicalStorage(true);
}
ASTContext &TypeSystemClang::getASTContext() {
assert(m_ast_up);
return *m_ast_up;
}
class NullDiagnosticConsumer : public DiagnosticConsumer {
public:
NullDiagnosticConsumer() {
m_log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
}
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &info) override {
if (m_log) {
llvm::SmallVector<char, 32> diag_str(10);
info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
LLDB_LOGF(m_log, "Compiler diagnostic: %s\n", diag_str.data());
}
}
DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
return new NullDiagnosticConsumer();
}
private:
Log *m_log;
};
void TypeSystemClang::CreateASTContext() {
assert(!m_ast_up);
m_ast_owned = true;
m_language_options_up = std::make_unique<LangOptions>();
ParseLangArgs(*m_language_options_up, clang::Language::ObjCXX,
GetTargetTriple());
m_identifier_table_up =
std::make_unique<IdentifierTable>(*m_language_options_up, nullptr);
m_builtins_up = std::make_unique<Builtin::Context>();
m_selector_table_up = std::make_unique<SelectorTable>();
clang::FileSystemOptions file_system_options;
m_file_manager_up = std::make_unique<clang::FileManager>(
file_system_options, FileSystem::Instance().GetVirtualFileSystem());
llvm::IntrusiveRefCntPtr<DiagnosticIDs> diag_id_sp(new DiagnosticIDs());
m_diagnostics_engine_up =
std::make_unique<DiagnosticsEngine>(diag_id_sp, new DiagnosticOptions());
m_source_manager_up = std::make_unique<clang::SourceManager>(
*m_diagnostics_engine_up, *m_file_manager_up);
m_ast_up = std::make_unique<ASTContext>(
*m_language_options_up, *m_source_manager_up, *m_identifier_table_up,
*m_selector_table_up, *m_builtins_up);
m_diagnostic_consumer_up = std::make_unique<NullDiagnosticConsumer>();
m_ast_up->getDiagnostics().setClient(m_diagnostic_consumer_up.get(), false);
// This can be NULL if we don't know anything about the architecture or if
// the target for an architecture isn't enabled in the llvm/clang that we
// built
TargetInfo *target_info = getTargetInfo();
if (target_info)
m_ast_up->InitBuiltinTypes(*target_info);
GetASTMap().Insert(m_ast_up.get(), this);
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source_up(
new ClangExternalASTSourceCallbacks(*this));
SetExternalSource(ast_source_up);
}
TypeSystemClang *TypeSystemClang::GetASTContext(clang::ASTContext *ast) {
TypeSystemClang *clang_ast = GetASTMap().Lookup(ast);
return clang_ast;
}
clang::MangleContext *TypeSystemClang::getMangleContext() {
if (m_mangle_ctx_up == nullptr)
m_mangle_ctx_up.reset(getASTContext().createMangleContext());
return m_mangle_ctx_up.get();
}
std::shared_ptr<clang::TargetOptions> &TypeSystemClang::getTargetOptions() {
if (m_target_options_rp == nullptr && !m_target_triple.empty()) {
m_target_options_rp = std::make_shared<clang::TargetOptions>();
if (m_target_options_rp != nullptr)
m_target_options_rp->Triple = m_target_triple;
}
return m_target_options_rp;
}
TargetInfo *TypeSystemClang::getTargetInfo() {
// target_triple should be something like "x86_64-apple-macosx"
if (m_target_info_up == nullptr && !m_target_triple.empty())
m_target_info_up.reset(TargetInfo::CreateTargetInfo(
getASTContext().getDiagnostics(), getTargetOptions()));
return m_target_info_up.get();
}
#pragma mark Basic Types
static inline bool QualTypeMatchesBitSize(const uint64_t bit_size,
ASTContext &ast, QualType qual_type) {
uint64_t qual_type_bit_size = ast.getTypeSize(qual_type);
return qual_type_bit_size == bit_size;
}
CompilerType
TypeSystemClang::GetBuiltinTypeForEncodingAndBitSize(Encoding encoding,
size_t bit_size) {
ASTContext &ast = getASTContext();
switch (encoding) {
case eEncodingInvalid:
if (QualTypeMatchesBitSize(bit_size, ast, ast.VoidPtrTy))
return GetType(ast.VoidPtrTy);
break;
case eEncodingUint:
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
break;
case eEncodingSint:
if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
return GetType(ast.SignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
return GetType(ast.ShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
return GetType(ast.IntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
return GetType(ast.LongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
return GetType(ast.LongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
return GetType(ast.Int128Ty);
break;
case eEncodingIEEE754:
if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
return GetType(ast.FloatTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
return GetType(ast.DoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
return GetType(ast.LongDoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.HalfTy))
return GetType(ast.HalfTy);
break;
case eEncodingVector:
// Sanity check that bit_size is a multiple of 8's.
if (bit_size && !(bit_size & 0x7u))
return GetType(ast.getExtVectorType(ast.UnsignedCharTy, bit_size / 8));
break;
}
return CompilerType();
}
lldb::BasicType
TypeSystemClang::GetBasicTypeEnumeration(ConstString name) {
if (name) {
typedef UniqueCStringMap<lldb::BasicType> TypeNameToBasicTypeMap;
static TypeNameToBasicTypeMap g_type_map;
static llvm::once_flag g_once_flag;
llvm::call_once(g_once_flag, []() {
// "void"
g_type_map.Append(ConstString("void"), eBasicTypeVoid);
// "char"
g_type_map.Append(ConstString("char"), eBasicTypeChar);
g_type_map.Append(ConstString("signed char"), eBasicTypeSignedChar);
g_type_map.Append(ConstString("unsigned char"), eBasicTypeUnsignedChar);
g_type_map.Append(ConstString("wchar_t"), eBasicTypeWChar);
g_type_map.Append(ConstString("signed wchar_t"), eBasicTypeSignedWChar);
g_type_map.Append(ConstString("unsigned wchar_t"),
eBasicTypeUnsignedWChar);
// "short"
g_type_map.Append(ConstString("short"), eBasicTypeShort);
g_type_map.Append(ConstString("short int"), eBasicTypeShort);
g_type_map.Append(ConstString("unsigned short"), eBasicTypeUnsignedShort);
g_type_map.Append(ConstString("unsigned short int"),
eBasicTypeUnsignedShort);
// "int"
g_type_map.Append(ConstString("int"), eBasicTypeInt);
g_type_map.Append(ConstString("signed int"), eBasicTypeInt);
g_type_map.Append(ConstString("unsigned int"), eBasicTypeUnsignedInt);
g_type_map.Append(ConstString("unsigned"), eBasicTypeUnsignedInt);
// "long"
g_type_map.Append(ConstString("long"), eBasicTypeLong);
g_type_map.Append(ConstString("long int"), eBasicTypeLong);
g_type_map.Append(ConstString("unsigned long"), eBasicTypeUnsignedLong);
g_type_map.Append(ConstString("unsigned long int"),
eBasicTypeUnsignedLong);
// "long long"
g_type_map.Append(ConstString("long long"), eBasicTypeLongLong);
g_type_map.Append(ConstString("long long int"), eBasicTypeLongLong);
g_type_map.Append(ConstString("unsigned long long"),
eBasicTypeUnsignedLongLong);
g_type_map.Append(ConstString("unsigned long long int"),
eBasicTypeUnsignedLongLong);
// "int128"
g_type_map.Append(ConstString("__int128_t"), eBasicTypeInt128);
g_type_map.Append(ConstString("__uint128_t"), eBasicTypeUnsignedInt128);
// Miscellaneous
g_type_map.Append(ConstString("bool"), eBasicTypeBool);
g_type_map.Append(ConstString("float"), eBasicTypeFloat);
g_type_map.Append(ConstString("double"), eBasicTypeDouble);
g_type_map.Append(ConstString("long double"), eBasicTypeLongDouble);
g_type_map.Append(ConstString("id"), eBasicTypeObjCID);
g_type_map.Append(ConstString("SEL"), eBasicTypeObjCSel);
g_type_map.Append(ConstString("nullptr"), eBasicTypeNullPtr);
g_type_map.Sort();
});
return g_type_map.Find(name, eBasicTypeInvalid);
}
return eBasicTypeInvalid;
}
uint32_t TypeSystemClang::GetPointerByteSize() {
if (m_pointer_byte_size == 0)
if (auto size = GetBasicType(lldb::eBasicTypeVoid)
.GetPointerType()
.GetByteSize(nullptr))
m_pointer_byte_size = *size;
return m_pointer_byte_size;
}
CompilerType TypeSystemClang::GetBasicType(lldb::BasicType basic_type) {
clang::ASTContext &ast = getASTContext();
lldb::opaque_compiler_type_t clang_type =
GetOpaqueCompilerType(&ast, basic_type);
if (clang_type)
return CompilerType(this, clang_type);
return CompilerType();
}
CompilerType TypeSystemClang::GetBuiltinTypeForDWARFEncodingAndBitSize(
llvm::StringRef type_name, uint32_t dw_ate, uint32_t bit_size) {
ASTContext &ast = getASTContext();
switch (dw_ate) {
default:
break;
case DW_ATE_address:
if (QualTypeMatchesBitSize(bit_size, ast, ast.VoidPtrTy))
return GetType(ast.VoidPtrTy);
break;
case DW_ATE_boolean:
if (QualTypeMatchesBitSize(bit_size, ast, ast.BoolTy))
return GetType(ast.BoolTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
break;
case DW_ATE_lo_user:
// This has been seen to mean DW_AT_complex_integer
if (type_name.contains("complex")) {
CompilerType complex_int_clang_type =
GetBuiltinTypeForDWARFEncodingAndBitSize("int", DW_ATE_signed,
bit_size / 2);
return GetType(
ast.getComplexType(ClangUtil::GetQualType(complex_int_clang_type)));
}
break;
case DW_ATE_complex_float:
if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatComplexTy))
return GetType(ast.FloatComplexTy);
else if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleComplexTy))
return GetType(ast.DoubleComplexTy);
else if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleComplexTy))
return GetType(ast.LongDoubleComplexTy);
else {
CompilerType complex_float_clang_type =
GetBuiltinTypeForDWARFEncodingAndBitSize("float", DW_ATE_float,
bit_size / 2);
return GetType(
ast.getComplexType(ClangUtil::GetQualType(complex_float_clang_type)));
}
break;
case DW_ATE_float:
if (type_name == "float" &&
QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
return GetType(ast.FloatTy);
if (type_name == "double" &&
QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
return GetType(ast.DoubleTy);
if (type_name == "long double" &&
QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
return GetType(ast.LongDoubleTy);
// Fall back to not requiring a name match
if (QualTypeMatchesBitSize(bit_size, ast, ast.FloatTy))
return GetType(ast.FloatTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.DoubleTy))
return GetType(ast.DoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongDoubleTy))
return GetType(ast.LongDoubleTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.HalfTy))
return GetType(ast.HalfTy);
break;
case DW_ATE_signed:
if (!type_name.empty()) {
if (type_name == "wchar_t" &&
QualTypeMatchesBitSize(bit_size, ast, ast.WCharTy) &&
(getTargetInfo() &&
TargetInfo::isTypeSigned(getTargetInfo()->getWCharType())))
return GetType(ast.WCharTy);
if (type_name == "void" &&
QualTypeMatchesBitSize(bit_size, ast, ast.VoidTy))
return GetType(ast.VoidTy);
if (type_name.contains("long long") &&
QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
return GetType(ast.LongLongTy);
if (type_name.contains("long") &&
QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
return GetType(ast.LongTy);
if (type_name.contains("short") &&
QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
return GetType(ast.ShortTy);
if (type_name.contains("char")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
return GetType(ast.SignedCharTy);
}
if (type_name.contains("int")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
return GetType(ast.IntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
return GetType(ast.Int128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.ShortTy))
return GetType(ast.ShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.IntTy))
return GetType(ast.IntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongTy))
return GetType(ast.LongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.LongLongTy))
return GetType(ast.LongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.Int128Ty))
return GetType(ast.Int128Ty);
break;
case DW_ATE_signed_char:
if (ast.getLangOpts().CharIsSigned && type_name == "char") {
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
}
if (QualTypeMatchesBitSize(bit_size, ast, ast.SignedCharTy))
return GetType(ast.SignedCharTy);
break;
case DW_ATE_unsigned:
if (!type_name.empty()) {
if (type_name == "wchar_t") {
if (QualTypeMatchesBitSize(bit_size, ast, ast.WCharTy)) {
if (!(getTargetInfo() &&
TargetInfo::isTypeSigned(getTargetInfo()->getWCharType())))
return GetType(ast.WCharTy);
}
}
if (type_name.contains("long long")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
} else if (type_name.contains("long")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
} else if (type_name.contains("short")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
} else if (type_name.contains("char")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
} else if (type_name.contains("int")) {
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
break;
case DW_ATE_unsigned_char:
if (!ast.getLangOpts().CharIsSigned && type_name == "char") {
if (QualTypeMatchesBitSize(bit_size, ast, ast.CharTy))
return GetType(ast.CharTy);
}
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (QualTypeMatchesBitSize(bit_size, ast, ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
break;
case DW_ATE_imaginary_float:
break;
case DW_ATE_UTF:
switch (bit_size) {
case 8:
return GetType(ast.Char8Ty);
case 16:
return GetType(ast.Char16Ty);
case 32:
return GetType(ast.Char32Ty);
default:
if (!type_name.empty()) {
if (type_name == "char16_t")
return GetType(ast.Char16Ty);
if (type_name == "char32_t")
return GetType(ast.Char32Ty);
if (type_name == "char8_t")
return GetType(ast.Char8Ty);
}
}
break;
}
// This assert should fire for anything that we don't catch above so we know
// to fix any issues we run into.
if (!type_name.empty()) {
std::string type_name_str = type_name.str();
Host::SystemLog(Host::eSystemLogError,
"error: need to add support for DW_TAG_base_type '%s' "
"encoded with DW_ATE = 0x%x, bit_size = %u\n",
type_name_str.c_str(), dw_ate, bit_size);
} else {
Host::SystemLog(Host::eSystemLogError, "error: need to add support for "
"DW_TAG_base_type encoded with "
"DW_ATE = 0x%x, bit_size = %u\n",
dw_ate, bit_size);
}
return CompilerType();
}
CompilerType TypeSystemClang::GetCStringType(bool is_const) {
ASTContext &ast = getASTContext();
QualType char_type(ast.CharTy);
if (is_const)
char_type.addConst();
return GetType(ast.getPointerType(char_type));
}
bool TypeSystemClang::AreTypesSame(CompilerType type1, CompilerType type2,
bool ignore_qualifiers) {
TypeSystemClang *ast =
llvm::dyn_cast_or_null<TypeSystemClang>(type1.GetTypeSystem());
if (!ast || ast != type2.GetTypeSystem())
return false;
if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType())
return true;
QualType type1_qual = ClangUtil::GetQualType(type1);
QualType type2_qual = ClangUtil::GetQualType(type2);
if (ignore_qualifiers) {
type1_qual = type1_qual.getUnqualifiedType();
type2_qual = type2_qual.getUnqualifiedType();
}
return ast->getASTContext().hasSameType(type1_qual, type2_qual);
}
CompilerType TypeSystemClang::GetTypeForDecl(void *opaque_decl) {
if (!opaque_decl)
return CompilerType();
clang::Decl *decl = static_cast<clang::Decl *>(opaque_decl);
if (auto *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl))
return GetTypeForDecl(named_decl);
return CompilerType();
}
CompilerDeclContext TypeSystemClang::CreateDeclContext(DeclContext *ctx) {
// Check that the DeclContext actually belongs to this ASTContext.
assert(&ctx->getParentASTContext() == &getASTContext());
return CompilerDeclContext(this, ctx);
}
CompilerType TypeSystemClang::GetTypeForDecl(clang::NamedDecl *decl) {
if (clang::ObjCInterfaceDecl *interface_decl =
llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
return GetTypeForDecl(interface_decl);
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
return GetTypeForDecl(tag_decl);
return CompilerType();
}
CompilerType TypeSystemClang::GetTypeForDecl(TagDecl *decl) {
return GetType(getASTContext().getTagDeclType(decl));
}
CompilerType TypeSystemClang::GetTypeForDecl(ObjCInterfaceDecl *decl) {
return GetType(getASTContext().getObjCInterfaceType(decl));
}
#pragma mark Structure, Unions, Classes
void TypeSystemClang::SetOwningModule(clang::Decl *decl,
OptionalClangModuleID owning_module) {
if (!decl || !owning_module.HasValue())
return;
decl->setFromASTFile();
decl->setOwningModuleID(owning_module.GetValue());
decl->setModuleOwnershipKind(clang::Decl::ModuleOwnershipKind::Visible);
}
OptionalClangModuleID
TypeSystemClang::GetOrCreateClangModule(llvm::StringRef name,
OptionalClangModuleID parent,
bool is_framework, bool is_explicit) {
// Get the external AST source which holds the modules.
auto *ast_source = llvm::dyn_cast_or_null<ClangExternalASTSourceCallbacks>(
getASTContext().getExternalSource());
assert(ast_source && "external ast source was lost");
if (!ast_source)
return {};
// Lazily initialize the module map.
if (!m_header_search_up) {
auto HSOpts = std::make_shared<clang::HeaderSearchOptions>();
m_header_search_up = std::make_unique<clang::HeaderSearch>(
HSOpts, *m_source_manager_up, *m_diagnostics_engine_up,
*m_language_options_up, m_target_info_up.get());
m_module_map_up = std::make_unique<clang::ModuleMap>(
*m_source_manager_up, *m_diagnostics_engine_up, *m_language_options_up,
m_target_info_up.get(), *m_header_search_up);
}
// Get or create the module context.
bool created;
clang::Module *module;
auto parent_desc = ast_source->getSourceDescriptor(parent.GetValue());
std::tie(module, created) = m_module_map_up->findOrCreateModule(
name, parent_desc ? parent_desc->getModuleOrNull() : nullptr,
is_framework, is_explicit);
if (!created)
return ast_source->GetIDForModule(module);
return ast_source->RegisterModule(module);
}
CompilerType TypeSystemClang::CreateRecordType(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
AccessType access_type, llvm::StringRef name, int kind,
LanguageType language, ClangASTMetadata *metadata, bool exports_symbols) {
ASTContext &ast = getASTContext();
if (decl_ctx == nullptr)
decl_ctx = ast.getTranslationUnitDecl();
if (language == eLanguageTypeObjC ||
language == eLanguageTypeObjC_plus_plus) {
bool isForwardDecl = true;
bool isInternal = false;
return CreateObjCClass(name, decl_ctx, owning_module, isForwardDecl,
isInternal, metadata);
}
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use the
// CXXRecordDecl class since we often don't know from debug information if
// something is struct or a class, so we default to always use the more
// complete definition just in case.
bool has_name = !name.empty();
CXXRecordDecl *decl = CXXRecordDecl::CreateDeserialized(ast, 0);
decl->setTagKind(static_cast<TagDecl::TagKind>(kind));
decl->setDeclContext(decl_ctx);
if (has_name)
decl->setDeclName(&ast.Idents.get(name));
SetOwningModule(decl, owning_module);
if (!has_name) {
// In C++ a lambda is also represented as an unnamed class. This is
// different from an *anonymous class* that the user wrote:
//
// struct A {
// // anonymous class (GNU/MSVC extension)
// struct {
// int x;
// };
// // unnamed class within a class
// struct {
// int y;
// } B;
// };
//
// void f() {
// // unammed class outside of a class
// struct {
// int z;
// } C;
// }
//
// Anonymous classes is a GNU/MSVC extension that clang supports. It
// requires the anonymous class be embedded within a class. So the new
// heuristic verifies this condition.
if (isa<CXXRecordDecl>(decl_ctx) && exports_symbols)
decl->setAnonymousStructOrUnion(true);
}
if (decl) {
if (metadata)
SetMetadata(decl, *metadata);
if (access_type != eAccessNone)
decl->setAccess(ConvertAccessTypeToAccessSpecifier(access_type));
if (decl_ctx)
decl_ctx->addDecl(decl);
return GetType(ast.getTagDeclType(decl));
}
return CompilerType();
}
namespace {
bool IsValueParam(const clang::TemplateArgument &argument) {
return argument.getKind() == TemplateArgument::Integral;
}
}
static TemplateParameterList *CreateTemplateParameterList(
ASTContext &ast,
const TypeSystemClang::TemplateParameterInfos &template_param_infos,
llvm::SmallVector<NamedDecl *, 8> &template_param_decls) {
const bool parameter_pack = false;
const bool is_typename = false;
const unsigned depth = 0;
const size_t num_template_params = template_param_infos.args.size();
DeclContext *const decl_context =
ast.getTranslationUnitDecl(); // Is this the right decl context?,
for (size_t i = 0; i < num_template_params; ++i) {
const char *name = template_param_infos.names[i];
IdentifierInfo *identifier_info = nullptr;
if (name && name[0])
identifier_info = &ast.Idents.get(name);
if (IsValueParam(template_param_infos.args[i])) {
QualType template_param_type =
template_param_infos.args[i].getIntegralType();
template_param_decls.push_back(NonTypeTemplateParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth, i,
identifier_info, template_param_type, parameter_pack,
ast.getTrivialTypeSourceInfo(template_param_type)));
} else {
template_param_decls.push_back(TemplateTypeParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth, i,
identifier_info, is_typename, parameter_pack));
}
}
if (template_param_infos.packed_args) {
IdentifierInfo *identifier_info = nullptr;
if (template_param_infos.pack_name && template_param_infos.pack_name[0])
identifier_info = &ast.Idents.get(template_param_infos.pack_name);
const bool parameter_pack_true = true;
if (!template_param_infos.packed_args->args.empty() &&
IsValueParam(template_param_infos.packed_args->args[0])) {
QualType template_param_type =
template_param_infos.packed_args->args[0].getIntegralType();
template_param_decls.push_back(NonTypeTemplateParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth,
num_template_params, identifier_info, template_param_type,
parameter_pack_true,
ast.getTrivialTypeSourceInfo(template_param_type)));
} else {
template_param_decls.push_back(TemplateTypeParmDecl::Create(
ast, decl_context, SourceLocation(), SourceLocation(), depth,
num_template_params, identifier_info, is_typename,
parameter_pack_true));
}
}
clang::Expr *const requires_clause = nullptr; // TODO: Concepts
TemplateParameterList *template_param_list = TemplateParameterList::Create(
ast, SourceLocation(), SourceLocation(), template_param_decls,
SourceLocation(), requires_clause);
return template_param_list;
}
clang::FunctionTemplateDecl *TypeSystemClang::CreateFunctionTemplateDecl(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
clang::FunctionDecl *func_decl,
const TemplateParameterInfos &template_param_infos) {
// /// Create a function template node.
ASTContext &ast = getASTContext();
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList(
ast, template_param_infos, template_param_decls);
FunctionTemplateDecl *func_tmpl_decl =
FunctionTemplateDecl::CreateDeserialized(ast, 0);
func_tmpl_decl->setDeclContext(decl_ctx);
func_tmpl_decl->setLocation(func_decl->getLocation());
func_tmpl_decl->setDeclName(func_decl->getDeclName());
func_tmpl_decl->init(func_decl, template_param_list);
SetOwningModule(func_tmpl_decl, owning_module);
for (size_t i = 0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count; ++i) {
// TODO: verify which decl context we should put template_param_decls into..
template_param_decls[i]->setDeclContext(func_decl);
}
// Function templates inside a record need to have an access specifier.
// It doesn't matter what access specifier we give the template as LLDB
// anyway allows accessing everything inside a record.
if (decl_ctx->isRecord())
func_tmpl_decl->setAccess(clang::AccessSpecifier::AS_public);
return func_tmpl_decl;
}
void TypeSystemClang::CreateFunctionTemplateSpecializationInfo(
FunctionDecl *func_decl, clang::FunctionTemplateDecl *func_tmpl_decl,
const TemplateParameterInfos &infos) {
TemplateArgumentList *template_args_ptr =
TemplateArgumentList::CreateCopy(func_decl->getASTContext(), infos.args);
func_decl->setFunctionTemplateSpecialization(func_tmpl_decl,
template_args_ptr, nullptr);
}
ClassTemplateDecl *TypeSystemClang::CreateClassTemplateDecl(
DeclContext *decl_ctx, OptionalClangModuleID owning_module,
lldb::AccessType access_type, const char *class_name, int kind,
const TemplateParameterInfos &template_param_infos) {
ASTContext &ast = getASTContext();
ClassTemplateDecl *class_template_decl = nullptr;
if (decl_ctx == nullptr)
decl_ctx = ast.getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast.Idents.get(class_name);
DeclarationName decl_name(&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result) {
class_template_decl = dyn_cast<clang::ClassTemplateDecl>(decl);
if (class_template_decl)
return class_template_decl;
}
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList(
ast, template_param_infos, template_param_decls);
CXXRecordDecl *template_cxx_decl = CXXRecordDecl::CreateDeserialized(ast, 0);
template_cxx_decl->setTagKind(static_cast<TagDecl::TagKind>(kind));
// What decl context do we use here? TU? The actual decl context?
template_cxx_decl->setDeclContext(decl_ctx);
template_cxx_decl->setDeclName(decl_name);
SetOwningModule(template_cxx_decl, owning_module);
for (size_t i = 0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count; ++i) {
template_param_decls[i]->setDeclContext(template_cxx_decl);
}
// With templated classes, we say that a class is templated with
// specializations, but that the bare class has no functions.
// template_cxx_decl->startDefinition();
// template_cxx_decl->completeDefinition();
class_template_decl = ClassTemplateDecl::CreateDeserialized(ast, 0);
// What decl context do we use here? TU? The actual decl context?
class_template_decl->setDeclContext(decl_ctx);
class_template_decl->setDeclName(decl_name);
class_template_decl->init(template_cxx_decl, template_param_list);
template_cxx_decl->setDescribedClassTemplate(class_template_decl);
SetOwningModule(class_template_decl, owning_module);
if (class_template_decl) {
if (access_type != eAccessNone)
class_template_decl->setAccess(
ConvertAccessTypeToAccessSpecifier(access_type));
decl_ctx->addDecl(class_template_decl);
VerifyDecl(class_template_decl);
}
return class_template_decl;
}
TemplateTemplateParmDecl *
TypeSystemClang::CreateTemplateTemplateParmDecl(const char *template_name) {
ASTContext &ast = getASTContext();
auto *decl_ctx = ast.getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast.Idents.get(template_name);
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TypeSystemClang::TemplateParameterInfos template_param_infos;
TemplateParameterList *template_param_list = CreateTemplateParameterList(
ast, template_param_infos, template_param_decls);
// LLDB needs to create those decls only to be able to display a
// type that includes a template template argument. Only the name matters for
// this purpose, so we use dummy values for the other characteristics of the
// type.
return TemplateTemplateParmDecl::Create(
ast, decl_ctx, SourceLocation(),
/*Depth*/ 0, /*Position*/ 0,
/*IsParameterPack*/ false, &identifier_info, template_param_list);
}
ClassTemplateSpecializationDecl *
TypeSystemClang::CreateClassTemplateSpecializationDecl(
DeclContext *decl_ctx, OptionalClangModuleID owning_module,
ClassTemplateDecl *class_template_decl, int kind,
const TemplateParameterInfos &template_param_infos) {
ASTContext &ast = getASTContext();
llvm::SmallVector<clang::TemplateArgument, 2> args(
template_param_infos.args.size() +
(template_param_infos.packed_args ? 1 : 0));
std::copy(template_param_infos.args.begin(), template_param_infos.args.end(),
args.begin());
if (template_param_infos.packed_args) {
args[args.size() - 1] = TemplateArgument::CreatePackCopy(
ast, template_param_infos.packed_args->args);
}
ClassTemplateSpecializationDecl *class_template_specialization_decl =
ClassTemplateSpecializationDecl::CreateDeserialized(ast, 0);
class_template_specialization_decl->setTagKind(
static_cast<TagDecl::TagKind>(kind));
class_template_specialization_decl->setDeclContext(decl_ctx);
class_template_specialization_decl->setInstantiationOf(class_template_decl);
class_template_specialization_decl->setTemplateArgs(
TemplateArgumentList::CreateCopy(ast, args));
ast.getTypeDeclType(class_template_specialization_decl, nullptr);
class_template_specialization_decl->setDeclName(
class_template_decl->getDeclName());
SetOwningModule(class_template_specialization_decl, owning_module);
decl_ctx->addDecl(class_template_specialization_decl);
class_template_specialization_decl->setSpecializationKind(
TSK_ExplicitSpecialization);
return class_template_specialization_decl;
}
CompilerType TypeSystemClang::CreateClassTemplateSpecializationType(
ClassTemplateSpecializationDecl *class_template_specialization_decl) {
if (class_template_specialization_decl) {
ASTContext &ast = getASTContext();
return GetType(ast.getTagDeclType(class_template_specialization_decl));
}
return CompilerType();
}
static inline bool check_op_param(bool is_method,
clang::OverloadedOperatorKind op_kind,
bool unary, bool binary,
uint32_t num_params) {
// Special-case call since it can take any number of operands
if (op_kind == OO_Call)
return true;
// The parameter count doesn't include "this"
if (is_method)
++num_params;
if (num_params == 1)
return unary;
if (num_params == 2)
return binary;
else
return false;
}
bool TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
bool is_method, clang::OverloadedOperatorKind op_kind,
uint32_t num_params) {
switch (op_kind) {
default:
break;
// C++ standard allows any number of arguments to new/delete
case OO_New:
case OO_Array_New:
case OO_Delete:
case OO_Array_Delete:
return true;
}
#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \
case OO_##Name: \
return check_op_param(is_method, op_kind, Unary, Binary, num_params);
switch (op_kind) {
#include "clang/Basic/OperatorKinds.def"
default:
break;
}
return false;
}
clang::AccessSpecifier
TypeSystemClang::UnifyAccessSpecifiers(clang::AccessSpecifier lhs,
clang::AccessSpecifier rhs) {
// Make the access equal to the stricter of the field and the nested field's
// access
if (lhs == AS_none || rhs == AS_none)
return AS_none;
if (lhs == AS_private || rhs == AS_private)
return AS_private;
if (lhs == AS_protected || rhs == AS_protected)
return AS_protected;
return AS_public;
}
bool TypeSystemClang::FieldIsBitfield(FieldDecl *field,
uint32_t &bitfield_bit_size) {
ASTContext &ast = getASTContext();
if (field == nullptr)
return false;
if (field->isBitField()) {
Expr *bit_width_expr = field->getBitWidth();
if (bit_width_expr) {
if (Optional<llvm::APSInt> bit_width_apsint =
bit_width_expr->getIntegerConstantExpr(ast)) {
bitfield_bit_size = bit_width_apsint->getLimitedValue(UINT32_MAX);
return true;
}
}
}
return false;
}
bool TypeSystemClang::RecordHasFields(const RecordDecl *record_decl) {
if (record_decl == nullptr)
return false;
if (!record_decl->field_empty())
return true;
// No fields, lets check this is a CXX record and check the base classes
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(
base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl))
return true;
}
}
return false;
}
#pragma mark Objective-C Classes
CompilerType TypeSystemClang::CreateObjCClass(
llvm::StringRef name, clang::DeclContext *decl_ctx,
OptionalClangModuleID owning_module, bool isForwardDecl, bool isInternal,
ClangASTMetadata *metadata) {
ASTContext &ast = getASTContext();
assert(!name.empty());
if (!decl_ctx)
decl_ctx = ast.getTranslationUnitDecl();
ObjCInterfaceDecl *decl = ObjCInterfaceDecl::CreateDeserialized(ast, 0);
decl->setDeclContext(decl_ctx);
decl->setDeclName(&ast.Idents.get(name));
/*isForwardDecl,*/
decl->setImplicit(isInternal);
SetOwningModule(decl, owning_module);
if (decl && metadata)
SetMetadata(decl, *metadata);
return GetType(ast.getObjCInterfaceType(decl));
}
static inline bool BaseSpecifierIsEmpty(const CXXBaseSpecifier *b) {
return !TypeSystemClang::RecordHasFields(b->getType()->getAsCXXRecordDecl());
}
uint32_t
TypeSystemClang::GetNumBaseClasses(const CXXRecordDecl *cxx_record_decl,
bool omit_empty_base_classes) {
uint32_t num_bases = 0;
if (cxx_record_decl) {
if (omit_empty_base_classes) {
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
// Skip empty base classes
if (BaseSpecifierIsEmpty(base_class))
continue;
++num_bases;
}
} else
num_bases = cxx_record_decl->getNumBases();
}
return num_bases;
}
#pragma mark Namespace Declarations
NamespaceDecl *TypeSystemClang::GetUniqueNamespaceDeclaration(
const char *name, clang::DeclContext *decl_ctx,
OptionalClangModuleID owning_module, bool is_inline) {
NamespaceDecl *namespace_decl = nullptr;
ASTContext &ast = getASTContext();
TranslationUnitDecl *translation_unit_decl = ast.getTranslationUnitDecl();
if (!decl_ctx)
decl_ctx = translation_unit_decl;
if (name) {
IdentifierInfo &identifier_info = ast.Idents.get(name);
DeclarationName decl_name(&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result) {
namespace_decl = dyn_cast<clang::NamespaceDecl>(decl);
if (namespace_decl)
return namespace_decl;
}
namespace_decl =
NamespaceDecl::Create(ast, decl_ctx, is_inline, SourceLocation(),
SourceLocation(), &identifier_info, nullptr);
decl_ctx->addDecl(namespace_decl);
} else {
if (decl_ctx == translation_unit_decl) {
namespace_decl = translation_unit_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl =
NamespaceDecl::Create(ast, decl_ctx, false, SourceLocation(),
SourceLocation(), nullptr, nullptr);
translation_unit_decl->setAnonymousNamespace(namespace_decl);
translation_unit_decl->addDecl(namespace_decl);
assert(namespace_decl == translation_unit_decl->getAnonymousNamespace());
} else {
NamespaceDecl *parent_namespace_decl = cast<NamespaceDecl>(decl_ctx);
if (parent_namespace_decl) {
namespace_decl = parent_namespace_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl =
NamespaceDecl::Create(ast, decl_ctx, false, SourceLocation(),
SourceLocation(), nullptr, nullptr);
parent_namespace_decl->setAnonymousNamespace(namespace_decl);
parent_namespace_decl->addDecl(namespace_decl);
assert(namespace_decl ==
parent_namespace_decl->getAnonymousNamespace());
} else {
assert(false && "GetUniqueNamespaceDeclaration called with no name and "
"no namespace as decl_ctx");
}
}
}
// Note: namespaces can span multiple modules, so perhaps this isn't a good
// idea.
SetOwningModule(namespace_decl, owning_module);
VerifyDecl(namespace_decl);
return namespace_decl;
}
clang::BlockDecl *
TypeSystemClang::CreateBlockDeclaration(clang::DeclContext *ctx,
OptionalClangModuleID owning_module) {
if (ctx) {
clang::BlockDecl *decl =
clang::BlockDecl::CreateDeserialized(getASTContext(), 0);
decl->setDeclContext(ctx);
ctx->addDecl(decl);
SetOwningModule(decl, owning_module);
return decl;
}
return nullptr;
}
clang::DeclContext *FindLCABetweenDecls(clang::DeclContext *left,
clang::DeclContext *right,
clang::DeclContext *root) {
if (root == nullptr)
return nullptr;
std::set<clang::DeclContext *> path_left;
for (clang::DeclContext *d = left; d != nullptr; d = d->getParent())
path_left.insert(d);
for (clang::DeclContext *d = right; d != nullptr; d = d->getParent())
if (path_left.find(d) != path_left.end())
return d;
return nullptr;
}
clang::UsingDirectiveDecl *TypeSystemClang::CreateUsingDirectiveDeclaration(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
clang::NamespaceDecl *ns_decl) {
if (decl_ctx && ns_decl) {
auto *translation_unit = getASTContext().getTranslationUnitDecl();
clang::UsingDirectiveDecl *using_decl = clang::UsingDirectiveDecl::Create(
getASTContext(), decl_ctx, clang::SourceLocation(),
clang::SourceLocation(), clang::NestedNameSpecifierLoc(),
clang::SourceLocation(), ns_decl,
FindLCABetweenDecls(decl_ctx, ns_decl,
translation_unit));
decl_ctx->addDecl(using_decl);
SetOwningModule(using_decl, owning_module);
return using_decl;
}
return nullptr;
}
clang::UsingDecl *
TypeSystemClang::CreateUsingDeclaration(clang::DeclContext *current_decl_ctx,
OptionalClangModuleID owning_module,
clang::NamedDecl *target) {
if (current_decl_ctx && target) {
clang::UsingDecl *using_decl = clang::UsingDecl::Create(
getASTContext(), current_decl_ctx, clang::SourceLocation(),
clang::NestedNameSpecifierLoc(), clang::DeclarationNameInfo(), false);
SetOwningModule(using_decl, owning_module);
clang::UsingShadowDecl *shadow_decl = clang::UsingShadowDecl::Create(
getASTContext(), current_decl_ctx, clang::SourceLocation(), using_decl,
target);
SetOwningModule(shadow_decl, owning_module);
using_decl->addShadowDecl(shadow_decl);
current_decl_ctx->addDecl(using_decl);
return using_decl;
}
return nullptr;
}
clang::VarDecl *TypeSystemClang::CreateVariableDeclaration(
clang::DeclContext *decl_context, OptionalClangModuleID owning_module,
const char *name, clang::QualType type) {
if (decl_context) {
clang::VarDecl *var_decl =
clang::VarDecl::CreateDeserialized(getASTContext(), 0);
var_decl->setDeclContext(decl_context);
if (name && name[0])
var_decl->setDeclName(&getASTContext().Idents.getOwn(name));
var_decl->setType(type);
SetOwningModule(var_decl, owning_module);
var_decl->setAccess(clang::AS_public);
decl_context->addDecl(var_decl);
return var_decl;
}
return nullptr;
}
lldb::opaque_compiler_type_t
TypeSystemClang::GetOpaqueCompilerType(clang::ASTContext *ast,
lldb::BasicType basic_type) {
switch (basic_type) {
case eBasicTypeVoid:
return ast->VoidTy.getAsOpaquePtr();
case eBasicTypeChar:
return ast->CharTy.getAsOpaquePtr();
case eBasicTypeSignedChar:
return ast->SignedCharTy.getAsOpaquePtr();
case eBasicTypeUnsignedChar:
return ast->UnsignedCharTy.getAsOpaquePtr();
case eBasicTypeWChar:
return ast->getWCharType().getAsOpaquePtr();
case eBasicTypeSignedWChar:
return ast->getSignedWCharType().getAsOpaquePtr();
case eBasicTypeUnsignedWChar:
return ast->getUnsignedWCharType().getAsOpaquePtr();
case eBasicTypeChar16:
return ast->Char16Ty.getAsOpaquePtr();
case eBasicTypeChar32:
return ast->Char32Ty.getAsOpaquePtr();
case eBasicTypeShort:
return ast->ShortTy.getAsOpaquePtr();
case eBasicTypeUnsignedShort:
return ast->UnsignedShortTy.getAsOpaquePtr();
case eBasicTypeInt:
return ast->IntTy.getAsOpaquePtr();
case eBasicTypeUnsignedInt:
return ast->UnsignedIntTy.getAsOpaquePtr();
case eBasicTypeLong:
return ast->LongTy.getAsOpaquePtr();
case eBasicTypeUnsignedLong:
return ast->UnsignedLongTy.getAsOpaquePtr();
case eBasicTypeLongLong:
return ast->LongLongTy.getAsOpaquePtr();
case eBasicTypeUnsignedLongLong:
return ast->UnsignedLongLongTy.getAsOpaquePtr();
case eBasicTypeInt128:
return ast->Int128Ty.getAsOpaquePtr();
case eBasicTypeUnsignedInt128:
return ast->UnsignedInt128Ty.getAsOpaquePtr();
case eBasicTypeBool:
return ast->BoolTy.getAsOpaquePtr();
case eBasicTypeHalf:
return ast->HalfTy.getAsOpaquePtr();
case eBasicTypeFloat:
return ast->FloatTy.getAsOpaquePtr();
case eBasicTypeDouble:
return ast->DoubleTy.getAsOpaquePtr();
case eBasicTypeLongDouble:
return ast->LongDoubleTy.getAsOpaquePtr();
case eBasicTypeFloatComplex:
return ast->FloatComplexTy.getAsOpaquePtr();
case eBasicTypeDoubleComplex:
return ast->DoubleComplexTy.getAsOpaquePtr();
case eBasicTypeLongDoubleComplex:
return ast->LongDoubleComplexTy.getAsOpaquePtr();
case eBasicTypeObjCID:
return ast->getObjCIdType().getAsOpaquePtr();
case eBasicTypeObjCClass:
return ast->getObjCClassType().getAsOpaquePtr();
case eBasicTypeObjCSel:
return ast->getObjCSelType().getAsOpaquePtr();
case eBasicTypeNullPtr:
return ast->NullPtrTy.getAsOpaquePtr();
default:
return nullptr;
}
}
#pragma mark Function Types
clang::DeclarationName
TypeSystemClang::GetDeclarationName(llvm::StringRef name,
const CompilerType &function_clang_type) {
clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
if (!IsOperator(name, op_kind) || op_kind == clang::NUM_OVERLOADED_OPERATORS)
return DeclarationName(&getASTContext().Idents.get(
name)); // Not operator, but a regular function.
// Check the number of operator parameters. Sometimes we have seen bad DWARF
// that doesn't correctly describe operators and if we try to create a method
// and add it to the class, clang will assert and crash, so we need to make
// sure things are acceptable.
clang::QualType method_qual_type(ClangUtil::GetQualType(function_clang_type));
const clang::FunctionProtoType *function_type =
llvm::dyn_cast<clang::FunctionProtoType>(method_qual_type.getTypePtr());
if (function_type == nullptr)
return clang::DeclarationName();
const bool is_method = false;
const unsigned int num_params = function_type->getNumParams();
if (!TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
is_method, op_kind, num_params))
return clang::DeclarationName();
return getASTContext().DeclarationNames.getCXXOperatorName(op_kind);
}
PrintingPolicy TypeSystemClang::GetTypePrintingPolicy() {
clang::PrintingPolicy printing_policy(getASTContext().getPrintingPolicy());
printing_policy.SuppressTagKeyword = true;
// Inline namespaces are important for some type formatters (e.g., libc++
// and libstdc++ are differentiated by their inline namespaces).
printing_policy.SuppressInlineNamespace = false;
printing_policy.SuppressUnwrittenScope = false;
// Default arguments are also always important for type formatters. Otherwise
// we would need to always specify two type names for the setups where we do
// know the default arguments and where we don't know default arguments.
//
// For example, without this we would need to have formatters for both:
// std::basic_string<char>
// and
// std::basic_string<char, std::char_traits<char>, std::allocator<char> >
// to support setups where LLDB was able to reconstruct default arguments
// (and we then would have suppressed them from the type name) and also setups
// where LLDB wasn't able to reconstruct the default arguments.
printing_policy.SuppressDefaultTemplateArgs = false;
return printing_policy;
}
std::string TypeSystemClang::GetTypeNameForDecl(const NamedDecl *named_decl) {
clang::PrintingPolicy printing_policy = GetTypePrintingPolicy();
std::string result;
llvm::raw_string_ostream os(result);
named_decl->printQualifiedName(os, printing_policy);
return result;
}
FunctionDecl *TypeSystemClang::CreateFunctionDeclaration(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
llvm::StringRef name, const CompilerType &function_clang_type,
clang::StorageClass storage, bool is_inline) {
FunctionDecl *func_decl = nullptr;
ASTContext &ast = getASTContext();
if (!decl_ctx)
decl_ctx = ast.getTranslationUnitDecl();
const bool hasWrittenPrototype = true;
const bool isConstexprSpecified = false;
clang::DeclarationName declarationName =
GetDeclarationName(name, function_clang_type);
func_decl = FunctionDecl::CreateDeserialized(ast, 0);
func_decl->setDeclContext(decl_ctx);
func_decl->setDeclName(declarationName);
func_decl->setType(ClangUtil::GetQualType(function_clang_type));
func_decl->setStorageClass(storage);
func_decl->setInlineSpecified(is_inline);
func_decl->setHasWrittenPrototype(hasWrittenPrototype);
func_decl->setConstexprKind(isConstexprSpecified
? ConstexprSpecKind::Constexpr
: ConstexprSpecKind::Unspecified);
SetOwningModule(func_decl, owning_module);
if (func_decl)
decl_ctx->addDecl(func_decl);
VerifyDecl(func_decl);
return func_decl;
}
CompilerType
TypeSystemClang::CreateFunctionType(const CompilerType &result_type,
const CompilerType *args, unsigned num_args,
bool is_variadic, unsigned type_quals,
clang::CallingConv cc) {
if (!result_type || !ClangUtil::IsClangType(result_type))
return CompilerType(); // invalid return type
std::vector<QualType> qual_type_args;
if (num_args > 0 && args == nullptr)
return CompilerType(); // invalid argument array passed in
// Verify that all arguments are valid and the right type
for (unsigned i = 0; i < num_args; ++i) {
if (args[i]) {
// Make sure we have a clang type in args[i] and not a type from another
// language whose name might match
const bool is_clang_type = ClangUtil::IsClangType(args[i]);
lldbassert(is_clang_type);
if (is_clang_type)
qual_type_args.push_back(ClangUtil::GetQualType(args[i]));
else
return CompilerType(); // invalid argument type (must be a clang type)
} else
return CompilerType(); // invalid argument type (empty)
}
// TODO: Detect calling convention in DWARF?
FunctionProtoType::ExtProtoInfo proto_info;
proto_info.ExtInfo = cc;
proto_info.Variadic = is_variadic;
proto_info.ExceptionSpec = EST_None;
proto_info.TypeQuals = clang::Qualifiers::fromFastMask(type_quals);
proto_info.RefQualifier = RQ_None;
return GetType(getASTContext().getFunctionType(
ClangUtil::GetQualType(result_type), qual_type_args, proto_info));
}
ParmVarDecl *TypeSystemClang::CreateParameterDeclaration(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
const char *name, const CompilerType &param_type, int storage,
bool add_decl) {
ASTContext &ast = getASTContext();
auto *decl = ParmVarDecl::CreateDeserialized(ast, 0);
decl->setDeclContext(decl_ctx);
if (name && name[0])
decl->setDeclName(&ast.Idents.get(name));
decl->setType(ClangUtil::GetQualType(param_type));
decl->setStorageClass(static_cast<clang::StorageClass>(storage));
SetOwningModule(decl, owning_module);
if (add_decl)
decl_ctx->addDecl(decl);
return decl;
}
void TypeSystemClang::SetFunctionParameters(FunctionDecl *function_decl,
ParmVarDecl **params,
unsigned num_params) {
if (function_decl)
function_decl->setParams(ArrayRef<ParmVarDecl *>(params, num_params));
}
CompilerType
TypeSystemClang::CreateBlockPointerType(const CompilerType &function_type) {
QualType block_type = m_ast_up->getBlockPointerType(
clang::QualType::getFromOpaquePtr(function_type.GetOpaqueQualType()));
return GetType(block_type);
}
#pragma mark Array Types
CompilerType TypeSystemClang::CreateArrayType(const CompilerType &element_type,
size_t element_count,
bool is_vector) {
if (element_type.IsValid()) {
ASTContext &ast = getASTContext();
if (is_vector) {
return GetType(ast.getExtVectorType(ClangUtil::GetQualType(element_type),
element_count));
} else {
llvm::APInt ap_element_count(64, element_count);
if (element_count == 0) {
return GetType(ast.getIncompleteArrayType(
ClangUtil::GetQualType(element_type), clang::ArrayType::Normal, 0));
} else {
return GetType(ast.getConstantArrayType(
ClangUtil::GetQualType(element_type), ap_element_count, nullptr,
clang::ArrayType::Normal, 0));
}
}
}
return CompilerType();
}
CompilerType TypeSystemClang::CreateStructForIdentifier(
ConstString type_name,
const std::initializer_list<std::pair<const char *, CompilerType>>
&type_fields,
bool packed) {
CompilerType type;
if (!type_name.IsEmpty() &&
(type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name))
.IsValid()) {
lldbassert(0 && "Trying to create a type for an existing name");
return type;
}
type = CreateRecordType(nullptr, OptionalClangModuleID(), lldb::eAccessPublic,
type_name.GetCString(), clang::TTK_Struct,
lldb::eLanguageTypeC);
StartTagDeclarationDefinition(type);
for (const auto &field : type_fields)
AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic,
0);
if (packed)
SetIsPacked(type);
CompleteTagDeclarationDefinition(type);
return type;
}
CompilerType TypeSystemClang::GetOrCreateStructForIdentifier(
ConstString type_name,
const std::initializer_list<std::pair<const char *, CompilerType>>
&type_fields,
bool packed) {
CompilerType type;
if ((type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name)).IsValid())
return type;
return CreateStructForIdentifier(type_name, type_fields, packed);
}
#pragma mark Enumeration Types
CompilerType TypeSystemClang::CreateEnumerationType(
const char *name, clang::DeclContext *decl_ctx,
OptionalClangModuleID owning_module, const Declaration &decl,
const CompilerType &integer_clang_type, bool is_scoped) {
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext &ast = getASTContext();
// TODO: ask about these...
// const bool IsFixed = false;
EnumDecl *enum_decl = EnumDecl::CreateDeserialized(ast, 0);
enum_decl->setDeclContext(decl_ctx);
if (name && name[0])
enum_decl->setDeclName(&ast.Idents.get(name));
enum_decl->setScoped(is_scoped);
enum_decl->setScopedUsingClassTag(is_scoped);
enum_decl->setFixed(false);
SetOwningModule(enum_decl, owning_module);
if (enum_decl) {
if (decl_ctx)
decl_ctx->addDecl(enum_decl);
// TODO: check if we should be setting the promotion type too?
enum_decl->setIntegerType(ClangUtil::GetQualType(integer_clang_type));
enum_decl->setAccess(AS_public); // TODO respect what's in the debug info
return GetType(ast.getTagDeclType(enum_decl));
}
return CompilerType();
}
CompilerType TypeSystemClang::GetIntTypeFromBitSize(size_t bit_size,
bool is_signed) {
clang::ASTContext &ast = getASTContext();
if (is_signed) {
if (bit_size == ast.getTypeSize(ast.SignedCharTy))
return GetType(ast.SignedCharTy);
if (bit_size == ast.getTypeSize(ast.ShortTy))
return GetType(ast.ShortTy);
if (bit_size == ast.getTypeSize(ast.IntTy))
return GetType(ast.IntTy);
if (bit_size == ast.getTypeSize(ast.LongTy))
return GetType(ast.LongTy);
if (bit_size == ast.getTypeSize(ast.LongLongTy))
return GetType(ast.LongLongTy);
if (bit_size == ast.getTypeSize(ast.Int128Ty))
return GetType(ast.Int128Ty);
} else {
if (bit_size == ast.getTypeSize(ast.UnsignedCharTy))
return GetType(ast.UnsignedCharTy);
if (bit_size == ast.getTypeSize(ast.UnsignedShortTy))
return GetType(ast.UnsignedShortTy);
if (bit_size == ast.getTypeSize(ast.UnsignedIntTy))
return GetType(ast.UnsignedIntTy);
if (bit_size == ast.getTypeSize(ast.UnsignedLongTy))
return GetType(ast.UnsignedLongTy);
if (bit_size == ast.getTypeSize(ast.UnsignedLongLongTy))
return GetType(ast.UnsignedLongLongTy);
if (bit_size == ast.getTypeSize(ast.UnsignedInt128Ty))
return GetType(ast.UnsignedInt128Ty);
}
return CompilerType();
}
CompilerType TypeSystemClang::GetPointerSizedIntType(bool is_signed) {
return GetIntTypeFromBitSize(
getASTContext().getTypeSize(getASTContext().VoidPtrTy), is_signed);
}
void TypeSystemClang::DumpDeclContextHiearchy(clang::DeclContext *decl_ctx) {
if (decl_ctx) {
DumpDeclContextHiearchy(decl_ctx->getParent());
clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl_ctx);
if (named_decl) {
printf("%20s: %s\n", decl_ctx->getDeclKindName(),
named_decl->getDeclName().getAsString().c_str());
} else {
printf("%20s\n", decl_ctx->getDeclKindName());
}
}
}
void TypeSystemClang::DumpDeclHiearchy(clang::Decl *decl) {
if (decl == nullptr)
return;
DumpDeclContextHiearchy(decl->getDeclContext());
clang::RecordDecl *record_decl = llvm::dyn_cast<clang::RecordDecl>(decl);
if (record_decl) {
printf("%20s: %s%s\n", decl->getDeclKindName(),
record_decl->getDeclName().getAsString().c_str(),
record_decl->isInjectedClassName() ? " (injected class name)" : "");
} else {
clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>(decl);
if (named_decl) {
printf("%20s: %s\n", decl->getDeclKindName(),
named_decl->getDeclName().getAsString().c_str());
} else {
printf("%20s\n", decl->getDeclKindName());
}
}
}
bool TypeSystemClang::DeclsAreEquivalent(clang::Decl *lhs_decl,
clang::Decl *rhs_decl) {
if (lhs_decl && rhs_decl) {
// Make sure the decl kinds match first
const clang::Decl::Kind lhs_decl_kind = lhs_decl->getKind();
const clang::Decl::Kind rhs_decl_kind = rhs_decl->getKind();
if (lhs_decl_kind == rhs_decl_kind) {
// Now check that the decl contexts kinds are all equivalent before we
// have to check any names of the decl contexts...
clang::DeclContext *lhs_decl_ctx = lhs_decl->getDeclContext();
clang::DeclContext *rhs_decl_ctx = rhs_decl->getDeclContext();
if (lhs_decl_ctx && rhs_decl_ctx) {
while (true) {
if (lhs_decl_ctx && rhs_decl_ctx) {
const clang::Decl::Kind lhs_decl_ctx_kind =
lhs_decl_ctx->getDeclKind();
const clang::Decl::Kind rhs_decl_ctx_kind =
rhs_decl_ctx->getDeclKind();
if (lhs_decl_ctx_kind == rhs_decl_ctx_kind) {
lhs_decl_ctx = lhs_decl_ctx->getParent();
rhs_decl_ctx = rhs_decl_ctx->getParent();
if (lhs_decl_ctx == nullptr && rhs_decl_ctx == nullptr)
break;
} else
return false;
} else
return false;
}
// Now make sure the name of the decls match
clang::NamedDecl *lhs_named_decl =
llvm::dyn_cast<clang::NamedDecl>(lhs_decl);
clang::NamedDecl *rhs_named_decl =
llvm::dyn_cast<clang::NamedDecl>(rhs_decl);
if (lhs_named_decl && rhs_named_decl) {
clang::DeclarationName lhs_decl_name = lhs_named_decl->getDeclName();
clang::DeclarationName rhs_decl_name = rhs_named_decl->getDeclName();
if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) {
if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString())
return false;
} else
return false;
} else
return false;
// We know that the decl context kinds all match, so now we need to
// make sure the names match as well
lhs_decl_ctx = lhs_decl->getDeclContext();
rhs_decl_ctx = rhs_decl->getDeclContext();
while (true) {
switch (lhs_decl_ctx->getDeclKind()) {
case clang::Decl::TranslationUnit:
// We don't care about the translation unit names
return true;
default: {
clang::NamedDecl *lhs_named_decl =
llvm::dyn_cast<clang::NamedDecl>(lhs_decl_ctx);
clang::NamedDecl *rhs_named_decl =
llvm::dyn_cast<clang::NamedDecl>(rhs_decl_ctx);
if (lhs_named_decl && rhs_named_decl) {
clang::DeclarationName lhs_decl_name =
lhs_named_decl->getDeclName();
clang::DeclarationName rhs_decl_name =
rhs_named_decl->getDeclName();
if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) {
if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString())
return false;
} else
return false;
} else
return false;
} break;
}
lhs_decl_ctx = lhs_decl_ctx->getParent();
rhs_decl_ctx = rhs_decl_ctx->getParent();
}
}
}
}
return false;
}
bool TypeSystemClang::GetCompleteDecl(clang::ASTContext *ast,
clang::Decl *decl) {
if (!decl)
return false;
ExternalASTSource *ast_source = ast->getExternalSource();
if (!ast_source)
return false;
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl)) {
if (tag_decl->isCompleteDefinition())
return true;
if (!tag_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(tag_decl);
return !tag_decl->getTypeForDecl()->isIncompleteType();
} else if (clang::ObjCInterfaceDecl *objc_interface_decl =
llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl)) {
if (objc_interface_decl->getDefinition())
return true;
if (!objc_interface_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(objc_interface_decl);
return !objc_interface_decl->getTypeForDecl()->isIncompleteType();
} else {
return false;
}
}
void TypeSystemClang::SetMetadataAsUserID(const clang::Decl *decl,
user_id_t user_id) {
ClangASTMetadata meta_data;
meta_data.SetUserID(user_id);
SetMetadata(decl, meta_data);
}
void TypeSystemClang::SetMetadataAsUserID(const clang::Type *type,
user_id_t user_id) {
ClangASTMetadata meta_data;
meta_data.SetUserID(user_id);
SetMetadata(type, meta_data);
}
void TypeSystemClang::SetMetadata(const clang::Decl *object,
ClangASTMetadata &metadata) {
m_decl_metadata[object] = metadata;
}
void TypeSystemClang::SetMetadata(const clang::Type *object,
ClangASTMetadata &metadata) {
m_type_metadata[object] = metadata;
}
ClangASTMetadata *TypeSystemClang::GetMetadata(const clang::Decl *object) {
auto It = m_decl_metadata.find(object);
if (It != m_decl_metadata.end())
return &It->second;
return nullptr;
}
ClangASTMetadata *TypeSystemClang::GetMetadata(const clang::Type *object) {
auto It = m_type_metadata.find(object);
if (It != m_type_metadata.end())
return &It->second;
return nullptr;
}
bool TypeSystemClang::SetTagTypeKind(clang::QualType tag_qual_type,
int kind) const {
const clang::Type *clang_type = tag_qual_type.getTypePtr();
if (clang_type) {
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(clang_type);
if (tag_type) {
clang::TagDecl *tag_decl =
llvm::dyn_cast<clang::TagDecl>(tag_type->getDecl());
if (tag_decl) {
tag_decl->setTagKind((clang::TagDecl::TagKind)kind);
return true;
}
}
}
return false;
}
bool TypeSystemClang::SetDefaultAccessForRecordFields(
clang::RecordDecl *record_decl, int default_accessibility,
int *assigned_accessibilities, size_t num_assigned_accessibilities) {
if (record_decl) {
uint32_t field_idx;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(),
field_end = record_decl->field_end(), field_idx = 0;
field != field_end; ++field, ++field_idx) {
// If no accessibility was assigned, assign the correct one
if (field_idx < num_assigned_accessibilities &&
assigned_accessibilities[field_idx] == clang::AS_none)
field->setAccess((clang::AccessSpecifier)default_accessibility);
}
return true;
}
return false;
}
clang::DeclContext *
TypeSystemClang::GetDeclContextForType(const CompilerType &type) {
return GetDeclContextForType(ClangUtil::GetQualType(type));
}
/// Aggressively desugar the provided type, skipping past various kinds of
/// syntactic sugar and other constructs one typically wants to ignore.
/// The \p mask argument allows one to skip certain kinds of simplifications,
/// when one wishes to handle a certain kind of type directly.
static QualType
RemoveWrappingTypes(QualType type, ArrayRef<clang::Type::TypeClass> mask = {}) {
while (true) {
if (find(mask, type->getTypeClass()) != mask.end())
return type;
switch (type->getTypeClass()) {
// This is not fully correct as _Atomic is more than sugar, but it is
// sufficient for the purposes we care about.
case clang::Type::Atomic:
type = cast<clang::AtomicType>(type)->getValueType();
break;
case clang::Type::Auto:
case clang::Type::Decltype:
case clang::Type::Elaborated:
case clang::Type::Paren:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::TemplateSpecialization:
case clang::Type::Typedef:
case clang::Type::TypeOf:
case clang::Type::TypeOfExpr:
type = type->getLocallyUnqualifiedSingleStepDesugaredType();
break;
default:
return type;
}
}
}
clang::DeclContext *
TypeSystemClang::GetDeclContextForType(clang::QualType type) {
if (type.isNull())
return nullptr;
clang::QualType qual_type = RemoveWrappingTypes(type.getCanonicalType());
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::ObjCInterface:
return llvm::cast<clang::ObjCObjectType>(qual_type.getTypePtr())
->getInterface();
case clang::Type::ObjCObjectPointer:
return GetDeclContextForType(
llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
->getPointeeType());
case clang::Type::Record:
return llvm::cast<clang::RecordType>(qual_type)->getDecl();
case clang::Type::Enum:
return llvm::cast<clang::EnumType>(qual_type)->getDecl();
default:
break;
}
// No DeclContext in this type...
return nullptr;
}
static bool GetCompleteQualType(clang::ASTContext *ast,
clang::QualType qual_type,
bool allow_completion = true) {
qual_type = RemoveWrappingTypes(qual_type);
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray: {
const clang::ArrayType *array_type =
llvm::dyn_cast<clang::ArrayType>(qual_type.getTypePtr());
if (array_type)
return GetCompleteQualType(ast, array_type->getElementType(),
allow_completion);
} break;
case clang::Type::Record: {
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
if (cxx_record_decl->hasExternalLexicalStorage()) {
const bool is_complete = cxx_record_decl->isCompleteDefinition();
const bool fields_loaded =
cxx_record_decl->hasLoadedFieldsFromExternalStorage();
if (is_complete && fields_loaded)
return true;
if (!allow_completion)
return false;
// Call the field_begin() accessor to for it to use the external source
// to load the fields...
clang::ExternalASTSource *external_ast_source =
ast->getExternalSource();
if (external_ast_source) {
external_ast_source->CompleteType(cxx_record_decl);
if (cxx_record_decl->isCompleteDefinition()) {
cxx_record_decl->field_begin();
cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true);
}
}
}
}
const clang::TagType *tag_type =
llvm::cast<clang::TagType>(qual_type.getTypePtr());
return !tag_type->isIncompleteType();
} break;
case clang::Type::Enum: {
const clang::TagType *tag_type =
llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type) {
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl) {
if (tag_decl->getDefinition())
return true;
if (!allow_completion)
return false;
if (tag_decl->hasExternalLexicalStorage()) {
if (ast) {
clang::ExternalASTSource *external_ast_source =
ast->getExternalSource();
if (external_ast_source) {
external_ast_source->CompleteType(tag_decl);
return !tag_type->isIncompleteType();
}
}
}
return false;
}
}
} break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface: {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
// We currently can't complete objective C types through the newly added
// ASTContext because it only supports TagDecl objects right now...
if (class_interface_decl) {
if (class_interface_decl->getDefinition())
return true;
if (!allow_completion)
return false;
if (class_interface_decl->hasExternalLexicalStorage()) {
if (ast) {
clang::ExternalASTSource *external_ast_source =
ast->getExternalSource();
if (external_ast_source) {
external_ast_source->CompleteType(class_interface_decl);
return !objc_class_type->isIncompleteType();
}
}
}
return false;
}
}
} break;
case clang::Type::Attributed:
return GetCompleteQualType(
ast, llvm::cast<clang::AttributedType>(qual_type)->getModifiedType(),
allow_completion);
default:
break;
}
return true;
}
static clang::ObjCIvarDecl::AccessControl
ConvertAccessTypeToObjCIvarAccessControl(AccessType access) {
switch (access) {
case eAccessNone:
return clang::ObjCIvarDecl::None;
case eAccessPublic:
return clang::ObjCIvarDecl::Public;
case eAccessPrivate:
return clang::ObjCIvarDecl::Private;
case eAccessProtected:
return clang::ObjCIvarDecl::Protected;
case eAccessPackage:
return clang::ObjCIvarDecl::Package;
}
return clang::ObjCIvarDecl::None;
}
// Tests
#ifndef NDEBUG
bool TypeSystemClang::Verify(lldb::opaque_compiler_type_t type) {
return !type || llvm::isa<clang::Type>(GetQualType(type).getTypePtr());
}
#endif
bool TypeSystemClang::IsAggregateType(lldb::opaque_compiler_type_t type) {
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
case clang::Type::ConstantArray:
case clang::Type::ExtVector:
case clang::Type::Vector:
case clang::Type::Record:
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return true;
default:
break;
}
// The clang type does have a value
return false;
}
bool TypeSystemClang::IsAnonymousType(lldb::opaque_compiler_type_t type) {
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record: {
if (const clang::RecordType *record_type =
llvm::dyn_cast_or_null<clang::RecordType>(
qual_type.getTypePtrOrNull())) {
if (const clang::RecordDecl *record_decl = record_type->getDecl()) {
return record_decl->isAnonymousStructOrUnion();
}
}
break;
}
default:
break;
}
// The clang type does have a value
return false;
}
bool TypeSystemClang::IsArrayType(lldb::opaque_compiler_type_t type,
CompilerType *element_type_ptr,
uint64_t *size, bool *is_incomplete) {
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
default:
break;
case clang::Type::ConstantArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType(
this, llvm::cast<clang::ConstantArrayType>(qual_type)
->getElementType()
.getAsOpaquePtr());
if (size)
*size = llvm::cast<clang::ConstantArrayType>(qual_type)
->getSize()
.getLimitedValue(ULLONG_MAX);
if (is_incomplete)
*is_incomplete = false;
return true;
case clang::Type::IncompleteArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType(
this, llvm::cast<clang::IncompleteArrayType>(qual_type)
->getElementType()
.getAsOpaquePtr());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = true;
return true;
case clang::Type::VariableArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType(
this, llvm::cast<clang::VariableArrayType>(qual_type)
->getElementType()
.getAsOpaquePtr());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return true;
case clang::Type::DependentSizedArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType(
this, llvm::cast<clang::DependentSizedArrayType>(qual_type)
->getElementType()
.getAsOpaquePtr());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return true;
}
if (element_type_ptr)
element_type_ptr->Clear();
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return false;
}
bool TypeSystemClang::IsVectorType(lldb::opaque_compiler_type_t type,
CompilerType *element_type, uint64_t *size) {
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Vector: {
const clang::VectorType *vector_type =
qual_type->getAs<clang::VectorType>();
if (vector_type) {
if (size)
*size = vector_type->getNumElements();
if (element_type)
*element_type = GetType(vector_type->getElementType());
}
return true;
} break;
case clang::Type::ExtVector: {
const clang::ExtVectorType *ext_vector_type =
qual_type->getAs<clang::ExtVectorType>();
if (ext_vector_type) {
if (size)
*size = ext_vector_type->getNumElements();
if (element_type)
*element_type =
CompilerType(this, ext_vector_type->getElementType().getAsOpaquePtr());
}
return true;
}
default:
break;
}
return false;
}
bool TypeSystemClang::IsRuntimeGeneratedType(
lldb::opaque_compiler_type_t type) {
clang::DeclContext *decl_ctx = GetDeclContextForType(GetQualType(type));
if (!decl_ctx)
return false;
if (!llvm::isa<clang::ObjCInterfaceDecl>(decl_ctx))
return false;
clang::ObjCInterfaceDecl *result_iface_decl =
llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl_ctx);
ClangASTMetadata *ast_metadata = GetMetadata(result_iface_decl);
if (!ast_metadata)
return false;
return (ast_metadata->GetISAPtr() != 0);
}
bool TypeSystemClang::IsCharType(lldb::opaque_compiler_type_t type) {
return GetQualType(type).getUnqualifiedType()->isCharType();
}
bool TypeSystemClang::IsCompleteType(lldb::opaque_compiler_type_t type) {
const bool allow_completion = false;
return GetCompleteQualType(&getASTContext(), GetQualType(type),
allow_completion);
}
bool TypeSystemClang::IsConst(lldb::opaque_compiler_type_t type) {
return GetQualType(type).isConstQualified();
}
bool TypeSystemClang::IsCStringType(lldb::opaque_compiler_type_t type,
uint32_t &length) {
CompilerType pointee_or_element_clang_type;
length = 0;
Flags type_flags(GetTypeInfo(type, &pointee_or_element_clang_type));
if (!pointee_or_element_clang_type.IsValid())
return false;
if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer)) {
if (pointee_or_element_clang_type.IsCharType()) {
if (type_flags.Test(eTypeIsArray)) {
// We know the size of the array and it could be a C string since it is
// an array of characters
length = llvm::cast<clang::ConstantArrayType>(
GetCanonicalQualType(type).getTypePtr())
->getSize()
.getLimitedValue();
}
return true;
}
}
return false;
}
bool TypeSystemClang::IsFunctionType(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
if (qual_type->isFunctionType()) {
return true;
}
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
default:
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference: {
const clang::ReferenceType *reference_type =
llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsFunctionType(
reference_type->getPointeeType().getAsOpaquePtr());
} break;
}
}
return false;
}
// Used to detect "Homogeneous Floating-point Aggregates"
uint32_t
TypeSystemClang::IsHomogeneousAggregate(lldb::opaque_compiler_type_t type,
CompilerType *base_type_ptr) {
if (!type)
return 0;
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
if (cxx_record_decl->getNumBases() || cxx_record_decl->isDynamicClass())
return 0;
}
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
if (record_type) {
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl) {
// We are looking for a structure that contains only floating point
// types
clang::RecordDecl::field_iterator field_pos,
field_end = record_decl->field_end();
uint32_t num_fields = 0;
bool is_hva = false;
bool is_hfa = false;
clang::QualType base_qual_type;
uint64_t base_bitwidth = 0;
for (field_pos = record_decl->field_begin(); field_pos != field_end;
++field_pos) {
clang::QualType field_qual_type = field_pos->getType();
uint64_t field_bitwidth = getASTContext().getTypeSize(qual_type);
if (field_qual_type->isFloatingType()) {
if (field_qual_type->isComplexType())
return 0;
else {
if (num_fields == 0)
base_qual_type = field_qual_type;
else {
if (is_hva)
return 0;
is_hfa = true;
if (field_qual_type.getTypePtr() !=
base_qual_type.getTypePtr())
return 0;
}
}
} else if (field_qual_type->isVectorType() ||
field_qual_type->isExtVectorType()) {
if (num_fields == 0) {
base_qual_type = field_qual_type;
base_bitwidth = field_bitwidth;
} else {
if (is_hfa)
return 0;
is_hva = true;
if (base_bitwidth != field_bitwidth)
return 0;
if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr())
return 0;
}
} else
return 0;
++num_fields;
}
if (base_type_ptr)
*base_type_ptr = CompilerType(this, base_qual_type.getAsOpaquePtr());
return num_fields;
}
}
}
break;
default:
break;
}
return 0;
}
size_t TypeSystemClang::GetNumberOfFunctionArguments(
lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::FunctionProtoType *func =
llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
return func->getNumParams();
}
return 0;
}
CompilerType
TypeSystemClang::GetFunctionArgumentAtIndex(lldb::opaque_compiler_type_t type,
const size_t index) {
if (type) {
clang::QualType qual_type(GetQualType(type));
const clang::FunctionProtoType *func =
llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func) {
if (index < func->getNumParams())
return CompilerType(this, func->getParamType(index).getAsOpaquePtr());
}
}
return CompilerType();
}
bool TypeSystemClang::IsFunctionPointerType(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
if (qual_type->isFunctionPointerType())
return true;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
default:
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference: {
const clang::ReferenceType *reference_type =
llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsFunctionPointerType(
reference_type->getPointeeType().getAsOpaquePtr());
} break;
}
}
return false;
}
bool TypeSystemClang::IsBlockPointerType(
lldb::opaque_compiler_type_t type,
CompilerType *function_pointer_type_ptr) {
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
if (qual_type->isBlockPointerType()) {
if (function_pointer_type_ptr) {
const clang::BlockPointerType *block_pointer_type =
qual_type->getAs<clang::BlockPointerType>();
QualType pointee_type = block_pointer_type->getPointeeType();
QualType function_pointer_type = m_ast_up->getPointerType(pointee_type);
*function_pointer_type_ptr =
CompilerType(this, function_pointer_type.getAsOpaquePtr());
}
return true;
}
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
default:
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference: {
const clang::ReferenceType *reference_type =
llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsBlockPointerType(
reference_type->getPointeeType().getAsOpaquePtr(),
function_pointer_type_ptr);
} break;
}
}
return false;
}
bool TypeSystemClang::IsIntegerType(lldb::opaque_compiler_type_t type,
bool &is_signed) {
if (!type)
return false;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::BuiltinType *builtin_type =
llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal());
if (builtin_type) {
if (builtin_type->isInteger()) {
is_signed = builtin_type->isSignedInteger();
return true;
}
}
return false;
}
bool TypeSystemClang::IsEnumerationType(lldb::opaque_compiler_type_t type,
bool &is_signed) {
if (type) {
const clang::EnumType *enum_type = llvm::dyn_cast<clang::EnumType>(
GetCanonicalQualType(type)->getCanonicalTypeInternal());
if (enum_type) {
IsIntegerType(enum_type->getDecl()->getIntegerType().getAsOpaquePtr(),
is_signed);
return true;
}
}
return false;
}
bool TypeSystemClang::IsScopedEnumerationType(
lldb::opaque_compiler_type_t type) {
if (type) {
const clang::EnumType *enum_type = llvm::dyn_cast<clang::EnumType>(
GetCanonicalQualType(type)->getCanonicalTypeInternal());
if (enum_type) {
return enum_type->isScopedEnumeralType();
}
}
return false;
}
bool TypeSystemClang::IsPointerType(lldb::opaque_compiler_type_t type,
CompilerType *pointee_type) {
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::ObjCObjectPointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
case clang::Type::BlockPointer:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::BlockPointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
case clang::Type::Pointer:
if (pointee_type)
pointee_type->SetCompilerType(this,
llvm::cast<clang::PointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
case clang::Type::MemberPointer:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::MemberPointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool TypeSystemClang::IsPointerOrReferenceType(
lldb::opaque_compiler_type_t type, CompilerType *pointee_type) {
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::ObjCObjectPointerType>(qual_type)
->getPointeeType().getAsOpaquePtr());
return true;
case clang::Type::BlockPointer:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::BlockPointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
case clang::Type::Pointer:
if (pointee_type)
pointee_type->SetCompilerType(this,
llvm::cast<clang::PointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
case clang::Type::MemberPointer:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::MemberPointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
case clang::Type::LValueReference:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::LValueReferenceType>(qual_type)
->desugar()
.getAsOpaquePtr());
return true;
case clang::Type::RValueReference:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::RValueReferenceType>(qual_type)
->desugar()
.getAsOpaquePtr());
return true;
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool TypeSystemClang::IsReferenceType(lldb::opaque_compiler_type_t type,
CompilerType *pointee_type,
bool *is_rvalue) {
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::LValueReference:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::LValueReferenceType>(qual_type)
->desugar()
.getAsOpaquePtr());
if (is_rvalue)
*is_rvalue = false;
return true;
case clang::Type::RValueReference:
if (pointee_type)
pointee_type->SetCompilerType(
this, llvm::cast<clang::RValueReferenceType>(qual_type)
->desugar()
.getAsOpaquePtr());
if (is_rvalue)
*is_rvalue = true;
return true;
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool TypeSystemClang::IsFloatingPointType(lldb::opaque_compiler_type_t type,
uint32_t &count, bool &is_complex) {
if (type) {
clang::QualType qual_type(GetCanonicalQualType(type));
if (const clang::BuiltinType *BT = llvm::dyn_cast<clang::BuiltinType>(
qual_type->getCanonicalTypeInternal())) {
clang::BuiltinType::Kind kind = BT->getKind();
if (kind >= clang::BuiltinType::Float &&
kind <= clang::BuiltinType::LongDouble) {
count = 1;
is_complex = false;
return true;
}
} else if (const clang::ComplexType *CT =
llvm::dyn_cast<clang::ComplexType>(
qual_type->getCanonicalTypeInternal())) {
if (IsFloatingPointType(CT->getElementType().getAsOpaquePtr(), count,
is_complex)) {
count = 2;
is_complex = true;
return true;
}
} else if (const clang::VectorType *VT = llvm::dyn_cast<clang::VectorType>(
qual_type->getCanonicalTypeInternal())) {
if (IsFloatingPointType(VT->getElementType().getAsOpaquePtr(), count,
is_complex)) {
count = VT->getNumElements();
is_complex = false;
return true;
}
}
}
count = 0;
is_complex = false;
return false;
}
bool TypeSystemClang::IsDefined(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
clang::QualType qual_type(GetQualType(type));
const clang::TagType *tag_type =
llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type) {
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
return tag_decl->isCompleteDefinition();
return false;
} else {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl)
return class_interface_decl->getDefinition() != nullptr;
return false;
}
}
return true;
}
bool TypeSystemClang::IsObjCClassType(const CompilerType &type) {
if (ClangUtil::IsClangType(type)) {
clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
const clang::ObjCObjectPointerType *obj_pointer_type =
llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
if (obj_pointer_type)
return obj_pointer_type->isObjCClassType();
}
return false;
}
bool TypeSystemClang::IsObjCObjectOrInterfaceType(const CompilerType &type) {
if (ClangUtil::IsClangType(type))
return ClangUtil::GetCanonicalQualType(type)->isObjCObjectOrInterfaceType();
return false;
}
bool TypeSystemClang::IsClassType(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
return (type_class == clang::Type::Record);
}
bool TypeSystemClang::IsEnumType(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
return (type_class == clang::Type::Enum);
}
bool TypeSystemClang::IsPolymorphicClass(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl) {
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
return cxx_record_decl->isPolymorphic();
}
}
break;
default:
break;
}
}
return false;
}
bool TypeSystemClang::IsPossibleDynamicType(lldb::opaque_compiler_type_t type,
CompilerType *dynamic_pointee_type,
bool check_cplusplus,
bool check_objc) {
clang::QualType pointee_qual_type;
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
bool success = false;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Builtin:
if (check_objc &&
llvm::cast<clang::BuiltinType>(qual_type)->getKind() ==
clang::BuiltinType::ObjCId) {
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(this, type);
return true;
}
break;
case clang::Type::ObjCObjectPointer:
if (check_objc) {
if (const auto *objc_pointee_type =
qual_type->getPointeeType().getTypePtrOrNull()) {
if (const auto *objc_object_type =
llvm::dyn_cast_or_null<clang::ObjCObjectType>(
objc_pointee_type)) {
if (objc_object_type->isObjCClass())
return false;
}
}
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(
this, llvm::cast<clang::ObjCObjectPointerType>(qual_type)
->getPointeeType()
.getAsOpaquePtr());
return true;
}
break;
case clang::Type::Pointer:
pointee_qual_type =
llvm::cast<clang::PointerType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
pointee_qual_type =
llvm::cast<clang::ReferenceType>(qual_type)->getPointeeType();
success = true;
break;
default:
break;
}
if (success) {
// Check to make sure what we are pointing too is a possible dynamic C++
// type We currently accept any "void *" (in case we have a class that
// has been watered down to an opaque pointer) and virtual C++ classes.
const clang::Type::TypeClass pointee_type_class =
pointee_qual_type.getCanonicalType()->getTypeClass();
switch (pointee_type_class) {
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(pointee_qual_type)->getKind()) {
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(
this, pointee_qual_type.getAsOpaquePtr());
return true;
default:
break;
}
break;
case clang::Type::Record:
if (check_cplusplus) {
clang::CXXRecordDecl *cxx_record_decl =
pointee_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
bool is_complete = cxx_record_decl->isCompleteDefinition();
if (is_complete)
success = cxx_record_decl->isDynamicClass();
else {
ClangASTMetadata *metadata = GetMetadata(cxx_record_decl);
if (metadata)
success = metadata->GetIsDynamicCXXType();
else {
is_complete = GetType(pointee_qual_type).GetCompleteType();
if (is_complete)
success = cxx_record_decl->isDynamicClass();
else
success = false;
}
}
if (success) {
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(
this, pointee_qual_type.getAsOpaquePtr());
return true;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (check_objc) {
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(
this, pointee_qual_type.getAsOpaquePtr());
return true;
}
break;
default:
break;
}
}
}
if (dynamic_pointee_type)
dynamic_pointee_type->Clear();
return false;
}
bool TypeSystemClang::IsScalarType(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
return (GetTypeInfo(type, nullptr) & eTypeIsScalar) != 0;
}
bool TypeSystemClang::IsTypedefType(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
return RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef})
->getTypeClass() == clang::Type::Typedef;
}
bool TypeSystemClang::IsVoidType(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
return GetCanonicalQualType(type)->isVoidType();
}
bool TypeSystemClang::CanPassInRegisters(const CompilerType &type) {
if (auto *record_decl =
TypeSystemClang::GetAsRecordDecl(type)) {
return record_decl->canPassInRegisters();
}
return false;
}
bool TypeSystemClang::SupportsLanguage(lldb::LanguageType language) {
return TypeSystemClangSupportsLanguage(language);
}
Optional<std::string>
TypeSystemClang::GetCXXClassName(const CompilerType &type) {
if (!type)
return llvm::None;
clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
if (qual_type.isNull())
return llvm::None;
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (!cxx_record_decl)
return llvm::None;
return std::string(cxx_record_decl->getIdentifier()->getNameStart());
}
bool TypeSystemClang::IsCXXClassType(const CompilerType &type) {
if (!type)
return false;
clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
return !qual_type.isNull() && qual_type->getAsCXXRecordDecl() != nullptr;
}
bool TypeSystemClang::IsBeingDefined(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type);
if (tag_type)
return tag_type->isBeingDefined();
return false;
}
bool TypeSystemClang::IsObjCObjectPointerType(const CompilerType &type,
CompilerType *class_type_ptr) {
if (!ClangUtil::IsClangType(type))
return false;
clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type));
if (!qual_type.isNull() && qual_type->isObjCObjectPointerType()) {
if (class_type_ptr) {
if (!qual_type->isObjCClassType() && !qual_type->isObjCIdType()) {
const clang::ObjCObjectPointerType *obj_pointer_type =
llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
if (obj_pointer_type == nullptr)
class_type_ptr->Clear();
else
class_type_ptr->SetCompilerType(
type.GetTypeSystem(),
clang::QualType(obj_pointer_type->getInterfaceType(), 0)
.getAsOpaquePtr());
}
}
return true;
}
if (class_type_ptr)
class_type_ptr->Clear();
return false;
}
// Type Completion
bool TypeSystemClang::GetCompleteType(lldb::opaque_compiler_type_t type) {
if (!type)
return false;
const bool allow_completion = true;
return GetCompleteQualType(&getASTContext(), GetQualType(type),
allow_completion);
}
ConstString TypeSystemClang::GetTypeName(lldb::opaque_compiler_type_t type) {
if (!type)
return ConstString();
clang::QualType qual_type(GetQualType(type));
// Remove certain type sugar from the name. Sugar such as elaborated types
// or template types which only serve to improve diagnostics shouldn't
// act as their own types from the user's perspective (e.g., formatter
// shouldn't format a variable differently depending on how the ser has
// specified the type. '::Type' and 'Type' should behave the same).
// Typedefs and atomic derived types are not removed as they are actually
// useful for identifiying specific types.
qual_type = RemoveWrappingTypes(qual_type,
{clang::Type::Typedef, clang::Type::Atomic});
// For a typedef just return the qualified name.
if (const auto *typedef_type = qual_type->getAs<clang::TypedefType>()) {
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
return ConstString(GetTypeNameForDecl(typedef_decl));
}
return ConstString(qual_type.getAsString(GetTypePrintingPolicy()));
}
ConstString
TypeSystemClang::GetDisplayTypeName(lldb::opaque_compiler_type_t type) {
if (!type)
return ConstString();
clang::QualType qual_type(GetQualType(type));
clang::PrintingPolicy printing_policy(getASTContext().getPrintingPolicy());
printing_policy.SuppressTagKeyword = true;
printing_policy.SuppressScope = false;
printing_policy.SuppressUnwrittenScope = true;
printing_policy.SuppressInlineNamespace = true;
return ConstString(qual_type.getAsString(printing_policy));
}
uint32_t
TypeSystemClang::GetTypeInfo(lldb::opaque_compiler_type_t type,
CompilerType *pointee_or_element_clang_type) {
if (!type)
return 0;
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->Clear();
clang::QualType qual_type =
RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef});
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Attributed:
return GetTypeInfo(
qual_type->getAs<clang::AttributedType>()
->getModifiedType().getAsOpaquePtr(),
pointee_or_element_clang_type);
case clang::Type::Builtin: {
const clang::BuiltinType *builtin_type = llvm::dyn_cast<clang::BuiltinType>(
qual_type->getCanonicalTypeInternal());
uint32_t builtin_type_flags = eTypeIsBuiltIn | eTypeHasValue;
switch (builtin_type->getKind()) {
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, getASTContext().ObjCBuiltinClassTy.getAsOpaquePtr());
builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
break;
case clang::BuiltinType::ObjCSel:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, getASTContext().CharTy.getAsOpaquePtr());
builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
builtin_type_flags |= eTypeIsScalar;
if (builtin_type->isInteger()) {
builtin_type_flags |= eTypeIsInteger;
if (builtin_type->isSignedInteger())
builtin_type_flags |= eTypeIsSigned;
} else if (builtin_type->isFloatingPoint())
builtin_type_flags |= eTypeIsFloat;
break;
default:
break;
}
return builtin_type_flags;
}
case clang::Type::BlockPointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, qual_type->getPointeeType().getAsOpaquePtr());
return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock;
case clang::Type::Complex: {
uint32_t complex_type_flags =
eTypeIsBuiltIn | eTypeHasValue | eTypeIsComplex;
const clang::ComplexType *complex_type = llvm::dyn_cast<clang::ComplexType>(
qual_type->getCanonicalTypeInternal());
if (complex_type) {
clang::QualType complex_element_type(complex_type->getElementType());
if (complex_element_type->isIntegerType())
complex_type_flags |= eTypeIsFloat;
else if (complex_element_type->isFloatingType())
complex_type_flags |= eTypeIsInteger;
}
return complex_type_flags;
} break;
case clang::Type::ConstantArray:
case clang::Type::DependentSizedArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, llvm::cast<clang::ArrayType>(qual_type.getTypePtr())
->getElementType()
.getAsOpaquePtr());
return eTypeHasChildren | eTypeIsArray;
case clang::Type::DependentName:
return 0;
case clang::Type::DependentSizedExtVector:
return eTypeHasChildren | eTypeIsVector;
case clang::Type::DependentTemplateSpecialization:
return eTypeIsTemplate;
case clang::Type::Enum:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, llvm::cast<clang::EnumType>(qual_type)
->getDecl()
->getIntegerType()
.getAsOpaquePtr());
return eTypeIsEnumeration | eTypeHasValue;
case clang::Type::FunctionProto:
return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::FunctionNoProto:
return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::InjectedClassName:
return 0;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, llvm::cast<clang::ReferenceType>(qual_type.getTypePtr())
->getPointeeType()
.getAsOpaquePtr());
return eTypeHasChildren | eTypeIsReference | eTypeHasValue;
case clang::Type::MemberPointer:
return eTypeIsPointer | eTypeIsMember | eTypeHasValue;
case clang::Type::ObjCObjectPointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, qual_type->getPointeeType().getAsOpaquePtr());
return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer |
eTypeHasValue;
case clang::Type::ObjCObject:
return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::ObjCInterface:
return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::Pointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(
this, qual_type->getPointeeType().getAsOpaquePtr());
return eTypeHasChildren | eTypeIsPointer | eTypeHasValue;
case clang::Type::Record:
if (qual_type->getAsCXXRecordDecl())
return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus;
else
return eTypeHasChildren | eTypeIsStructUnion;
break;
case clang::Type::SubstTemplateTypeParm:
return eTypeIsTemplate;
case clang::Type::TemplateTypeParm:
return eTypeIsTemplate;
case clang::Type::TemplateSpecialization:
return eTypeIsTemplate;
case clang::Type::Typedef:
return eTypeIsTypedef | GetType(llvm::cast<clang::TypedefType>(qual_type)
->getDecl()
->getUnderlyingType())
.GetTypeInfo(pointee_or_element_clang_type);
case clang::Type::UnresolvedUsing:
return 0;
case clang::Type::ExtVector:
case clang::Type::Vector: {
uint32_t vector_type_flags = eTypeHasChildren | eTypeIsVector;
const clang::VectorType *vector_type = llvm::dyn_cast<clang::VectorType>(
qual_type->getCanonicalTypeInternal());
if (vector_type) {
if (vector_type->isIntegerType())
vector_type_flags |= eTypeIsFloat;
else if (vector_type->isFloatingType())
vector_type_flags |= eTypeIsInteger;
}
return vector_type_flags;
}
default:
return 0;
}
return 0;
}
lldb::LanguageType
TypeSystemClang::GetMinimumLanguage(lldb::opaque_compiler_type_t type) {
if (!type)
return lldb::eLanguageTypeC;
// If the type is a reference, then resolve it to what it refers to first:
clang::QualType qual_type(GetCanonicalQualType(type).getNonReferenceType());
if (qual_type->isAnyPointerType()) {
if (qual_type->isObjCObjectPointerType())
return lldb::eLanguageTypeObjC;
if (qual_type->getPointeeCXXRecordDecl())
return lldb::eLanguageTypeC_plus_plus;
clang::QualType pointee_type(qual_type->getPointeeType());
if (pointee_type->getPointeeCXXRecordDecl())
return lldb::eLanguageTypeC_plus_plus;
if (pointee_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (pointee_type->isObjCClassType())
return lldb::eLanguageTypeObjC;
if (pointee_type.getTypePtr() ==
getASTContext().ObjCBuiltinIdTy.getTypePtr())
return lldb::eLanguageTypeObjC;
} else {
if (qual_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (qual_type->getAsCXXRecordDecl())
return lldb::eLanguageTypeC_plus_plus;
switch (qual_type->getTypeClass()) {
default:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
default:
case clang::BuiltinType::Void:
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
break;
case clang::BuiltinType::NullPtr:
return eLanguageTypeC_plus_plus;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
return eLanguageTypeObjC;
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::UnknownAny:
break;
}
break;
case clang::Type::Typedef:
return GetType(llvm::cast<clang::TypedefType>(qual_type)
->getDecl()
->getUnderlyingType())
.GetMinimumLanguage();
}
}
return lldb::eLanguageTypeC;
}
lldb::TypeClass
TypeSystemClang::GetTypeClass(lldb::opaque_compiler_type_t type) {
if (!type)
return lldb::eTypeClassInvalid;
clang::QualType qual_type =
RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef});
switch (qual_type->getTypeClass()) {
case clang::Type::Atomic:
case clang::Type::Auto:
case clang::Type::Decltype:
case clang::Type::Elaborated:
case clang::Type::Paren:
case clang::Type::TypeOf:
case clang::Type::TypeOfExpr:
llvm_unreachable("Handled in RemoveWrappingTypes!");
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
return lldb::eTypeClassFunction;
case clang::Type::FunctionProto:
return lldb::eTypeClassFunction;
case clang::Type::IncompleteArray:
return lldb::eTypeClassArray;
case clang::Type::VariableArray:
return lldb::eTypeClassArray;
case clang::Type::ConstantArray:
return lldb::eTypeClassArray;
case clang::Type::DependentSizedArray:
return lldb::eTypeClassArray;
case clang::Type::DependentSizedExtVector:
return lldb::eTypeClassVector;
case clang::Type::DependentVector:
return lldb::eTypeClassVector;
case clang::Type::ExtVector:
return lldb::eTypeClassVector;
case clang::Type::Vector:
return lldb::eTypeClassVector;
case clang::Type::Builtin:
// Ext-Int is just an integer type.
case clang::Type::ExtInt:
case clang::Type::DependentExtInt:
return lldb::eTypeClassBuiltin;
case clang::Type::ObjCObjectPointer:
return lldb::eTypeClassObjCObjectPointer;
case clang::Type::BlockPointer:
return lldb::eTypeClassBlockPointer;
case clang::Type::Pointer:
return lldb::eTypeClassPointer;
case clang::Type::LValueReference:
return lldb::eTypeClassReference;
case clang::Type::RValueReference:
return lldb::eTypeClassReference;
case clang::Type::MemberPointer:
return lldb::eTypeClassMemberPointer;
case clang::Type::Complex:
if (qual_type->isComplexType())
return lldb::eTypeClassComplexFloat;
else
return lldb::eTypeClassComplexInteger;
case clang::Type::ObjCObject:
return lldb::eTypeClassObjCObject;
case clang::Type::ObjCInterface:
return lldb::eTypeClassObjCInterface;
case clang::Type::Record: {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl->isUnion())
return lldb::eTypeClassUnion;
else if (record_decl->isStruct())
return lldb::eTypeClassStruct;
else
return lldb::eTypeClassClass;
} break;
case clang::Type::Enum:
return lldb::eTypeClassEnumeration;
case clang::Type::Typedef:
return lldb::eTypeClassTypedef;
case clang::Type::UnresolvedUsing:
break;
case clang::Type::Attributed:
break;
case clang::Type::TemplateTypeParm:
break;
case clang::Type::SubstTemplateTypeParm:
break;
case clang::Type::SubstTemplateTypeParmPack:
break;
case clang::Type::InjectedClassName:
break;
case clang::Type::DependentName:
break;
case clang::Type::DependentTemplateSpecialization:
break;
case clang::Type::PackExpansion:
break;
case clang::Type::TemplateSpecialization:
break;
case clang::Type::DeducedTemplateSpecialization:
break;
case clang::Type::Pipe:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
case clang::Type::Adjusted:
break;
case clang::Type::ObjCTypeParam:
break;
case clang::Type::DependentAddressSpace:
break;
case clang::Type::MacroQualified:
break;
// Matrix types that we're not sure how to display at the moment.
case clang::Type::ConstantMatrix:
case clang::Type::DependentSizedMatrix:
break;
}
// We don't know hot to display this type...
return lldb::eTypeClassOther;
}
unsigned TypeSystemClang::GetTypeQualifiers(lldb::opaque_compiler_type_t type) {
if (type)
return GetQualType(type).getQualifiers().getCVRQualifiers();
return 0;
}
// Creating related types
CompilerType
TypeSystemClang::GetArrayElementType(lldb::opaque_compiler_type_t type,
ExecutionContextScope *exe_scope) {
if (type) {
clang::QualType qual_type(GetQualType(type));
const clang::Type *array_eletype =
qual_type.getTypePtr()->getArrayElementTypeNoTypeQual();
if (!array_eletype)
return CompilerType();
return GetType(clang::QualType(array_eletype, 0));
}
return CompilerType();
}
CompilerType TypeSystemClang::GetArrayType(lldb::opaque_compiler_type_t type,
uint64_t size) {
if (type) {
clang::QualType qual_type(GetCanonicalQualType(type));
clang::ASTContext &ast_ctx = getASTContext();
if (size != 0)
return GetType(ast_ctx.getConstantArrayType(
qual_type, llvm::APInt(64, size), nullptr,
clang::ArrayType::ArraySizeModifier::Normal, 0));
else
return GetType(ast_ctx.getIncompleteArrayType(
qual_type, clang::ArrayType::ArraySizeModifier::Normal, 0));
}
return CompilerType();
}
CompilerType
TypeSystemClang::GetCanonicalType(lldb::opaque_compiler_type_t type) {
if (type)
return GetType(GetCanonicalQualType(type));
return CompilerType();
}
static clang::QualType GetFullyUnqualifiedType_Impl(clang::ASTContext *ast,
clang::QualType qual_type) {
if (qual_type->isPointerType())
qual_type = ast->getPointerType(
GetFullyUnqualifiedType_Impl(ast, qual_type->getPointeeType()));
else
qual_type = qual_type.getUnqualifiedType();
qual_type.removeLocalConst();
qual_type.removeLocalRestrict();
qual_type.removeLocalVolatile();
return qual_type;
}
CompilerType
TypeSystemClang::GetFullyUnqualifiedType(lldb::opaque_compiler_type_t type) {
if (type)
return GetType(
GetFullyUnqualifiedType_Impl(&getASTContext(), GetQualType(type)));
return CompilerType();
}
CompilerType
TypeSystemClang::GetEnumerationIntegerType(lldb::opaque_compiler_type_t type) {
if (type)
return GetEnumerationIntegerType(GetType(GetCanonicalQualType(type)));
return CompilerType();
}
int TypeSystemClang::GetFunctionArgumentCount(
lldb::opaque_compiler_type_t type) {
if (type) {
const clang::FunctionProtoType *func =
llvm::dyn_cast<clang::FunctionProtoType>(GetCanonicalQualType(type));
if (func)
return func->getNumParams();
}
return -1;
}
CompilerType TypeSystemClang::GetFunctionArgumentTypeAtIndex(
lldb::opaque_compiler_type_t type, size_t idx) {
if (type) {
const clang::FunctionProtoType *func =
llvm::dyn_cast<clang::FunctionProtoType>(GetQualType(type));
if (func) {
const uint32_t num_args = func->getNumParams();
if (idx < num_args)
return GetType(func->getParamType(idx));
}
}
return CompilerType();
}
CompilerType
TypeSystemClang::GetFunctionReturnType(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type(GetQualType(type));
const clang::FunctionProtoType *func =
llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
return GetType(func->getReturnType());
}
return CompilerType();
}
size_t
TypeSystemClang::GetNumMemberFunctions(lldb::opaque_compiler_type_t type) {
size_t num_functions = 0;
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteQualType(&getASTContext(), qual_type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
num_functions = std::distance(cxx_record_decl->method_begin(),
cxx_record_decl->method_end());
}
break;
case clang::Type::ObjCObjectPointer: {
const clang::ObjCObjectPointerType *objc_class_type =
qual_type->getAs<clang::ObjCObjectPointerType>();
const clang::ObjCInterfaceType *objc_interface_type =
objc_class_type->getInterfaceType();
if (objc_interface_type &&
GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_interface_type->getDecl();
if (class_interface_decl) {
num_functions = std::distance(class_interface_decl->meth_begin(),
class_interface_decl->meth_end());
}
}
break;
}
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl)
num_functions = std::distance(class_interface_decl->meth_begin(),
class_interface_decl->meth_end());
}
}
break;
default:
break;
}
}
return num_functions;
}
TypeMemberFunctionImpl
TypeSystemClang::GetMemberFunctionAtIndex(lldb::opaque_compiler_type_t type,
size_t idx) {
std::string name;
MemberFunctionKind kind(MemberFunctionKind::eMemberFunctionKindUnknown);
CompilerType clang_type;
CompilerDecl clang_decl;
if (type) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteQualType(&getASTContext(), qual_type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
auto method_iter = cxx_record_decl->method_begin();
auto method_end = cxx_record_decl->method_end();
if (idx <
static_cast<size_t>(std::distance(method_iter, method_end))) {
std::advance(method_iter, idx);
clang::CXXMethodDecl *cxx_method_decl =
method_iter->getCanonicalDecl();
if (cxx_method_decl) {
name = cxx_method_decl->getDeclName().getAsString();
if (cxx_method_decl->isStatic())
kind = lldb::eMemberFunctionKindStaticMethod;
else if (llvm::isa<clang::CXXConstructorDecl>(cxx_method_decl))
kind = lldb::eMemberFunctionKindConstructor;
else if (llvm::isa<clang::CXXDestructorDecl>(cxx_method_decl))
kind = lldb::eMemberFunctionKindDestructor;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
clang_type = GetType(cxx_method_decl->getType());
clang_decl = GetCompilerDecl(cxx_method_decl);
}
}
}
}
break;
case clang::Type::ObjCObjectPointer: {
const clang::ObjCObjectPointerType *objc_class_type =
qual_type->getAs<clang::ObjCObjectPointerType>();
const clang::ObjCInterfaceType *objc_interface_type =
objc_class_type->getInterfaceType();
if (objc_interface_type &&
GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_interface_type->getDecl();
if (class_interface_decl) {
auto method_iter = class_interface_decl->meth_begin();
auto method_end = class_interface_decl->meth_end();
if (idx <
static_cast<size_t>(std::distance(method_iter, method_end))) {
std::advance(method_iter, idx);
clang::ObjCMethodDecl *objc_method_decl =
method_iter->getCanonicalDecl();
if (objc_method_decl) {
clang_decl = GetCompilerDecl(objc_method_decl);
name = objc_method_decl->getSelector().getAsString();
if (objc_method_decl->isClassMethod())
kind = lldb::eMemberFunctionKindStaticMethod;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
}
}
}
}
break;
}
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
auto method_iter = class_interface_decl->meth_begin();
auto method_end = class_interface_decl->meth_end();
if (idx <
static_cast<size_t>(std::distance(method_iter, method_end))) {
std::advance(method_iter, idx);
clang::ObjCMethodDecl *objc_method_decl =
method_iter->getCanonicalDecl();
if (objc_method_decl) {
clang_decl = GetCompilerDecl(objc_method_decl);
name = objc_method_decl->getSelector().getAsString();
if (objc_method_decl->isClassMethod())
kind = lldb::eMemberFunctionKindStaticMethod;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
}
}
}
}
}
break;
default:
break;
}
}
if (kind == eMemberFunctionKindUnknown)
return TypeMemberFunctionImpl();
else
return TypeMemberFunctionImpl(clang_type, clang_decl, name, kind);
}
CompilerType
TypeSystemClang::GetNonReferenceType(lldb::opaque_compiler_type_t type) {
if (type)
return GetType(GetQualType(type).getNonReferenceType());
return CompilerType();
}
CompilerType
TypeSystemClang::GetPointeeType(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type(GetQualType(type));
return GetType(qual_type.getTypePtr()->getPointeeType());
}
return CompilerType();
}
CompilerType
TypeSystemClang::GetPointerType(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type(GetQualType(type));
switch (qual_type.getDesugaredType(getASTContext())->getTypeClass()) {
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return GetType(getASTContext().getObjCObjectPointerType(qual_type));
default:
return GetType(getASTContext().getPointerType(qual_type));
}
}
return CompilerType();
}
CompilerType
TypeSystemClang::GetLValueReferenceType(lldb::opaque_compiler_type_t type) {
if (type)
return GetType(getASTContext().getLValueReferenceType(GetQualType(type)));
else
return CompilerType();
}
CompilerType
TypeSystemClang::GetRValueReferenceType(lldb::opaque_compiler_type_t type) {
if (type)
return GetType(getASTContext().getRValueReferenceType(GetQualType(type)));
else
return CompilerType();
}
CompilerType TypeSystemClang::GetAtomicType(lldb::opaque_compiler_type_t type) {
if (!type)
return CompilerType();
return GetType(getASTContext().getAtomicType(GetQualType(type)));
}
CompilerType
TypeSystemClang::AddConstModifier(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType result(GetQualType(type));
result.addConst();
return GetType(result);
}
return CompilerType();
}
CompilerType
TypeSystemClang::AddVolatileModifier(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType result(GetQualType(type));
result.addVolatile();
return GetType(result);
}
return CompilerType();
}
CompilerType
TypeSystemClang::AddRestrictModifier(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType result(GetQualType(type));
result.addRestrict();
return GetType(result);
}
return CompilerType();
}
CompilerType TypeSystemClang::CreateTypedef(
lldb::opaque_compiler_type_t type, const char *typedef_name,
const CompilerDeclContext &compiler_decl_ctx, uint32_t payload) {
if (type && typedef_name && typedef_name[0]) {
clang::ASTContext &clang_ast = getASTContext();
clang::QualType qual_type(GetQualType(type));
clang::DeclContext *decl_ctx =
TypeSystemClang::DeclContextGetAsDeclContext(compiler_decl_ctx);
if (!decl_ctx)
decl_ctx = getASTContext().getTranslationUnitDecl();
clang::TypedefDecl *decl =
clang::TypedefDecl::CreateDeserialized(clang_ast, 0);
decl->setDeclContext(decl_ctx);
decl->setDeclName(&clang_ast.Idents.get(typedef_name));
decl->setTypeSourceInfo(clang_ast.getTrivialTypeSourceInfo(qual_type));
decl_ctx->addDecl(decl);
SetOwningModule(decl, TypePayloadClang(payload).GetOwningModule());
clang::TagDecl *tdecl = nullptr;
if (!qual_type.isNull()) {
if (const clang::RecordType *rt = qual_type->getAs<clang::RecordType>())
tdecl = rt->getDecl();
if (const clang::EnumType *et = qual_type->getAs<clang::EnumType>())
tdecl = et->getDecl();
}
// Check whether this declaration is an anonymous struct, union, or enum,
// hidden behind a typedef. If so, we try to check whether we have a
// typedef tag to attach to the original record declaration
if (tdecl && !tdecl->getIdentifier() && !tdecl->getTypedefNameForAnonDecl())
tdecl->setTypedefNameForAnonDecl(decl);
decl->setAccess(clang::AS_public); // TODO respect proper access specifier
// Get a uniqued clang::QualType for the typedef decl type
return GetType(clang_ast.getTypedefType(decl));
}
return CompilerType();
}
CompilerType
TypeSystemClang::GetTypedefedType(lldb::opaque_compiler_type_t type) {
if (type) {
const clang::TypedefType *typedef_type = llvm::dyn_cast<clang::TypedefType>(
RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef}));
if (typedef_type)
return GetType(typedef_type->getDecl()->getUnderlyingType());
}
return CompilerType();
}
// Create related types using the current type's AST
CompilerType TypeSystemClang::GetBasicTypeFromAST(lldb::BasicType basic_type) {
return TypeSystemClang::GetBasicType(basic_type);
}
// Exploring the type
const llvm::fltSemantics &
TypeSystemClang::GetFloatTypeSemantics(size_t byte_size) {
clang::ASTContext &ast = getASTContext();
const size_t bit_size = byte_size * 8;
if (bit_size == ast.getTypeSize(ast.FloatTy))
return ast.getFloatTypeSemantics(ast.FloatTy);
else if (bit_size == ast.getTypeSize(ast.DoubleTy))
return ast.getFloatTypeSemantics(ast.DoubleTy);
else if (bit_size == ast.getTypeSize(ast.LongDoubleTy))
return ast.getFloatTypeSemantics(ast.LongDoubleTy);
else if (bit_size == ast.getTypeSize(ast.HalfTy))
return ast.getFloatTypeSemantics(ast.HalfTy);
return llvm::APFloatBase::Bogus();
}
Optional<uint64_t>
TypeSystemClang::GetBitSize(lldb::opaque_compiler_type_t type,
ExecutionContextScope *exe_scope) {
if (GetCompleteType(type)) {
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type))
return getASTContext().getTypeSize(qual_type);
else
return None;
break;
case clang::Type::ObjCInterface:
case clang::Type::ObjCObject: {
ExecutionContext exe_ctx(exe_scope);
Process *process = exe_ctx.GetProcessPtr();
if (process) {
ObjCLanguageRuntime *objc_runtime = ObjCLanguageRuntime::Get(*process);
if (objc_runtime) {
uint64_t bit_size = 0;
if (objc_runtime->GetTypeBitSize(GetType(qual_type), bit_size))
return bit_size;
}
} else {
static bool g_printed = false;
if (!g_printed) {
StreamString s;
DumpTypeDescription(type, &s);
llvm::outs() << "warning: trying to determine the size of type ";
llvm::outs() << s.GetString() << "\n";
llvm::outs() << "without a valid ExecutionContext. this is not "
"reliable. please file a bug against LLDB.\n";
llvm::outs() << "backtrace:\n";
llvm::sys::PrintStackTrace(llvm::outs());
llvm::outs() << "\n";
g_printed = true;
}
}
}
LLVM_FALLTHROUGH;
default:
const uint32_t bit_size = getASTContext().getTypeSize(qual_type);
if (bit_size == 0) {
if (qual_type->isIncompleteArrayType())
return getASTContext().getTypeSize(
qual_type->getArrayElementTypeNoTypeQual()
->getCanonicalTypeUnqualified());
}
if (qual_type->isObjCObjectOrInterfaceType())
return bit_size +
getASTContext().getTypeSize(getASTContext().ObjCBuiltinClassTy);
// Function types actually have a size of 0, that's not an error.
if (qual_type->isFunctionProtoType())
return bit_size;
if (bit_size)
return bit_size;
}
}
return None;
}
llvm::Optional<size_t>
TypeSystemClang::GetTypeBitAlign(lldb::opaque_compiler_type_t type,
ExecutionContextScope *exe_scope) {
if (GetCompleteType(type))
return getASTContext().getTypeAlign(GetQualType(type));
return {};
}
lldb::Encoding TypeSystemClang::GetEncoding(lldb::opaque_compiler_type_t type,
uint64_t &count) {
if (!type)
return lldb::eEncodingInvalid;
count = 1;
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Atomic:
case clang::Type::Auto:
case clang::Type::Decltype:
case clang::Type::Elaborated:
case clang::Type::Paren:
case clang::Type::Typedef:
case clang::Type::TypeOf:
case clang::Type::TypeOfExpr:
llvm_unreachable("Handled in RemoveWrappingTypes!");
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::DependentVector:
case clang::Type::ExtVector:
case clang::Type::Vector:
// TODO: Set this to more than one???
break;
case clang::Type::ExtInt:
case clang::Type::DependentExtInt:
return qual_type->isUnsignedIntegerType() ? lldb::eEncodingUint
: lldb::eEncodingSint;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
case clang::BuiltinType::Void:
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
return lldb::eEncodingSint;
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char8:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
return lldb::eEncodingUint;
// Fixed point types. Note that they are currently ignored.
case clang::BuiltinType::ShortAccum:
case clang::BuiltinType::Accum:
case clang::BuiltinType::LongAccum:
case clang::BuiltinType::UShortAccum:
case clang::BuiltinType::UAccum:
case clang::BuiltinType::ULongAccum:
case clang::BuiltinType::ShortFract:
case clang::BuiltinType::Fract:
case clang::BuiltinType::LongFract:
case clang::BuiltinType::UShortFract:
case clang::BuiltinType::UFract:
case clang::BuiltinType::ULongFract:
case clang::BuiltinType::SatShortAccum:
case clang::BuiltinType::SatAccum:
case clang::BuiltinType::SatLongAccum:
case clang::BuiltinType::SatUShortAccum:
case clang::BuiltinType::SatUAccum:
case clang::BuiltinType::SatULongAccum:
case clang::BuiltinType::SatShortFract:
case clang::BuiltinType::SatFract:
case clang::BuiltinType::SatLongFract:
case clang::BuiltinType::SatUShortFract:
case clang::BuiltinType::SatUFract:
case clang::BuiltinType::SatULongFract:
break;
case clang::BuiltinType::Half:
case clang::BuiltinType::Float:
case clang::BuiltinType::Float16:
case clang::BuiltinType::Float128:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::BFloat16:
return lldb::eEncodingIEEE754;
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCSel:
return lldb::eEncodingUint;
case clang::BuiltinType::NullPtr:
return lldb::eEncodingUint;
case clang::BuiltinType::Kind::ARCUnbridgedCast:
case clang::BuiltinType::Kind::BoundMember:
case clang::BuiltinType::Kind::BuiltinFn:
case clang::BuiltinType::Kind::Dependent:
case clang::BuiltinType::Kind::OCLClkEvent:
case clang::BuiltinType::Kind::OCLEvent:
case clang::BuiltinType::Kind::OCLImage1dRO:
case clang::BuiltinType::Kind::OCLImage1dWO:
case clang::BuiltinType::Kind::OCLImage1dRW:
case clang::BuiltinType::Kind::OCLImage1dArrayRO:
case clang::BuiltinType::Kind::OCLImage1dArrayWO:
case clang::BuiltinType::Kind::OCLImage1dArrayRW:
case clang::BuiltinType::Kind::OCLImage1dBufferRO:
case clang::BuiltinType::Kind::OCLImage1dBufferWO:
case clang::BuiltinType::Kind::OCLImage1dBufferRW:
case clang::BuiltinType::Kind::OCLImage2dRO:
case clang::BuiltinType::Kind::OCLImage2dWO:
case clang::BuiltinType::Kind::OCLImage2dRW:
case clang::BuiltinType::Kind::OCLImage2dArrayRO:
case clang::BuiltinType::Kind::OCLImage2dArrayWO:
case clang::BuiltinType::Kind::OCLImage2dArrayRW:
case clang::BuiltinType::Kind::OCLImage2dArrayDepthRO:
case clang::BuiltinType::Kind::OCLImage2dArrayDepthWO:
case clang::BuiltinType::Kind::OCLImage2dArrayDepthRW:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAARO:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAAWO:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAARW:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRO:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthWO:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRW:
case clang::BuiltinType::Kind::OCLImage2dDepthRO:
case clang::BuiltinType::Kind::OCLImage2dDepthWO:
case clang::BuiltinType::Kind::OCLImage2dDepthRW:
case clang::BuiltinType::Kind::OCLImage2dMSAARO:
case clang::BuiltinType::Kind::OCLImage2dMSAAWO:
case clang::BuiltinType::Kind::OCLImage2dMSAARW:
case clang::BuiltinType::Kind::OCLImage2dMSAADepthRO:
case clang::BuiltinType::Kind::OCLImage2dMSAADepthWO:
case clang::BuiltinType::Kind::OCLImage2dMSAADepthRW:
case clang::BuiltinType::Kind::OCLImage3dRO:
case clang::BuiltinType::Kind::OCLImage3dWO:
case clang::BuiltinType::Kind::OCLImage3dRW:
case clang::BuiltinType::Kind::OCLQueue:
case clang::BuiltinType::Kind::OCLReserveID:
case clang::BuiltinType::Kind::OCLSampler:
case clang::BuiltinType::Kind::OMPArraySection:
case clang::BuiltinType::Kind::OMPArrayShaping:
case clang::BuiltinType::Kind::OMPIterator:
case clang::BuiltinType::Kind::Overload:
case clang::BuiltinType::Kind::PseudoObject:
case clang::BuiltinType::Kind::UnknownAny:
break;
case clang::BuiltinType::OCLIntelSubgroupAVCMcePayload:
case clang::BuiltinType::OCLIntelSubgroupAVCImePayload:
case clang::BuiltinType::OCLIntelSubgroupAVCRefPayload:
case clang::BuiltinType::OCLIntelSubgroupAVCSicPayload:
case clang::BuiltinType::OCLIntelSubgroupAVCMceResult:
case clang::BuiltinType::OCLIntelSubgroupAVCImeResult:
case clang::BuiltinType::OCLIntelSubgroupAVCRefResult:
case clang::BuiltinType::OCLIntelSubgroupAVCSicResult:
case clang::BuiltinType::OCLIntelSubgroupAVCImeResultSingleRefStreamout:
case clang::BuiltinType::OCLIntelSubgroupAVCImeResultDualRefStreamout:
case clang::BuiltinType::OCLIntelSubgroupAVCImeSingleRefStreamin:
case clang::BuiltinType::OCLIntelSubgroupAVCImeDualRefStreamin:
break;
// PowerPC -- Matrix Multiply Assist
case clang::BuiltinType::VectorPair:
case clang::BuiltinType::VectorQuad:
break;
// ARM -- Scalable Vector Extension
case clang::BuiltinType::SveBool:
case clang::BuiltinType::SveInt8:
case clang::BuiltinType::SveInt8x2:
case clang::BuiltinType::SveInt8x3:
case clang::BuiltinType::SveInt8x4:
case clang::BuiltinType::SveInt16:
case clang::BuiltinType::SveInt16x2:
case clang::BuiltinType::SveInt16x3:
case clang::BuiltinType::SveInt16x4:
case clang::BuiltinType::SveInt32:
case clang::BuiltinType::SveInt32x2:
case clang::BuiltinType::SveInt32x3:
case clang::BuiltinType::SveInt32x4:
case clang::BuiltinType::SveInt64:
case clang::BuiltinType::SveInt64x2:
case clang::BuiltinType::SveInt64x3:
case clang::BuiltinType::SveInt64x4:
case clang::BuiltinType::SveUint8:
case clang::BuiltinType::SveUint8x2:
case clang::BuiltinType::SveUint8x3:
case clang::BuiltinType::SveUint8x4:
case clang::BuiltinType::SveUint16:
case clang::BuiltinType::SveUint16x2:
case clang::BuiltinType::SveUint16x3:
case clang::BuiltinType::SveUint16x4:
case clang::BuiltinType::SveUint32:
case clang::BuiltinType::SveUint32x2:
case clang::BuiltinType::SveUint32x3:
case clang::BuiltinType::SveUint32x4:
case clang::BuiltinType::SveUint64:
case clang::BuiltinType::SveUint64x2:
case clang::BuiltinType::SveUint64x3:
case clang::BuiltinType::SveUint64x4:
case clang::BuiltinType::SveFloat16:
case clang::BuiltinType::SveBFloat16:
case clang::BuiltinType::SveBFloat16x2:
case clang::BuiltinType::SveBFloat16x3:
case clang::BuiltinType::SveBFloat16x4:
case clang::BuiltinType::SveFloat16x2:
case clang::BuiltinType::SveFloat16x3:
case clang::BuiltinType::SveFloat16x4:
case clang::BuiltinType::SveFloat32:
case clang::BuiltinType::SveFloat32x2:
case clang::BuiltinType::SveFloat32x3:
case clang::BuiltinType::SveFloat32x4:
case clang::BuiltinType::SveFloat64:
case clang::BuiltinType::SveFloat64x2:
case clang::BuiltinType::SveFloat64x3:
case clang::BuiltinType::SveFloat64x4:
break;
// RISC-V V builtin types.
case clang::BuiltinType::RvvInt8mf8:
case clang::BuiltinType::RvvInt8mf4:
case clang::BuiltinType::RvvInt8mf2:
case clang::BuiltinType::RvvInt8m1:
case clang::BuiltinType::RvvInt8m2:
case clang::BuiltinType::RvvInt8m4:
case clang::BuiltinType::RvvInt8m8:
case clang::BuiltinType::RvvUint8mf8:
case clang::BuiltinType::RvvUint8mf4:
case clang::BuiltinType::RvvUint8mf2:
case clang::BuiltinType::RvvUint8m1:
case clang::BuiltinType::RvvUint8m2:
case clang::BuiltinType::RvvUint8m4:
case clang::BuiltinType::RvvUint8m8:
case clang::BuiltinType::RvvInt16mf4:
case clang::BuiltinType::RvvInt16mf2:
case clang::BuiltinType::RvvInt16m1:
case clang::BuiltinType::RvvInt16m2:
case clang::BuiltinType::RvvInt16m4:
case clang::BuiltinType::RvvInt16m8:
case clang::BuiltinType::RvvUint16mf4:
case clang::BuiltinType::RvvUint16mf2:
case clang::BuiltinType::RvvUint16m1:
case clang::BuiltinType::RvvUint16m2:
case clang::BuiltinType::RvvUint16m4:
case clang::BuiltinType::RvvUint16m8:
case clang::BuiltinType::RvvInt32mf2:
case clang::BuiltinType::RvvInt32m1:
case clang::BuiltinType::RvvInt32m2:
case clang::BuiltinType::RvvInt32m4:
case clang::BuiltinType::RvvInt32m8:
case clang::BuiltinType::RvvUint32mf2:
case clang::BuiltinType::RvvUint32m1:
case clang::BuiltinType::RvvUint32m2:
case clang::BuiltinType::RvvUint32m4:
case clang::BuiltinType::RvvUint32m8:
case clang::BuiltinType::RvvInt64m1:
case clang::BuiltinType::RvvInt64m2:
case clang::BuiltinType::RvvInt64m4:
case clang::BuiltinType::RvvInt64m8:
case clang::BuiltinType::RvvUint64m1:
case clang::BuiltinType::RvvUint64m2:
case clang::BuiltinType::RvvUint64m4:
case clang::BuiltinType::RvvUint64m8:
case clang::BuiltinType::RvvFloat16mf4:
case clang::BuiltinType::RvvFloat16mf2:
case clang::BuiltinType::RvvFloat16m1:
case clang::BuiltinType::RvvFloat16m2:
case clang::BuiltinType::RvvFloat16m4:
case clang::BuiltinType::RvvFloat16m8:
case clang::BuiltinType::RvvFloat32mf2:
case clang::BuiltinType::RvvFloat32m1:
case clang::BuiltinType::RvvFloat32m2:
case clang::BuiltinType::RvvFloat32m4:
case clang::BuiltinType::RvvFloat32m8:
case clang::BuiltinType::RvvFloat64m1:
case clang::BuiltinType::RvvFloat64m2:
case clang::BuiltinType::RvvFloat64m4:
case clang::BuiltinType::RvvFloat64m8:
case clang::BuiltinType::RvvBool1:
case clang::BuiltinType::RvvBool2:
case clang::BuiltinType::RvvBool4:
case clang::BuiltinType::RvvBool8:
case clang::BuiltinType::RvvBool16:
case clang::BuiltinType::RvvBool32:
case clang::BuiltinType::RvvBool64:
break;
case clang::BuiltinType::IncompleteMatrixIdx:
break;
}
break;
// All pointer types are represented as unsigned integer encodings. We may
// nee to add a eEncodingPointer if we ever need to know the difference
case clang::Type::ObjCObjectPointer:
case clang::Type::BlockPointer:
case clang::Type::Pointer:
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer:
return lldb::eEncodingUint;
case clang::Type::Complex: {
lldb::Encoding encoding = lldb::eEncodingIEEE754;
if (qual_type->isComplexType())
encoding = lldb::eEncodingIEEE754;
else {
const clang::ComplexType *complex_type =
qual_type->getAsComplexIntegerType();
if (complex_type)
encoding = GetType(complex_type->getElementType()).GetEncoding(count);
else
encoding = lldb::eEncodingSint;
}
count = 2;
return encoding;
}
case clang::Type::ObjCInterface:
break;
case clang::Type::Record:
break;
case clang::Type::Enum:
return lldb::eEncodingSint;
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TemplateSpecialization:
case clang::Type::DeducedTemplateSpecialization:
case clang::Type::Adjusted:
case clang::Type::Pipe:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
case clang::Type::ObjCTypeParam:
break;
case clang::Type::DependentAddressSpace:
break;
case clang::Type::MacroQualified:
break;
case clang::Type::ConstantMatrix:
case clang::Type::DependentSizedMatrix:
break;
}
count = 0;
return lldb::eEncodingInvalid;
}
lldb::Format TypeSystemClang::GetFormat(lldb::opaque_compiler_type_t type) {
if (!type)
return lldb::eFormatDefault;
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Atomic:
case clang::Type::Auto:
case clang::Type::Decltype:
case clang::Type::Elaborated:
case clang::Type::Paren:
case clang::Type::Typedef:
case clang::Type::TypeOf:
case clang::Type::TypeOfExpr:
llvm_unreachable("Handled in RemoveWrappingTypes!");
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
return lldb::eFormatVoid; // no value
case clang::Type::DependentVector:
case clang::Type::ExtVector:
case clang::Type::Vector:
break;
case clang::Type::ExtInt:
case clang::Type::DependentExtInt:
return qual_type->isUnsignedIntegerType() ? lldb::eFormatUnsigned
: lldb::eFormatDecimal;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::BoundMember:
break;
case clang::BuiltinType::Bool:
return lldb::eFormatBoolean;
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
return lldb::eFormatChar;
case clang::BuiltinType::Char16:
return lldb::eFormatUnicode16;
case clang::BuiltinType::Char32:
return lldb::eFormatUnicode32;
case clang::BuiltinType::UShort:
return lldb::eFormatUnsigned;
case clang::BuiltinType::Short:
return lldb::eFormatDecimal;
case clang::BuiltinType::UInt:
return lldb::eFormatUnsigned;
case clang::BuiltinType::Int:
return lldb::eFormatDecimal;
case clang::BuiltinType::ULong:
return lldb::eFormatUnsigned;
case clang::BuiltinType::Long:
return lldb::eFormatDecimal;
case clang::BuiltinType::ULongLong:
return lldb::eFormatUnsigned;
case clang::BuiltinType::LongLong:
return lldb::eFormatDecimal;
case clang::BuiltinType::UInt128:
return lldb::eFormatUnsigned;
case clang::BuiltinType::Int128:
return lldb::eFormatDecimal;
case clang::BuiltinType::Half:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
return lldb::eFormatFloat;
default:
return lldb::eFormatHex;
}
break;
case clang::Type::ObjCObjectPointer:
return lldb::eFormatHex;
case clang::Type::BlockPointer:
return lldb::eFormatHex;
case clang::Type::Pointer:
return lldb::eFormatHex;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
return lldb::eFormatHex;
case clang::Type::MemberPointer:
break;
case clang::Type::Complex: {
if (qual_type->isComplexType())
return lldb::eFormatComplex;
else
return lldb::eFormatComplexInteger;
}
case clang::Type::ObjCInterface:
break;
case clang::Type::Record:
break;
case clang::Type::Enum:
return lldb::eFormatEnum;
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TemplateSpecialization:
case clang::Type::DeducedTemplateSpecialization:
case clang::Type::Adjusted:
case clang::Type::Pipe:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
case clang::Type::ObjCTypeParam:
break;
case clang::Type::DependentAddressSpace:
break;
case clang::Type::MacroQualified:
break;
// Matrix types we're not sure how to display yet.
case clang::Type::ConstantMatrix:
case clang::Type::DependentSizedMatrix:
break;
}
// We don't know hot to display this type...
return lldb::eFormatBytes;
}
static bool ObjCDeclHasIVars(clang::ObjCInterfaceDecl *class_interface_decl,
bool check_superclass) {
while (class_interface_decl) {
if (class_interface_decl->ivar_size() > 0)
return true;
if (check_superclass)
class_interface_decl = class_interface_decl->getSuperClass();
else
break;
}
return false;
}
static Optional<SymbolFile::ArrayInfo>
GetDynamicArrayInfo(TypeSystemClang &ast, SymbolFile *sym_file,
clang::QualType qual_type,
const ExecutionContext *exe_ctx) {
if (qual_type->isIncompleteArrayType())
if (auto *metadata = ast.GetMetadata(qual_type.getTypePtr()))
return sym_file->GetDynamicArrayInfoForUID(metadata->GetUserID(),
exe_ctx);
return llvm::None;
}
uint32_t TypeSystemClang::GetNumChildren(lldb::opaque_compiler_type_t type,
bool omit_empty_base_classes,
const ExecutionContext *exe_ctx) {
if (!type)
return 0;
uint32_t num_children = 0;
clang::QualType qual_type(RemoveWrappingTypes(GetQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
case clang::BuiltinType::ObjCId: // child is Class
case clang::BuiltinType::ObjCClass: // child is Class
num_children = 1;
break;
default:
break;
}
break;
case clang::Type::Complex:
return 0;
case clang::Type::Record:
if (GetCompleteQualType(&getASTContext(), qual_type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
if (omit_empty_base_classes) {
// Check each base classes to see if it or any of its base classes
// contain any fields. This can help limit the noise in variable
// views by not having to show base classes that contain no members.
clang::CXXRecordDecl::base_class_const_iterator base_class,
base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
const clang::CXXRecordDecl *base_class_decl =
llvm::cast<clang::CXXRecordDecl>(
base_class->getType()
->getAs<clang::RecordType>()
->getDecl());
// Skip empty base classes
if (!TypeSystemClang::RecordHasFields(base_class_decl))
continue;
num_children++;
}
} else {
// Include all base classes
num_children += cxx_record_decl->getNumBases();
}
}
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field)
++num_children;
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType(&getASTContext(), qual_type)) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert(objc_class_type);
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
clang::ObjCInterfaceDecl *superclass_interface_decl =
class_interface_decl->getSuperClass();
if (superclass_interface_decl) {
if (omit_empty_base_classes) {
if (ObjCDeclHasIVars(superclass_interface_decl, true))
++num_children;
} else
++num_children;
}
num_children += class_interface_decl->ivar_size();
}
}
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::ObjCObjectPointer: {
CompilerType pointee_clang_type(GetPointeeType(type));
uint32_t num_pointee_children = 0;
if (pointee_clang_type.IsAggregateType())
num_pointee_children =
pointee_clang_type.GetNumChildren(omit_empty_base_classes, exe_ctx);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
} break;
case clang::Type::Vector:
case clang::Type::ExtVector:
num_children =
llvm::cast<clang::VectorType>(qual_type.getTypePtr())->getNumElements();
break;
case clang::Type::ConstantArray:
num_children = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr())
->getSize()
.getLimitedValue();
break;
case clang::Type::IncompleteArray:
if (auto array_info =
GetDynamicArrayInfo(*this, GetSymbolFile(), qual_type, exe_ctx))
// Only 1-dimensional arrays are supported.
num_children = array_info->element_orders.size()
? array_info->element_orders.back()
: 0;
break;
case clang::Type::Pointer: {
const clang::PointerType *pointer_type =
llvm::cast<clang::PointerType>(qual_type.getTypePtr());
clang::QualType pointee_type(pointer_type->getPointeeType());
CompilerType pointee_clang_type(GetType(pointee_type));
uint32_t num_pointee_children = 0;
if (pointee_clang_type.IsAggregateType())
num_pointee_children =
pointee_clang_type.GetNumChildren(omit_empty_base_classes, exe_ctx);
if (num_pointee_children == 0) {
// We have a pointer to a pointee type that claims it has no children. We
// will want to look at
num_children = GetNumPointeeChildren(pointee_type);
} else
num_children = num_pointee_children;
} break;
default:
break;
}
return num_children;
}
CompilerType TypeSystemClang::GetBuiltinTypeByName(ConstString name) {
return GetBasicType(GetBasicTypeEnumeration(name));
}
lldb::BasicType
TypeSystemClang::GetBasicTypeEnumeration(lldb::opaque_compiler_type_t type) {
if (type) {
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
if (type_class == clang::Type::Builtin) {
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
case clang::BuiltinType::Void:
return eBasicTypeVoid;
case clang::BuiltinType::Bool:
return eBasicTypeBool;
case clang::BuiltinType::Char_S:
return eBasicTypeSignedChar;
case clang::BuiltinType::Char_U:
return eBasicTypeUnsignedChar;
case clang::BuiltinType::Char16:
return eBasicTypeChar16;
case clang::BuiltinType::Char32:
return eBasicTypeChar32;
case clang::BuiltinType::UChar:
return eBasicTypeUnsignedChar;
case clang::BuiltinType::SChar:
return eBasicTypeSignedChar;
case clang::BuiltinType::WChar_S:
return eBasicTypeSignedWChar;
case clang::BuiltinType::WChar_U:
return eBasicTypeUnsignedWChar;
case clang::BuiltinType::Short:
return eBasicTypeShort;
case clang::BuiltinType::UShort:
return eBasicTypeUnsignedShort;
case clang::BuiltinType::Int:
return eBasicTypeInt;
case clang::BuiltinType::UInt:
return eBasicTypeUnsignedInt;
case clang::BuiltinType::Long:
return eBasicTypeLong;
case clang::BuiltinType::ULong:
return eBasicTypeUnsignedLong;
case clang::BuiltinType::LongLong:
return eBasicTypeLongLong;
case clang::BuiltinType::ULongLong:
return eBasicTypeUnsignedLongLong;
case clang::BuiltinType::Int128:
return eBasicTypeInt128;
case clang::BuiltinType::UInt128:
return eBasicTypeUnsignedInt128;
case clang::BuiltinType::Half:
return eBasicTypeHalf;
case clang::BuiltinType::Float:
return eBasicTypeFloat;
case clang::BuiltinType::Double:
return eBasicTypeDouble;
case clang::BuiltinType::LongDouble:
return eBasicTypeLongDouble;
case clang::BuiltinType::NullPtr:
return eBasicTypeNullPtr;
case clang::BuiltinType::ObjCId:
return eBasicTypeObjCID;
case clang::BuiltinType::ObjCClass:
return eBasicTypeObjCClass;
case clang::BuiltinType::ObjCSel:
return eBasicTypeObjCSel;
default:
return eBasicTypeOther;
}
}
}
return eBasicTypeInvalid;
}
void TypeSystemClang::ForEachEnumerator(
lldb::opaque_compiler_type_t type,
std::function<bool(const CompilerType &integer_type,
ConstString name,
const llvm::APSInt &value)> const &callback) {
const clang::EnumType *enum_type =
llvm::dyn_cast<clang::EnumType>(GetCanonicalQualType(type));
if (enum_type) {
const clang::EnumDecl *enum_decl = enum_type->getDecl();
if (enum_decl) {
CompilerType integer_type = GetType(enum_decl->getIntegerType());
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
for (enum_pos = enum_decl->enumerator_begin(),
enum_end_pos = enum_decl->enumerator_end();
enum_pos != enum_end_pos; ++enum_pos) {
ConstString name(enum_pos->getNameAsString().c_str());
if (!callback(integer_type, name, enum_pos->getInitVal()))
break;
}
}
}
}
#pragma mark Aggregate Types
uint32_t TypeSystemClang::GetNumFields(lldb::opaque_compiler_type_t type) {
if (!type)
return 0;
uint32_t count = 0;
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::dyn_cast<clang::RecordType>(qual_type.getTypePtr());
if (record_type) {
clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl) {
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field)
++field_idx;
count = field_idx;
}
}
}
break;
case clang::Type::ObjCObjectPointer: {
const clang::ObjCObjectPointerType *objc_class_type =
qual_type->getAs<clang::ObjCObjectPointerType>();
const clang::ObjCInterfaceType *objc_interface_type =
objc_class_type->getInterfaceType();
if (objc_interface_type &&
GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_interface_type->getDecl();
if (class_interface_decl) {
count = class_interface_decl->ivar_size();
}
}
break;
}
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl)
count = class_interface_decl->ivar_size();
}
}
break;
default:
break;
}
return count;
}
static lldb::opaque_compiler_type_t
GetObjCFieldAtIndex(clang::ASTContext *ast,
clang::ObjCInterfaceDecl *class_interface_decl, size_t idx,
std::string &name, uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) {
if (class_interface_decl) {
if (idx < (class_interface_decl->ivar_size())) {
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
ivar_end = class_interface_decl->ivar_end();
uint32_t ivar_idx = 0;
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end;
++ivar_pos, ++ivar_idx) {
if (ivar_idx == idx) {
const clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
clang::QualType ivar_qual_type(ivar_decl->getType());
name.assign(ivar_decl->getNameAsString());
if (bit_offset_ptr) {
const clang::ASTRecordLayout &interface_layout =
ast->getASTObjCInterfaceLayout(class_interface_decl);
*bit_offset_ptr = interface_layout.getFieldOffset(ivar_idx);
}
const bool is_bitfield = ivar_pos->isBitField();
if (bitfield_bit_size_ptr) {
*bitfield_bit_size_ptr = 0;
if (is_bitfield && ast) {
clang::Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth();
clang::Expr::EvalResult result;
if (bitfield_bit_size_expr &&
bitfield_bit_size_expr->EvaluateAsInt(result, *ast)) {
llvm::APSInt bitfield_apsint = result.Val.getInt();
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return ivar_qual_type.getAsOpaquePtr();
}
}
}
}
return nullptr;
}
CompilerType TypeSystemClang::GetFieldAtIndex(lldb::opaque_compiler_type_t type,
size_t idx, std::string &name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr) {
if (!type)
return CompilerType();
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field, ++field_idx) {
if (idx == field_idx) {
// Print the member type if requested
// Print the member name and equal sign
name.assign(field->getNameAsString());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
if (bit_offset_ptr) {
const clang::ASTRecordLayout &record_layout =
getASTContext().getASTRecordLayout(record_decl);
*bit_offset_ptr = record_layout.getFieldOffset(field_idx);
}
const bool is_bitfield = field->isBitField();
if (bitfield_bit_size_ptr) {
*bitfield_bit_size_ptr = 0;
if (is_bitfield) {
clang::Expr *bitfield_bit_size_expr = field->getBitWidth();
clang::Expr::EvalResult result;
if (bitfield_bit_size_expr &&
bitfield_bit_size_expr->EvaluateAsInt(result,
getASTContext())) {
llvm::APSInt bitfield_apsint = result.Val.getInt();
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return GetType(field->getType());
}
}
}
break;
case clang::Type::ObjCObjectPointer: {
const clang::ObjCObjectPointerType *objc_class_type =
qual_type->getAs<clang::ObjCObjectPointerType>();
const clang::ObjCInterfaceType *objc_interface_type =
objc_class_type->getInterfaceType();
if (objc_interface_type &&
GetCompleteType(static_cast<lldb::opaque_compiler_type_t>(
const_cast<clang::ObjCInterfaceType *>(objc_interface_type)))) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_interface_type->getDecl();
if (class_interface_decl) {
return CompilerType(
this, GetObjCFieldAtIndex(&getASTContext(), class_interface_decl,
idx, name, bit_offset_ptr,
bitfield_bit_size_ptr, is_bitfield_ptr));
}
}
break;
}
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert(objc_class_type);
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
return CompilerType(
this, GetObjCFieldAtIndex(&getASTContext(), class_interface_decl,
idx, name, bit_offset_ptr,
bitfield_bit_size_ptr, is_bitfield_ptr));
}
}
break;
default:
break;
}
return CompilerType();
}
uint32_t
TypeSystemClang::GetNumDirectBaseClasses(lldb::opaque_compiler_type_t type) {
uint32_t count = 0;
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumBases();
}
break;
case clang::Type::ObjCObjectPointer:
count = GetPointeeType(type).GetNumDirectBaseClasses();
break;
case clang::Type::ObjCObject:
if (GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
const clang::ObjCInterfaceType *objc_interface_type =
qual_type->getAs<clang::ObjCInterfaceType>();
if (objc_interface_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_interface_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
default:
break;
}
return count;
}
uint32_t
TypeSystemClang::GetNumVirtualBaseClasses(lldb::opaque_compiler_type_t type) {
uint32_t count = 0;
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumVBases();
}
break;
default:
break;
}
return count;
}
CompilerType TypeSystemClang::GetDirectBaseClassAtIndex(
lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
uint32_t curr_idx = 0;
clang::CXXRecordDecl::base_class_const_iterator base_class,
base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class, ++curr_idx) {
if (curr_idx == idx) {
if (bit_offset_ptr) {
const clang::ASTRecordLayout &record_layout =
getASTContext().getASTRecordLayout(cxx_record_decl);
const clang::CXXRecordDecl *base_class_decl =
llvm::cast<clang::CXXRecordDecl>(
base_class->getType()
->getAs<clang::RecordType>()
->getDecl());
if (base_class->isVirtual())
*bit_offset_ptr =
record_layout.getVBaseClassOffset(base_class_decl)
.getQuantity() *
8;
else
*bit_offset_ptr =
record_layout.getBaseClassOffset(base_class_decl)
.getQuantity() *
8;
}
return GetType(base_class->getType());
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
return GetPointeeType(type).GetDirectBaseClassAtIndex(idx, bit_offset_ptr);
case clang::Type::ObjCObject:
if (idx == 0 && GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
clang::ObjCInterfaceDecl *superclass_interface_decl =
class_interface_decl->getSuperClass();
if (superclass_interface_decl) {
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return GetType(getASTContext().getObjCInterfaceType(
superclass_interface_decl));
}
}
}
}
break;
case clang::Type::ObjCInterface:
if (idx == 0 && GetCompleteType(type)) {
const clang::ObjCObjectType *objc_interface_type =
qual_type->getAs<clang::ObjCInterfaceType>();
if (objc_interface_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_interface_type->getInterface();
if (class_interface_decl) {
clang::ObjCInterfaceDecl *superclass_interface_decl =
class_interface_decl->getSuperClass();
if (superclass_interface_decl) {
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return GetType(getASTContext().getObjCInterfaceType(
superclass_interface_decl));
}
}
}
}
break;
default:
break;
}
return CompilerType();
}
CompilerType TypeSystemClang::GetVirtualBaseClassAtIndex(
lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
uint32_t curr_idx = 0;
clang::CXXRecordDecl::base_class_const_iterator base_class,
base_class_end;
for (base_class = cxx_record_decl->vbases_begin(),
base_class_end = cxx_record_decl->vbases_end();
base_class != base_class_end; ++base_class, ++curr_idx) {
if (curr_idx == idx) {
if (bit_offset_ptr) {
const clang::ASTRecordLayout &record_layout =
getASTContext().getASTRecordLayout(cxx_record_decl);
const clang::CXXRecordDecl *base_class_decl =
llvm::cast<clang::CXXRecordDecl>(
base_class->getType()
->getAs<clang::RecordType>()
->getDecl());
*bit_offset_ptr =
record_layout.getVBaseClassOffset(base_class_decl)
.getQuantity() *
8;
}
return GetType(base_class->getType());
}
}
}
}
break;
default:
break;
}
return CompilerType();
}
// If a pointer to a pointee type (the clang_type arg) says that it has no
// children, then we either need to trust it, or override it and return a
// different result. For example, an "int *" has one child that is an integer,
// but a function pointer doesn't have any children. Likewise if a Record type
// claims it has no children, then there really is nothing to show.
uint32_t TypeSystemClang::GetNumPointeeChildren(clang::QualType type) {
if (type.isNull())
return 0;
clang::QualType qual_type = RemoveWrappingTypes(type.getCanonicalType());
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind()) {
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLImage1dRO:
case clang::BuiltinType::OCLImage1dWO:
case clang::BuiltinType::OCLImage1dRW:
case clang::BuiltinType::OCLImage1dArrayRO:
case clang::BuiltinType::OCLImage1dArrayWO:
case clang::BuiltinType::OCLImage1dArrayRW:
case clang::BuiltinType::OCLImage1dBufferRO:
case clang::BuiltinType::OCLImage1dBufferWO:
case clang::BuiltinType::OCLImage1dBufferRW:
case clang::BuiltinType::OCLImage2dRO:
case clang::BuiltinType::OCLImage2dWO:
case clang::BuiltinType::OCLImage2dRW:
case clang::BuiltinType::OCLImage2dArrayRO:
case clang::BuiltinType::OCLImage2dArrayWO:
case clang::BuiltinType::OCLImage2dArrayRW:
case clang::BuiltinType::OCLImage3dRO:
case clang::BuiltinType::OCLImage3dWO:
case clang::BuiltinType::OCLImage3dRW:
case clang::BuiltinType::OCLSampler:
return 0;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::BuiltinFn:
case clang::BuiltinType::OMPArraySection:
return 1;
default:
return 0;
}
break;
case clang::Type::Complex:
return 1;
case clang::Type::Pointer:
return 1;
case clang::Type::BlockPointer:
return 0; // If block pointers don't have debug info, then no children for
// them
case clang::Type::LValueReference:
return 1;
case clang::Type::RValueReference:
return 1;
case clang::Type::MemberPointer:
return 0;
case clang::Type::ConstantArray:
return 0;
case clang::Type::IncompleteArray:
return 0;
case clang::Type::VariableArray:
return 0;
case clang::Type::DependentSizedArray:
return 0;
case clang::Type::DependentSizedExtVector:
return 0;
case clang::Type::Vector:
return 0;
case clang::Type::ExtVector:
return 0;
case clang::Type::FunctionProto:
return 0; // When we function pointers, they have no children...
case clang::Type::FunctionNoProto:
return 0; // When we function pointers, they have no children...
case clang::Type::UnresolvedUsing:
return 0;
case clang::Type::Record:
return 0;
case clang::Type::Enum:
return 1;
case clang::Type::TemplateTypeParm:
return 1;
case clang::Type::SubstTemplateTypeParm:
return 1;
case clang::Type::TemplateSpecialization:
return 1;
case clang::Type::InjectedClassName:
return 0;
case clang::Type::DependentName:
return 1;
case clang::Type::DependentTemplateSpecialization:
return 1;
case clang::Type::ObjCObject:
return 0;
case clang::Type::ObjCInterface:
return 0;
case clang::Type::ObjCObjectPointer:
return 1;
default:
break;
}
return 0;
}
CompilerType TypeSystemClang::GetChildCompilerTypeAtIndex(
lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, size_t idx,
bool transparent_pointers, bool omit_empty_base_classes,
bool ignore_array_bounds, std::string &child_name,
uint32_t &child_byte_size, int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset,
bool &child_is_base_class, bool &child_is_deref_of_parent,
ValueObject *valobj, uint64_t &language_flags) {
if (!type)
return CompilerType();
auto get_exe_scope = [&exe_ctx]() {
return exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr;
};
clang::QualType parent_qual_type(
RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass parent_type_class =
parent_qual_type->getTypeClass();
child_bitfield_bit_size = 0;
child_bitfield_bit_offset = 0;
child_is_base_class = false;
language_flags = 0;
const bool idx_is_valid =
idx < GetNumChildren(type, omit_empty_base_classes, exe_ctx);
int32_t bit_offset;
switch (parent_type_class) {
case clang::Type::Builtin:
if (idx_is_valid) {
switch (llvm::cast<clang::BuiltinType>(parent_qual_type)->getKind()) {
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
child_name = "isa";
child_byte_size =
getASTContext().getTypeSize(getASTContext().ObjCBuiltinClassTy) /
CHAR_BIT;
return GetType(getASTContext().ObjCBuiltinClassTy);
default:
break;
}
}
break;
case clang::Type::Record:
if (idx_is_valid && GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(parent_qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::ASTRecordLayout &record_layout =
getASTContext().getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class,
base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
const clang::CXXRecordDecl *base_class_decl = nullptr;
// Skip empty base classes
if (omit_empty_base_classes) {
base_class_decl = llvm::cast<clang::CXXRecordDecl>(
base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (!TypeSystemClang::RecordHasFields(base_class_decl))
continue;
}
if (idx == child_idx) {
if (base_class_decl == nullptr)
base_class_decl = llvm::cast<clang::CXXRecordDecl>(
base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (base_class->isVirtual()) {
bool handled = false;
if (valobj) {
clang::VTableContextBase *vtable_ctx =
getASTContext().getVTableContext();
if (vtable_ctx)
handled = GetVBaseBitOffset(*vtable_ctx, *valobj,
record_layout, cxx_record_decl,
base_class_decl, bit_offset);
}
if (!handled)
bit_offset = record_layout.getVBaseClassOffset(base_class_decl)
.getQuantity() *
8;
} else
bit_offset = record_layout.getBaseClassOffset(base_class_decl)
.getQuantity() *
8;
// Base classes should be a multiple of 8 bits in size
child_byte_offset = bit_offset / 8;
CompilerType base_class_clang_type = GetType(base_class->getType());
child_name = base_class_clang_type.GetTypeName().AsCString("");
Optional<uint64_t> size =
base_class_clang_type.GetBitSize(get_exe_scope());
if (!size)
return {};
uint64_t base_class_clang_type_bit_size = *size;
// Base classes bit sizes should be a multiple of 8 bits in size
assert(base_class_clang_type_bit_size % 8 == 0);
child_byte_size = base_class_clang_type_bit_size / 8;
child_is_base_class = true;
return base_class_clang_type;
}
// We don't increment the child index in the for loop since we might
// be skipping empty base classes
++child_idx;
}
}
// Make sure index is in range...
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field, ++field_idx, ++child_idx) {
if (idx == child_idx) {
// Print the member type if requested
// Print the member name and equal sign
child_name.assign(field->getNameAsString());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
CompilerType field_clang_type = GetType(field->getType());
assert(field_idx < record_layout.getFieldCount());
Optional<uint64_t> size =
field_clang_type.GetByteSize(get_exe_scope());
if (!size)
return {};
child_byte_size = *size;
const uint32_t child_bit_size = child_byte_size * 8;
// Figure out the field offset within the current struct/union/class
// type
bit_offset = record_layout.getFieldOffset(field_idx);
if (FieldIsBitfield(*field, child_bitfield_bit_size)) {
child_bitfield_bit_offset = bit_offset % child_bit_size;
const uint32_t child_bit_offset =
bit_offset - child_bitfield_bit_offset;
child_byte_offset = child_bit_offset / 8;
} else {
child_byte_offset = bit_offset / 8;
}
return field_clang_type;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (idx_is_valid && GetCompleteType(type)) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(parent_qual_type.getTypePtr());
assert(objc_class_type);
if (objc_class_type) {
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
const clang::ASTRecordLayout &interface_layout =
getASTContext().getASTObjCInterfaceLayout(class_interface_decl);
clang::ObjCInterfaceDecl *superclass_interface_decl =
class_interface_decl->getSuperClass();
if (superclass_interface_decl) {
if (omit_empty_base_classes) {
CompilerType base_class_clang_type =
GetType(getASTContext().getObjCInterfaceType(
superclass_interface_decl));
if (base_class_clang_type.GetNumChildren(omit_empty_base_classes,
exe_ctx) > 0) {
if (idx == 0) {
clang::QualType ivar_qual_type(
getASTContext().getObjCInterfaceType(
superclass_interface_decl));
child_name.assign(
superclass_interface_decl->getNameAsString());
clang::TypeInfo ivar_type_info =
getASTContext().getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.Width / 8;
child_byte_offset = 0;
child_is_base_class = true;
return GetType(ivar_qual_type);
}
++child_idx;
}
} else
++child_idx;
}
const uint32_t superclass_idx = child_idx;
if (idx < (child_idx + class_interface_decl->ivar_size())) {
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
ivar_end = class_interface_decl->ivar_end();
for (ivar_pos = class_interface_decl->ivar_begin();
ivar_pos != ivar_end; ++ivar_pos) {
if (child_idx == idx) {
clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
clang::QualType ivar_qual_type(ivar_decl->getType());
child_name.assign(ivar_decl->getNameAsString());
clang::TypeInfo ivar_type_info =
getASTContext().getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.Width / 8;
// Figure out the field offset within the current
// struct/union/class type For ObjC objects, we can't trust the
// bit offset we get from the Clang AST, since that doesn't
// account for the space taken up by unbacked properties, or
// from the changing size of base classes that are newer than
// this class. So if we have a process around that we can ask
// about this object, do so.
child_byte_offset = LLDB_INVALID_IVAR_OFFSET;
Process *process = nullptr;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process) {
ObjCLanguageRuntime *objc_runtime =
ObjCLanguageRuntime::Get(*process);
if (objc_runtime != nullptr) {
CompilerType parent_ast_type = GetType(parent_qual_type);
child_byte_offset = objc_runtime->GetByteOffsetForIvar(
parent_ast_type, ivar_decl->getNameAsString().c_str());
}
}
// Setting this to INT32_MAX to make sure we don't compute it
// twice...
bit_offset = INT32_MAX;
if (child_byte_offset ==
static_cast<int32_t>(LLDB_INVALID_IVAR_OFFSET)) {
bit_offset = interface_layout.getFieldOffset(child_idx -
superclass_idx);
child_byte_offset = bit_offset / 8;
}
// Note, the ObjC Ivar Byte offset is just that, it doesn't
// account for the bit offset of a bitfield within its
// containing object. So regardless of where we get the byte
// offset from, we still need to get the bit offset for
// bitfields from the layout.
if (FieldIsBitfield(ivar_decl, child_bitfield_bit_size)) {
if (bit_offset == INT32_MAX)
bit_offset = interface_layout.getFieldOffset(
child_idx - superclass_idx);
child_bitfield_bit_offset = bit_offset % 8;
}
return GetType(ivar_qual_type);
}
++child_idx;
}
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (idx_is_valid) {
CompilerType pointee_clang_type(GetPointeeType(type));
if (transparent_pointers && pointee_clang_type.IsAggregateType()) {
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildCompilerTypeAtIndex(
exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, tmp_child_is_deref_of_parent, valobj,
language_flags);
} else {
child_is_deref_of_parent = true;
const char *parent_name =
valobj ? valobj->GetName().GetCString() : nullptr;
if (parent_name) {
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0 && pointee_clang_type.GetCompleteType()) {
if (Optional<uint64_t> size =
pointee_clang_type.GetByteSize(get_exe_scope())) {
child_byte_size = *size;
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
}
break;
case clang::Type::Vector:
case clang::Type::ExtVector:
if (idx_is_valid) {
const clang::VectorType *array =
llvm::cast<clang::VectorType>(parent_qual_type.getTypePtr());
if (array) {
CompilerType element_type = GetType(array->getElementType());
if (element_type.GetCompleteType()) {
char element_name[64];
::snprintf(element_name, sizeof(element_name), "[%" PRIu64 "]",
static_cast<uint64_t>(idx));
child_name.assign(element_name);
if (Optional<uint64_t> size =
element_type.GetByteSize(get_exe_scope())) {
child_byte_size = *size;
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return element_type;
}
}
}
}
break;
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
if (ignore_array_bounds || idx_is_valid) {
const clang::ArrayType *array = GetQualType(type)->getAsArrayTypeUnsafe();
if (array) {
CompilerType element_type = GetType(array->getElementType());
if (element_type.GetCompleteType()) {
child_name = std::string(llvm::formatv("[{0}]", idx));
if (Optional<uint64_t> size =
element_type.GetByteSize(get_exe_scope())) {
child_byte_size = *size;
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return element_type;
}
}
}
}
break;
case clang::Type::Pointer: {
CompilerType pointee_clang_type(GetPointeeType(type));
// Don't dereference "void *" pointers
if (pointee_clang_type.IsVoidType())
return CompilerType();
if (transparent_pointers && pointee_clang_type.IsAggregateType()) {
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildCompilerTypeAtIndex(
exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, tmp_child_is_deref_of_parent, valobj,
language_flags);
} else {
child_is_deref_of_parent = true;
const char *parent_name =
valobj ? valobj->GetName().GetCString() : nullptr;
if (parent_name) {
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0) {
if (Optional<uint64_t> size =
pointee_clang_type.GetByteSize(get_exe_scope())) {
child_byte_size = *size;
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
}
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (idx_is_valid) {
const clang::ReferenceType *reference_type =
llvm::cast<clang::ReferenceType>(parent_qual_type.getTypePtr());
CompilerType pointee_clang_type =
GetType(reference_type->getPointeeType());
if (transparent_pointers && pointee_clang_type.IsAggregateType()) {
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildCompilerTypeAtIndex(
exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
child_bitfield_bit_size, child_bitfield_bit_offset,
child_is_base_class, tmp_child_is_deref_of_parent, valobj,
language_flags);
} else {
const char *parent_name =
valobj ? valobj->GetName().GetCString() : nullptr;
if (parent_name) {
child_name.assign(1, '&');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0) {
if (Optional<uint64_t> size =
pointee_clang_type.GetByteSize(get_exe_scope())) {
child_byte_size = *size;
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
}
break;
default:
break;
}
return CompilerType();
}
static uint32_t GetIndexForRecordBase(const clang::RecordDecl *record_decl,
const clang::CXXBaseSpecifier *base_spec,
bool omit_empty_base_classes) {
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
if (omit_empty_base_classes) {
if (BaseSpecifierIsEmpty(base_class))
continue;
}
if (base_class == base_spec)
return child_idx;
++child_idx;
}
}
return UINT32_MAX;
}
static uint32_t GetIndexForRecordChild(const clang::RecordDecl *record_decl,
clang::NamedDecl *canonical_decl,
bool omit_empty_base_classes) {
uint32_t child_idx = TypeSystemClang::GetNumBaseClasses(
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl),
omit_empty_base_classes);
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end; ++field, ++child_idx) {
if (field->getCanonicalDecl() == canonical_decl)
return child_idx;
}
return UINT32_MAX;
}
// Look for a child member (doesn't include base classes, but it does include
// their members) in the type hierarchy. Returns an index path into
// "clang_type" on how to reach the appropriate member.
//
// class A
// {
// public:
// int m_a;
// int m_b;
// };
//
// class B
// {
// };
//
// class C :
// public B,
// public A
// {
// };
//
// If we have a clang type that describes "class C", and we wanted to looked
// "m_b" in it:
//
// With omit_empty_base_classes == false we would get an integer array back
// with: { 1, 1 } The first index 1 is the child index for "class A" within
// class C The second index 1 is the child index for "m_b" within class A
//
// With omit_empty_base_classes == true we would get an integer array back
// with: { 0, 1 } The first index 0 is the child index for "class A" within
// class C (since class B doesn't have any members it doesn't count) The second
// index 1 is the child index for "m_b" within class A
size_t TypeSystemClang::GetIndexOfChildMemberWithName(
lldb::opaque_compiler_type_t type, const char *name,
bool omit_empty_base_classes, std::vector<uint32_t> &child_indexes) {
if (type && name && name[0]) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
// Try and find a field that matches NAME
clang::RecordDecl::field_iterator field, field_end;
llvm::StringRef name_sref(name);
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field, ++child_idx) {
llvm::StringRef field_name = field->getName();
if (field_name.empty()) {
CompilerType field_type = GetType(field->getType());
child_indexes.push_back(child_idx);
if (field_type.GetIndexOfChildMemberWithName(
name, omit_empty_base_classes, child_indexes))
return child_indexes.size();
child_indexes.pop_back();
} else if (field_name.equals(name_sref)) {
// We have to add on the number of base classes to this index!
child_indexes.push_back(
child_idx + TypeSystemClang::GetNumBaseClasses(
cxx_record_decl, omit_empty_base_classes));
return child_indexes.size();
}
}
if (cxx_record_decl) {
const clang::RecordDecl *parent_record_decl = cxx_record_decl;
// Didn't find things easily, lets let clang do its thang...
clang::IdentifierInfo &ident_ref =
getASTContext().Idents.get(name_sref);
clang::DeclarationName decl_name(&ident_ref);
clang::CXXBasePaths paths;
if (cxx_record_decl->lookupInBases(
[decl_name](const clang::CXXBaseSpecifier *specifier,
clang::CXXBasePath &path) {
path.Decls =
specifier->getType()->getAsCXXRecordDecl()->lookup(
decl_name);
return !path.Decls.empty();
},
paths)) {
clang::CXXBasePaths::const_paths_iterator path,
path_end = paths.end();
for (path = paths.begin(); path != path_end; ++path) {
const size_t num_path_elements = path->size();
for (size_t e = 0; e < num_path_elements; ++e) {
clang::CXXBasePathElement elem = (*path)[e];
child_idx = GetIndexForRecordBase(parent_record_decl, elem.Base,
omit_empty_base_classes);
if (child_idx == UINT32_MAX) {
child_indexes.clear();
return 0;
} else {
child_indexes.push_back(child_idx);
parent_record_decl = llvm::cast<clang::RecordDecl>(
elem.Base->getType()
->getAs<clang::RecordType>()
->getDecl());
}
}
for (clang::NamedDecl *path_decl : path->Decls) {
child_idx = GetIndexForRecordChild(
parent_record_decl, path_decl, omit_empty_base_classes);
if (child_idx == UINT32_MAX) {
child_indexes.clear();
return 0;
} else {
child_indexes.push_back(child_idx);
}
}
}
return child_indexes.size();
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
llvm::StringRef name_sref(name);
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert(objc_class_type);
if (objc_class_type) {
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
ivar_end = class_interface_decl->ivar_end();
clang::ObjCInterfaceDecl *superclass_interface_decl =
class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin();
ivar_pos != ivar_end; ++ivar_pos, ++child_idx) {
const clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals(name_sref)) {
if ((!omit_empty_base_classes && superclass_interface_decl) ||
(omit_empty_base_classes &&
ObjCDeclHasIVars(superclass_interface_decl, true)))
++child_idx;
child_indexes.push_back(child_idx);
return child_indexes.size();
}
}
if (superclass_interface_decl) {
// The super class index is always zero for ObjC classes, so we
// push it onto the child indexes in case we find an ivar in our
// superclass...
child_indexes.push_back(0);
CompilerType superclass_clang_type =
GetType(getASTContext().getObjCInterfaceType(
superclass_interface_decl));
if (superclass_clang_type.GetIndexOfChildMemberWithName(
name, omit_empty_base_classes, child_indexes)) {
// We did find an ivar in a superclass so just return the
// results!
return child_indexes.size();
}
// We didn't find an ivar matching "name" in our superclass, pop
// the superclass zero index that we pushed on above.
child_indexes.pop_back();
}
}
}
}
break;
case clang::Type::ObjCObjectPointer: {
CompilerType objc_object_clang_type = GetType(
llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
->getPointeeType());
return objc_object_clang_type.GetIndexOfChildMemberWithName(
name, omit_empty_base_classes, child_indexes);
} break;
case clang::Type::ConstantArray: {
// const clang::ConstantArrayType *array =
// llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count =
// array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info =
// ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name),
// "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
} break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type =
// llvm::cast<MemberPointerType>(qual_type.getTypePtr());
// clang::QualType pointee_type =
// mem_ptr_type->getPointeeType();
//
// if (TypeSystemClang::IsAggregateType
// (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference: {
const clang::ReferenceType *reference_type =
llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
clang::QualType pointee_type(reference_type->getPointeeType());
CompilerType pointee_clang_type = GetType(pointee_type);
if (pointee_clang_type.IsAggregateType()) {
return pointee_clang_type.GetIndexOfChildMemberWithName(
name, omit_empty_base_classes, child_indexes);
}
} break;
case clang::Type::Pointer: {
CompilerType pointee_clang_type(GetPointeeType(type));
if (pointee_clang_type.IsAggregateType()) {
return pointee_clang_type.GetIndexOfChildMemberWithName(
name, omit_empty_base_classes, child_indexes);
}
} break;
default:
break;
}
}
return 0;
}
// Get the index of the child of "clang_type" whose name matches. This function
// doesn't descend into the children, but only looks one level deep and name
// matches can include base class names.
uint32_t
TypeSystemClang::GetIndexOfChildWithName(lldb::opaque_compiler_type_t type,
const char *name,
bool omit_empty_base_classes) {
if (type && name && name[0]) {
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
clang::CXXRecordDecl::base_class_const_iterator base_class,
base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
// Skip empty base classes
clang::CXXRecordDecl *base_class_decl =
llvm::cast<clang::CXXRecordDecl>(
base_class->getType()
->getAs<clang::RecordType>()
->getDecl());
if (omit_empty_base_classes &&
!TypeSystemClang::RecordHasFields(base_class_decl))
continue;
CompilerType base_class_clang_type = GetType(base_class->getType());
std::string base_class_type_name(
base_class_clang_type.GetTypeName().AsCString(""));
if (base_class_type_name == name)
return child_idx;
++child_idx;
}
}
// Try and find a field that matches NAME
clang::RecordDecl::field_iterator field, field_end;
llvm::StringRef name_sref(name);
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field, ++child_idx) {
if (field->getName().equals(name_sref))
return child_idx;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type)) {
llvm::StringRef name_sref(name);
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert(objc_class_type);
if (objc_class_type) {
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos,
ivar_end = class_interface_decl->ivar_end();
clang::ObjCInterfaceDecl *superclass_interface_decl =
class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin();
ivar_pos != ivar_end; ++ivar_pos, ++child_idx) {
const clang::ObjCIvarDecl *ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals(name_sref)) {
if ((!omit_empty_base_classes && superclass_interface_decl) ||
(omit_empty_base_classes &&
ObjCDeclHasIVars(superclass_interface_decl, true)))
++child_idx;
return child_idx;
}
}
if (superclass_interface_decl) {
if (superclass_interface_decl->getName().equals(name_sref))
return 0;
}
}
}
}
break;
case clang::Type::ObjCObjectPointer: {
CompilerType pointee_clang_type = GetType(
llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())
->getPointeeType());
return pointee_clang_type.GetIndexOfChildWithName(
name, omit_empty_base_classes);
} break;
case clang::Type::ConstantArray: {
// const clang::ConstantArrayType *array =
// llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count =
// array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info =
// ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name),
// "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
} break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type =
// llvm::cast<MemberPointerType>(qual_type.getTypePtr());
// clang::QualType pointee_type =
// mem_ptr_type->getPointeeType();
//
// if (TypeSystemClang::IsAggregateType
// (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference: {
const clang::ReferenceType *reference_type =
llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
CompilerType pointee_type = GetType(reference_type->getPointeeType());
if (pointee_type.IsAggregateType()) {
return pointee_type.GetIndexOfChildWithName(name,
omit_empty_base_classes);
}
} break;
case clang::Type::Pointer: {
const clang::PointerType *pointer_type =
llvm::cast<clang::PointerType>(qual_type.getTypePtr());
CompilerType pointee_type = GetType(pointer_type->getPointeeType());
if (pointee_type.IsAggregateType()) {
return pointee_type.GetIndexOfChildWithName(name,
omit_empty_base_classes);
} else {
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info
// = ast->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
} break;
default:
break;
}
}
return UINT32_MAX;
}
size_t
TypeSystemClang::GetNumTemplateArguments(lldb::opaque_compiler_type_t type) {
if (!type)
return 0;
clang::QualType qual_type = RemoveWrappingTypes(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
const clang::ClassTemplateSpecializationDecl *template_decl =
llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(
cxx_record_decl);
if (template_decl)
return template_decl->getTemplateArgs().size();
}
}
break;
default:
break;
}
return 0;
}
const clang::ClassTemplateSpecializationDecl *
TypeSystemClang::GetAsTemplateSpecialization(
lldb::opaque_compiler_type_t type) {
if (!type)
return nullptr;
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record: {
if (! GetCompleteType(type))
return nullptr;
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (!cxx_record_decl)
return nullptr;
return llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(
cxx_record_decl);
}
default:
return nullptr;
}
}
lldb::TemplateArgumentKind
TypeSystemClang::GetTemplateArgumentKind(lldb::opaque_compiler_type_t type,
size_t arg_idx) {
const clang::ClassTemplateSpecializationDecl *template_decl =
GetAsTemplateSpecialization(type);
if (! template_decl || arg_idx >= template_decl->getTemplateArgs().size())
return eTemplateArgumentKindNull;
switch (template_decl->getTemplateArgs()[arg_idx].getKind()) {
case clang::TemplateArgument::Null:
return eTemplateArgumentKindNull;
case clang::TemplateArgument::NullPtr:
return eTemplateArgumentKindNullPtr;
case clang::TemplateArgument::Type:
return eTemplateArgumentKindType;
case clang::TemplateArgument::Declaration:
return eTemplateArgumentKindDeclaration;
case clang::TemplateArgument::Integral:
return eTemplateArgumentKindIntegral;
case clang::TemplateArgument::Template:
return eTemplateArgumentKindTemplate;
case clang::TemplateArgument::TemplateExpansion:
return eTemplateArgumentKindTemplateExpansion;
case clang::TemplateArgument::Expression:
return eTemplateArgumentKindExpression;
case clang::TemplateArgument::Pack:
return eTemplateArgumentKindPack;
}
llvm_unreachable("Unhandled clang::TemplateArgument::ArgKind");
}
CompilerType
TypeSystemClang::GetTypeTemplateArgument(lldb::opaque_compiler_type_t type,
size_t idx) {
const clang::ClassTemplateSpecializationDecl *template_decl =
GetAsTemplateSpecialization(type);
if (!template_decl || idx >= template_decl->getTemplateArgs().size())
return CompilerType();
const clang::TemplateArgument &template_arg =
template_decl->getTemplateArgs()[idx];
if (template_arg.getKind() != clang::TemplateArgument::Type)
return CompilerType();
return GetType(template_arg.getAsType());
}
Optional<CompilerType::IntegralTemplateArgument>
TypeSystemClang::GetIntegralTemplateArgument(lldb::opaque_compiler_type_t type,
size_t idx) {
const clang::ClassTemplateSpecializationDecl *template_decl =
GetAsTemplateSpecialization(type);
if (! template_decl || idx >= template_decl->getTemplateArgs().size())
return llvm::None;
const clang::TemplateArgument &template_arg =
template_decl->getTemplateArgs()[idx];
if (template_arg.getKind() != clang::TemplateArgument::Integral)
return llvm::None;
return {
{template_arg.getAsIntegral(), GetType(template_arg.getIntegralType())}};
}
CompilerType TypeSystemClang::GetTypeForFormatters(void *type) {
if (type)
return ClangUtil::RemoveFastQualifiers(CompilerType(this, type));
return CompilerType();
}
clang::EnumDecl *TypeSystemClang::GetAsEnumDecl(const CompilerType &type) {
const clang::EnumType *enutype =
llvm::dyn_cast<clang::EnumType>(ClangUtil::GetCanonicalQualType(type));
if (enutype)
return enutype->getDecl();
return nullptr;
}
clang::RecordDecl *TypeSystemClang::GetAsRecordDecl(const CompilerType &type) {
const clang::RecordType *record_type =
llvm::dyn_cast<clang::RecordType>(ClangUtil::GetCanonicalQualType(type));
if (record_type)
return record_type->getDecl();
return nullptr;
}
clang::TagDecl *TypeSystemClang::GetAsTagDecl(const CompilerType &type) {
return ClangUtil::GetAsTagDecl(type);
}
clang::TypedefNameDecl *
TypeSystemClang::GetAsTypedefDecl(const CompilerType &type) {
const clang::TypedefType *typedef_type =
llvm::dyn_cast<clang::TypedefType>(ClangUtil::GetQualType(type));
if (typedef_type)
return typedef_type->getDecl();
return nullptr;
}
clang::CXXRecordDecl *
TypeSystemClang::GetAsCXXRecordDecl(lldb::opaque_compiler_type_t type) {
return GetCanonicalQualType(type)->getAsCXXRecordDecl();
}
clang::ObjCInterfaceDecl *
TypeSystemClang::GetAsObjCInterfaceDecl(const CompilerType &type) {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(
ClangUtil::GetCanonicalQualType(type));
if (objc_class_type)
return objc_class_type->getInterface();
return nullptr;
}
clang::FieldDecl *TypeSystemClang::AddFieldToRecordType(
const CompilerType &type, llvm::StringRef name,
const CompilerType &field_clang_type, AccessType access,
uint32_t bitfield_bit_size) {
if (!type.IsValid() || !field_clang_type.IsValid())
return nullptr;
TypeSystemClang *ast =
llvm::dyn_cast_or_null<TypeSystemClang>(type.GetTypeSystem());
if (!ast)
return nullptr;
clang::ASTContext &clang_ast = ast->getASTContext();
clang::IdentifierInfo *ident = nullptr;
if (!name.empty())
ident = &clang_ast.Idents.get(name);
clang::FieldDecl *field = nullptr;
clang::Expr *bit_width = nullptr;
if (bitfield_bit_size != 0) {
llvm::APInt bitfield_bit_size_apint(clang_ast.getTypeSize(clang_ast.IntTy),
bitfield_bit_size);
bit_width = new (clang_ast)
clang::IntegerLiteral(clang_ast, bitfield_bit_size_apint,
clang_ast.IntTy, clang::SourceLocation());
}
clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
if (record_decl) {
field = clang::FieldDecl::CreateDeserialized(clang_ast, 0);
field->setDeclContext(record_decl);
field->setDeclName(ident);
field->setType(ClangUtil::GetQualType(field_clang_type));
if (bit_width)
field->setBitWidth(bit_width);
SetMemberOwningModule(field, record_decl);
if (name.empty()) {
// Determine whether this field corresponds to an anonymous struct or
// union.
if (const clang::TagType *TagT =
field->getType()->getAs<clang::TagType>()) {
if (clang::RecordDecl *Rec =
llvm::dyn_cast<clang::RecordDecl>(TagT->getDecl()))
if (!Rec->getDeclName()) {
Rec->setAnonymousStructOrUnion(true);
field->setImplicit();
}
}
}
if (field) {
field->setAccess(
TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access));
record_decl->addDecl(field);
VerifyDecl(field);
}
} else {
clang::ObjCInterfaceDecl *class_interface_decl =
ast->GetAsObjCInterfaceDecl(type);
if (class_interface_decl) {
const bool is_synthesized = false;
field_clang_type.GetCompleteType();
auto *ivar = clang::ObjCIvarDecl::CreateDeserialized(clang_ast, 0);
ivar->setDeclContext(class_interface_decl);
ivar->setDeclName(ident);
ivar->setType(ClangUtil::GetQualType(field_clang_type));
ivar->setAccessControl(ConvertAccessTypeToObjCIvarAccessControl(access));
if (bit_width)
ivar->setBitWidth(bit_width);
ivar->setSynthesize(is_synthesized);
field = ivar;
SetMemberOwningModule(field, class_interface_decl);
if (field) {
class_interface_decl->addDecl(field);
VerifyDecl(field);
}
}
}
return field;
}
void TypeSystemClang::BuildIndirectFields(const CompilerType &type) {
if (!type)
return;
TypeSystemClang *ast = llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (!ast)
return;
clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
if (!record_decl)
return;
typedef llvm::SmallVector<clang::IndirectFieldDecl *, 1> IndirectFieldVector;
IndirectFieldVector indirect_fields;
clang::RecordDecl::field_iterator field_pos;
clang::RecordDecl::field_iterator field_end_pos = record_decl->field_end();
clang::RecordDecl::field_iterator last_field_pos = field_end_pos;
for (field_pos = record_decl->field_begin(); field_pos != field_end_pos;
last_field_pos = field_pos++) {
if (field_pos->isAnonymousStructOrUnion()) {
clang::QualType field_qual_type = field_pos->getType();
const clang::RecordType *field_record_type =
field_qual_type->getAs<clang::RecordType>();
if (!field_record_type)
continue;
clang::RecordDecl *field_record_decl = field_record_type->getDecl();
if (!field_record_decl)
continue;
for (clang::RecordDecl::decl_iterator
di = field_record_decl->decls_begin(),
de = field_record_decl->decls_end();
di != de; ++di) {
if (clang::FieldDecl *nested_field_decl =
llvm::dyn_cast<clang::FieldDecl>(*di)) {
clang::NamedDecl **chain =
new (ast->getASTContext()) clang::NamedDecl *[2];
chain[0] = *field_pos;
chain[1] = nested_field_decl;
clang::IndirectFieldDecl *indirect_field =
clang::IndirectFieldDecl::Create(
ast->getASTContext(), record_decl, clang::SourceLocation(),
nested_field_decl->getIdentifier(),
nested_field_decl->getType(), {chain, 2});
SetMemberOwningModule(indirect_field, record_decl);
indirect_field->setImplicit();
indirect_field->setAccess(TypeSystemClang::UnifyAccessSpecifiers(
field_pos->getAccess(), nested_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
} else if (clang::IndirectFieldDecl *nested_indirect_field_decl =
llvm::dyn_cast<clang::IndirectFieldDecl>(*di)) {
size_t nested_chain_size =
nested_indirect_field_decl->getChainingSize();
clang::NamedDecl **chain = new (ast->getASTContext())
clang::NamedDecl *[nested_chain_size + 1];
chain[0] = *field_pos;
int chain_index = 1;
for (clang::IndirectFieldDecl::chain_iterator
nci = nested_indirect_field_decl->chain_begin(),
nce = nested_indirect_field_decl->chain_end();
nci < nce; ++nci) {
chain[chain_index] = *nci;
chain_index++;
}
clang::IndirectFieldDecl *indirect_field =
clang::IndirectFieldDecl::Create(
ast->getASTContext(), record_decl, clang::SourceLocation(),
nested_indirect_field_decl->getIdentifier(),
nested_indirect_field_decl->getType(),
{chain, nested_chain_size + 1});
SetMemberOwningModule(indirect_field, record_decl);
indirect_field->setImplicit();
indirect_field->setAccess(TypeSystemClang::UnifyAccessSpecifiers(
field_pos->getAccess(), nested_indirect_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
}
}
}
// Check the last field to see if it has an incomplete array type as its last
// member and if it does, the tell the record decl about it
if (last_field_pos != field_end_pos) {
if (last_field_pos->getType()->isIncompleteArrayType())
record_decl->hasFlexibleArrayMember();
}
for (IndirectFieldVector::iterator ifi = indirect_fields.begin(),
ife = indirect_fields.end();
ifi < ife; ++ifi) {
record_decl->addDecl(*ifi);
}
}
void TypeSystemClang::SetIsPacked(const CompilerType &type) {
if (type) {
TypeSystemClang *ast =
llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (ast) {
clang::RecordDecl *record_decl = GetAsRecordDecl(type);
if (!record_decl)
return;
record_decl->addAttr(
clang::PackedAttr::CreateImplicit(ast->getASTContext()));
}
}
}
clang::VarDecl *TypeSystemClang::AddVariableToRecordType(
const CompilerType &type, llvm::StringRef name,
const CompilerType &var_type, AccessType access) {
if (!type.IsValid() || !var_type.IsValid())
return nullptr;
TypeSystemClang *ast = llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (!ast)
return nullptr;
clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
if (!record_decl)
return nullptr;
clang::VarDecl *var_decl = nullptr;
clang::IdentifierInfo *ident = nullptr;
if (!name.empty())
ident = &ast->getASTContext().Idents.get(name);
var_decl = clang::VarDecl::CreateDeserialized(ast->getASTContext(), 0);
var_decl->setDeclContext(record_decl);
var_decl->setDeclName(ident);
var_decl->setType(ClangUtil::GetQualType(var_type));
var_decl->setStorageClass(clang::SC_Static);
SetMemberOwningModule(var_decl, record_decl);
if (!var_decl)
return nullptr;
var_decl->setAccess(
TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access));
record_decl->addDecl(var_decl);
VerifyDecl(var_decl);
return var_decl;
}
void TypeSystemClang::SetIntegerInitializerForVariable(
VarDecl *var, const llvm::APInt &init_value) {
assert(!var->hasInit() && "variable already initialized");
clang::ASTContext &ast = var->getASTContext();
QualType qt = var->getType();
assert(qt->isIntegralOrEnumerationType() &&
"only integer or enum types supported");
// If the variable is an enum type, take the underlying integer type as
// the type of the integer literal.
if (const EnumType *enum_type = llvm::dyn_cast<EnumType>(qt.getTypePtr())) {
const EnumDecl *enum_decl = enum_type->getDecl();
qt = enum_decl->getIntegerType();
}
var->setInit(IntegerLiteral::Create(ast, init_value, qt.getUnqualifiedType(),
SourceLocation()));
}
void TypeSystemClang::SetFloatingInitializerForVariable(
clang::VarDecl *var, const llvm::APFloat &init_value) {
assert(!var->hasInit() && "variable already initialized");
clang::ASTContext &ast = var->getASTContext();
QualType qt = var->getType();
assert(qt->isFloatingType() && "only floating point types supported");
var->setInit(FloatingLiteral::Create(
ast, init_value, true, qt.getUnqualifiedType(), SourceLocation()));
}
clang::CXXMethodDecl *TypeSystemClang::AddMethodToCXXRecordType(
lldb::opaque_compiler_type_t type, llvm::StringRef name,
const char *mangled_name, const CompilerType &method_clang_type,
lldb::AccessType access, bool is_virtual, bool is_static, bool is_inline,
bool is_explicit, bool is_attr_used, bool is_artificial) {
if (!type || !method_clang_type.IsValid() || name.empty())
return nullptr;
clang::QualType record_qual_type(GetCanonicalQualType(type));
clang::CXXRecordDecl *cxx_record_decl =
record_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl == nullptr)
return nullptr;
clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type));
clang::CXXMethodDecl *cxx_method_decl = nullptr;
clang::DeclarationName decl_name(&getASTContext().Idents.get(name));
const clang::FunctionType *function_type =
llvm::dyn_cast<clang::FunctionType>(method_qual_type.getTypePtr());
if (function_type == nullptr)
return nullptr;
const clang::FunctionProtoType *method_function_prototype(
llvm::dyn_cast<clang::FunctionProtoType>(function_type));
if (!method_function_prototype)
return nullptr;
unsigned int num_params = method_function_prototype->getNumParams();
clang::CXXDestructorDecl *cxx_dtor_decl(nullptr);
clang::CXXConstructorDecl *cxx_ctor_decl(nullptr);
if (is_artificial)
return nullptr; // skip everything artificial
const clang::ExplicitSpecifier explicit_spec(
nullptr /*expr*/, is_explicit ? clang::ExplicitSpecKind::ResolvedTrue
: clang::ExplicitSpecKind::ResolvedFalse);
if (name.startswith("~")) {
cxx_dtor_decl =
clang::CXXDestructorDecl::CreateDeserialized(getASTContext(), 0);
cxx_dtor_decl->setDeclContext(cxx_record_decl);
cxx_dtor_decl->setDeclName(
getASTContext().DeclarationNames.getCXXDestructorName(
getASTContext().getCanonicalType(record_qual_type)));
cxx_dtor_decl->setType(method_qual_type);
cxx_dtor_decl->setImplicit(is_artificial);
cxx_dtor_decl->setInlineSpecified(is_inline);
cxx_dtor_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
cxx_method_decl = cxx_dtor_decl;
} else if (decl_name == cxx_record_decl->getDeclName()) {
cxx_ctor_decl = clang::CXXConstructorDecl::CreateDeserialized(
getASTContext(), 0, 0);
cxx_ctor_decl->setDeclContext(cxx_record_decl);
cxx_ctor_decl->setDeclName(
getASTContext().DeclarationNames.getCXXConstructorName(
getASTContext().getCanonicalType(record_qual_type)));
cxx_ctor_decl->setType(method_qual_type);
cxx_ctor_decl->setImplicit(is_artificial);
cxx_ctor_decl->setInlineSpecified(is_inline);
cxx_ctor_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
cxx_ctor_decl->setNumCtorInitializers(0);
cxx_ctor_decl->setExplicitSpecifier(explicit_spec);
cxx_method_decl = cxx_ctor_decl;
} else {
clang::StorageClass SC = is_static ? clang::SC_Static : clang::SC_None;
clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
if (IsOperator(name, op_kind)) {
if (op_kind != clang::NUM_OVERLOADED_OPERATORS) {
// Check the number of operator parameters. Sometimes we have seen bad
// DWARF that doesn't correctly describe operators and if we try to
// create a method and add it to the class, clang will assert and
// crash, so we need to make sure things are acceptable.
const bool is_method = true;
if (!TypeSystemClang::CheckOverloadedOperatorKindParameterCount(
is_method, op_kind, num_params))
return nullptr;
cxx_method_decl =
clang::CXXMethodDecl::CreateDeserialized(getASTContext(), 0);
cxx_method_decl->setDeclContext(cxx_record_decl);
cxx_method_decl->setDeclName(
getASTContext().DeclarationNames.getCXXOperatorName(op_kind));
cxx_method_decl->setType(method_qual_type);
cxx_method_decl->setStorageClass(SC);
cxx_method_decl->setInlineSpecified(is_inline);
cxx_method_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
} else if (num_params == 0) {
// Conversion operators don't take params...
auto *cxx_conversion_decl =
clang::CXXConversionDecl::CreateDeserialized(getASTContext(), 0);
cxx_conversion_decl->setDeclContext(cxx_record_decl);
cxx_conversion_decl->setDeclName(
getASTContext().DeclarationNames.getCXXConversionFunctionName(
getASTContext().getCanonicalType(
function_type->getReturnType())));
cxx_conversion_decl->setType(method_qual_type);
cxx_conversion_decl->setInlineSpecified(is_inline);
cxx_conversion_decl->setExplicitSpecifier(explicit_spec);
cxx_conversion_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
cxx_method_decl = cxx_conversion_decl;
}
}
if (cxx_method_decl == nullptr) {
cxx_method_decl =
clang::CXXMethodDecl::CreateDeserialized(getASTContext(), 0);
cxx_method_decl->setDeclContext(cxx_record_decl);
cxx_method_decl->setDeclName(decl_name);
cxx_method_decl->setType(method_qual_type);
cxx_method_decl->setInlineSpecified(is_inline);
cxx_method_decl->setStorageClass(SC);
cxx_method_decl->setConstexprKind(ConstexprSpecKind::Unspecified);
}
}
SetMemberOwningModule(cxx_method_decl, cxx_record_decl);
clang::AccessSpecifier access_specifier =
TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access);
cxx_method_decl->setAccess(access_specifier);
cxx_method_decl->setVirtualAsWritten(is_virtual);
if (is_attr_used)
cxx_method_decl->addAttr(clang::UsedAttr::CreateImplicit(getASTContext()));
if (mangled_name != nullptr) {
cxx_method_decl->addAttr(clang::AsmLabelAttr::CreateImplicit(
getASTContext(), mangled_name, /*literal=*/false));
}
// Populate the method decl with parameter decls
llvm::SmallVector<clang::ParmVarDecl *, 12> params;
for (unsigned param_index = 0; param_index < num_params; ++param_index) {
params.push_back(clang::ParmVarDecl::Create(
getASTContext(), cxx_method_decl, clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
method_function_prototype->getParamType(param_index), nullptr,
clang::SC_None, nullptr));
}
cxx_method_decl->setParams(llvm::ArrayRef<clang::ParmVarDecl *>(params));
cxx_record_decl->addDecl(cxx_method_decl);
// Sometimes the debug info will mention a constructor (default/copy/move),
// destructor, or assignment operator (copy/move) but there won't be any
// version of this in the code. So we check if the function was artificially
// generated and if it is trivial and this lets the compiler/backend know
// that it can inline the IR for these when it needs to and we can avoid a
// "missing function" error when running expressions.
if (is_artificial) {
if (cxx_ctor_decl && ((cxx_ctor_decl->isDefaultConstructor() &&
cxx_record_decl->hasTrivialDefaultConstructor()) ||
(cxx_ctor_decl->isCopyConstructor() &&
cxx_record_decl->hasTrivialCopyConstructor()) ||
(cxx_ctor_decl->isMoveConstructor() &&
cxx_record_decl->hasTrivialMoveConstructor()))) {
cxx_ctor_decl->setDefaulted();
cxx_ctor_decl->setTrivial(true);
} else if (cxx_dtor_decl) {
if (cxx_record_decl->hasTrivialDestructor()) {
cxx_dtor_decl->setDefaulted();
cxx_dtor_decl->setTrivial(true);
}
} else if ((cxx_method_decl->isCopyAssignmentOperator() &&
cxx_record_decl->hasTrivialCopyAssignment()) ||
(cxx_method_decl->isMoveAssignmentOperator() &&
cxx_record_decl->hasTrivialMoveAssignment())) {
cxx_method_decl->setDefaulted();
cxx_method_decl->setTrivial(true);
}
}
VerifyDecl(cxx_method_decl);
return cxx_method_decl;
}
void TypeSystemClang::AddMethodOverridesForCXXRecordType(
lldb::opaque_compiler_type_t type) {
if (auto *record = GetAsCXXRecordDecl(type))
for (auto *method : record->methods())
addOverridesForMethod(method);
}
#pragma mark C++ Base Classes
std::unique_ptr<clang::CXXBaseSpecifier>
TypeSystemClang::CreateBaseClassSpecifier(lldb::opaque_compiler_type_t type,
AccessType access, bool is_virtual,
bool base_of_class) {
if (!type)
return nullptr;
return std::make_unique<clang::CXXBaseSpecifier>(
clang::SourceRange(), is_virtual, base_of_class,
TypeSystemClang::ConvertAccessTypeToAccessSpecifier(access),
getASTContext().getTrivialTypeSourceInfo(GetQualType(type)),
clang::SourceLocation());
}
bool TypeSystemClang::TransferBaseClasses(
lldb::opaque_compiler_type_t type,
std::vector<std::unique_ptr<clang::CXXBaseSpecifier>> bases) {
if (!type)
return false;
clang::CXXRecordDecl *cxx_record_decl = GetAsCXXRecordDecl(type);
if (!cxx_record_decl)
return false;
std::vector<clang::CXXBaseSpecifier *> raw_bases;
raw_bases.reserve(bases.size());
// Clang will make a copy of them, so it's ok that we pass pointers that we're
// about to destroy.
for (auto &b : bases)
raw_bases.push_back(b.get());
cxx_record_decl->setBases(raw_bases.data(), raw_bases.size());
return true;
}
bool TypeSystemClang::SetObjCSuperClass(
const CompilerType &type, const CompilerType &superclass_clang_type) {
TypeSystemClang *ast =
llvm::dyn_cast_or_null<TypeSystemClang>(type.GetTypeSystem());
if (!ast)
return false;
clang::ASTContext &clang_ast = ast->getASTContext();
if (type && superclass_clang_type.IsValid() &&
superclass_clang_type.GetTypeSystem() == type.GetTypeSystem()) {
clang::ObjCInterfaceDecl *class_interface_decl =
GetAsObjCInterfaceDecl(type);
clang::ObjCInterfaceDecl *super_interface_decl =
GetAsObjCInterfaceDecl(superclass_clang_type);
if (class_interface_decl && super_interface_decl) {
class_interface_decl->setSuperClass(clang_ast.getTrivialTypeSourceInfo(
clang_ast.getObjCInterfaceType(super_interface_decl)));
return true;
}
}
return false;
}
bool TypeSystemClang::AddObjCClassProperty(
const CompilerType &type, const char *property_name,
const CompilerType &property_clang_type, clang::ObjCIvarDecl *ivar_decl,
const char *property_setter_name, const char *property_getter_name,
uint32_t property_attributes, ClangASTMetadata *metadata) {
if (!type || !property_clang_type.IsValid() || property_name == nullptr ||
property_name[0] == '\0')
return false;
TypeSystemClang *ast = llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (!ast)
return false;
clang::ASTContext &clang_ast = ast->getASTContext();
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
if (!class_interface_decl)
return false;
CompilerType property_clang_type_to_access;
if (property_clang_type.IsValid())
property_clang_type_to_access = property_clang_type;
else if (ivar_decl)
property_clang_type_to_access = ast->GetType(ivar_decl->getType());
if (!class_interface_decl || !property_clang_type_to_access.IsValid())
return false;
clang::TypeSourceInfo *prop_type_source;
if (ivar_decl)
prop_type_source = clang_ast.getTrivialTypeSourceInfo(ivar_decl->getType());
else
prop_type_source = clang_ast.getTrivialTypeSourceInfo(
ClangUtil::GetQualType(property_clang_type));
clang::ObjCPropertyDecl *property_decl =
clang::ObjCPropertyDecl::CreateDeserialized(clang_ast, 0);
property_decl->setDeclContext(class_interface_decl);
property_decl->setDeclName(&clang_ast.Idents.get(property_name));
property_decl->setType(ivar_decl
? ivar_decl->getType()
: ClangUtil::GetQualType(property_clang_type),
prop_type_source);
SetMemberOwningModule(property_decl, class_interface_decl);
if (!property_decl)
return false;
if (metadata)
ast->SetMetadata(property_decl, *metadata);
class_interface_decl->addDecl(property_decl);
clang::Selector setter_sel, getter_sel;
if (property_setter_name) {
std::string property_setter_no_colon(property_setter_name,
strlen(property_setter_name) - 1);
clang::IdentifierInfo *setter_ident =
&clang_ast.Idents.get(property_setter_no_colon);
setter_sel = clang_ast.Selectors.getSelector(1, &setter_ident);
} else if (!(property_attributes & DW_APPLE_PROPERTY_readonly)) {
std::string setter_sel_string("set");
setter_sel_string.push_back(::toupper(property_name[0]));
setter_sel_string.append(&property_name[1]);
clang::IdentifierInfo *setter_ident =
&clang_ast.Idents.get(setter_sel_string);
setter_sel = clang_ast.Selectors.getSelector(1, &setter_ident);
}
property_decl->setSetterName(setter_sel);
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_setter);
if (property_getter_name != nullptr) {
clang::IdentifierInfo *getter_ident =
&clang_ast.Idents.get(property_getter_name);
getter_sel = clang_ast.Selectors.getSelector(0, &getter_ident);
} else {
clang::IdentifierInfo *getter_ident = &clang_ast.Idents.get(property_name);
getter_sel = clang_ast.Selectors.getSelector(0, &getter_ident);
}
property_decl->setGetterName(getter_sel);
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_getter);
if (ivar_decl)
property_decl->setPropertyIvarDecl(ivar_decl);
if (property_attributes & DW_APPLE_PROPERTY_readonly)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_readonly);
if (property_attributes & DW_APPLE_PROPERTY_readwrite)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_readwrite);
if (property_attributes & DW_APPLE_PROPERTY_assign)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_assign);
if (property_attributes & DW_APPLE_PROPERTY_retain)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_retain);
if (property_attributes & DW_APPLE_PROPERTY_copy)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_copy);
if (property_attributes & DW_APPLE_PROPERTY_nonatomic)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_nonatomic);
if (property_attributes & ObjCPropertyAttribute::kind_nullability)
property_decl->setPropertyAttributes(
ObjCPropertyAttribute::kind_nullability);
if (property_attributes & ObjCPropertyAttribute::kind_null_resettable)
property_decl->setPropertyAttributes(
ObjCPropertyAttribute::kind_null_resettable);
if (property_attributes & ObjCPropertyAttribute::kind_class)
property_decl->setPropertyAttributes(ObjCPropertyAttribute::kind_class);
const bool isInstance =
(property_attributes & ObjCPropertyAttribute::kind_class) == 0;
clang::ObjCMethodDecl *getter = nullptr;
if (!getter_sel.isNull())
getter = isInstance ? class_interface_decl->lookupInstanceMethod(getter_sel)
: class_interface_decl->lookupClassMethod(getter_sel);
if (!getter_sel.isNull() && !getter) {
const bool isVariadic = false;
const bool isPropertyAccessor = true;
const bool isSynthesizedAccessorStub = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl =
clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
getter = clang::ObjCMethodDecl::CreateDeserialized(clang_ast, 0);
getter->setDeclName(getter_sel);
getter->setReturnType(ClangUtil::GetQualType(property_clang_type_to_access));
getter->setDeclContext(class_interface_decl);
getter->setInstanceMethod(isInstance);
getter->setVariadic(isVariadic);
getter->setPropertyAccessor(isPropertyAccessor);
getter->setSynthesizedAccessorStub(isSynthesizedAccessorStub);
getter->setImplicit(isImplicitlyDeclared);
getter->setDefined(isDefined);
getter->setDeclImplementation(impControl);
getter->setRelatedResultType(HasRelatedResultType);
SetMemberOwningModule(getter, class_interface_decl);
if (getter) {
if (metadata)
ast->SetMetadata(getter, *metadata);
getter->setMethodParams(clang_ast, llvm::ArrayRef<clang::ParmVarDecl *>(),
llvm::ArrayRef<clang::SourceLocation>());
class_interface_decl->addDecl(getter);
}
}
if (getter) {
getter->setPropertyAccessor(true);
property_decl->setGetterMethodDecl(getter);
}
clang::ObjCMethodDecl *setter = nullptr;
setter = isInstance ? class_interface_decl->lookupInstanceMethod(setter_sel)
: class_interface_decl->lookupClassMethod(setter_sel);
if (!setter_sel.isNull() && !setter) {
clang::QualType result_type = clang_ast.VoidTy;
const bool isVariadic = false;
const bool isPropertyAccessor = true;
const bool isSynthesizedAccessorStub = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl =
clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
setter = clang::ObjCMethodDecl::CreateDeserialized(clang_ast, 0);
setter->setDeclName(setter_sel);
setter->setReturnType(result_type);
setter->setDeclContext(class_interface_decl);
setter->setInstanceMethod(isInstance);
setter->setVariadic(isVariadic);
setter->setPropertyAccessor(isPropertyAccessor);
setter->setSynthesizedAccessorStub(isSynthesizedAccessorStub);
setter->setImplicit(isImplicitlyDeclared);
setter->setDefined(isDefined);
setter->setDeclImplementation(impControl);
setter->setRelatedResultType(HasRelatedResultType);
SetMemberOwningModule(setter, class_interface_decl);
if (setter) {
if (metadata)
ast->SetMetadata(setter, *metadata);
llvm::SmallVector<clang::ParmVarDecl *, 1> params;
params.push_back(clang::ParmVarDecl::Create(
clang_ast, setter, clang::SourceLocation(), clang::SourceLocation(),
nullptr, // anonymous
ClangUtil::GetQualType(property_clang_type_to_access), nullptr,
clang::SC_Auto, nullptr));
setter->setMethodParams(clang_ast,
llvm::ArrayRef<clang::ParmVarDecl *>(params),
llvm::ArrayRef<clang::SourceLocation>());
class_interface_decl->addDecl(setter);
}
}
if (setter) {
setter->setPropertyAccessor(true);
property_decl->setSetterMethodDecl(setter);
}
return true;
}
bool TypeSystemClang::IsObjCClassTypeAndHasIVars(const CompilerType &type,
bool check_superclass) {
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
if (class_interface_decl)
return ObjCDeclHasIVars(class_interface_decl, check_superclass);
return false;
}
clang::ObjCMethodDecl *TypeSystemClang::AddMethodToObjCObjectType(
const CompilerType &type,
const char *name, // the full symbol name as seen in the symbol table
// (lldb::opaque_compiler_type_t type, "-[NString
// stringWithCString:]")
const CompilerType &method_clang_type, lldb::AccessType access,
bool is_artificial, bool is_variadic, bool is_objc_direct_call) {
if (!type || !method_clang_type.IsValid())
return nullptr;
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
if (class_interface_decl == nullptr)
return nullptr;
TypeSystemClang *lldb_ast =
llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (lldb_ast == nullptr)
return nullptr;
clang::ASTContext &ast = lldb_ast->getASTContext();
const char *selector_start = ::strchr(name, ' ');
if (selector_start == nullptr)
return nullptr;
selector_start++;
llvm::SmallVector<clang::IdentifierInfo *, 12> selector_idents;
size_t len = 0;
const char *start;
unsigned num_selectors_with_args = 0;
for (start = selector_start; start && *start != '\0' && *start != ']';
start += len) {
len = ::strcspn(start, ":]");
bool has_arg = (start[len] == ':');
if (has_arg)
++num_selectors_with_args;
selector_idents.push_back(&ast.Idents.get(llvm::StringRef(start, len)));
if (has_arg)
len += 1;
}
if (selector_idents.size() == 0)
return nullptr;
clang::Selector method_selector = ast.Selectors.getSelector(
num_selectors_with_args ? selector_idents.size() : 0,
selector_idents.data());
clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type));
// Populate the method decl with parameter decls
const clang::Type *method_type(method_qual_type.getTypePtr());
if (method_type == nullptr)
return nullptr;
const clang::FunctionProtoType *method_function_prototype(
llvm::dyn_cast<clang::FunctionProtoType>(method_type));
if (!method_function_prototype)
return nullptr;
const bool isInstance = (name[0] == '-');
const bool isVariadic = is_variadic;
const bool isPropertyAccessor = false;
const bool isSynthesizedAccessorStub = false;
/// Force this to true because we don't have source locations.
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl =
clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
const unsigned num_args = method_function_prototype->getNumParams();
if (num_args != num_selectors_with_args)
return nullptr; // some debug information is corrupt. We are not going to
// deal with it.
auto *objc_method_decl = clang::ObjCMethodDecl::CreateDeserialized(ast, 0);
objc_method_decl->setDeclName(method_selector);
objc_method_decl->setReturnType(method_function_prototype->getReturnType());
objc_method_decl->setDeclContext(
lldb_ast->GetDeclContextForType(ClangUtil::GetQualType(type)));
objc_method_decl->setInstanceMethod(isInstance);
objc_method_decl->setVariadic(isVariadic);
objc_method_decl->setPropertyAccessor(isPropertyAccessor);
objc_method_decl->setSynthesizedAccessorStub(isSynthesizedAccessorStub);
objc_method_decl->setImplicit(isImplicitlyDeclared);
objc_method_decl->setDefined(isDefined);
objc_method_decl->setDeclImplementation(impControl);
objc_method_decl->setRelatedResultType(HasRelatedResultType);
SetMemberOwningModule(objc_method_decl, class_interface_decl);
if (objc_method_decl == nullptr)
return nullptr;
if (num_args > 0) {
llvm::SmallVector<clang::ParmVarDecl *, 12> params;
for (unsigned param_index = 0; param_index < num_args; ++param_index) {
params.push_back(clang::ParmVarDecl::Create(
ast, objc_method_decl, clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
method_function_prototype->getParamType(param_index), nullptr,
clang::SC_Auto, nullptr));
}
objc_method_decl->setMethodParams(
ast, llvm::ArrayRef<clang::ParmVarDecl *>(params),
llvm::ArrayRef<clang::SourceLocation>());
}
if (is_objc_direct_call) {
// Add a the objc_direct attribute to the declaration we generate that
// we generate a direct method call for this ObjCMethodDecl.
objc_method_decl->addAttr(
clang::ObjCDirectAttr::CreateImplicit(ast, SourceLocation()));
// Usually Sema is creating implicit parameters (e.g., self) when it
// parses the method. We don't have a parsing Sema when we build our own
// AST here so we manually need to create these implicit parameters to
// make the direct call code generation happy.
objc_method_decl->createImplicitParams(ast, class_interface_decl);
}
class_interface_decl->addDecl(objc_method_decl);
VerifyDecl(objc_method_decl);
return objc_method_decl;
}
bool TypeSystemClang::SetHasExternalStorage(lldb::opaque_compiler_type_t type,
bool has_extern) {
if (!type)
return false;
clang::QualType qual_type(RemoveWrappingTypes(GetCanonicalQualType(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record: {
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl) {
cxx_record_decl->setHasExternalLexicalStorage(has_extern);
cxx_record_decl->setHasExternalVisibleStorage(has_extern);
return true;
}
} break;
case clang::Type::Enum: {
clang::EnumDecl *enum_decl =
llvm::cast<clang::EnumType>(qual_type)->getDecl();
if (enum_decl) {
enum_decl->setHasExternalLexicalStorage(has_extern);
enum_decl->setHasExternalVisibleStorage(has_extern);
return true;
}
} break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface: {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert(objc_class_type);
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (class_interface_decl) {
class_interface_decl->setHasExternalLexicalStorage(has_extern);
class_interface_decl->setHasExternalVisibleStorage(has_extern);
return true;
}
}
} break;
default:
break;
}
return false;
}
#pragma mark TagDecl
bool TypeSystemClang::StartTagDeclarationDefinition(const CompilerType &type) {
clang::QualType qual_type(ClangUtil::GetQualType(type));
if (!qual_type.isNull()) {
const clang::TagType *tag_type = qual_type->getAs<clang::TagType>();
if (tag_type) {
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl) {
tag_decl->startDefinition();
return true;
}
}
const clang::ObjCObjectType *object_type =
qual_type->getAs<clang::ObjCObjectType>();
if (object_type) {
clang::ObjCInterfaceDecl *interface_decl = object_type->getInterface();
if (interface_decl) {
interface_decl->startDefinition();
return true;
}
}
}
return false;
}
bool TypeSystemClang::CompleteTagDeclarationDefinition(
const CompilerType &type) {
clang::QualType qual_type(ClangUtil::GetQualType(type));
if (qual_type.isNull())
return false;
// Make sure we use the same methodology as
// TypeSystemClang::StartTagDeclarationDefinition() as to how we start/end
// the definition.
const clang::TagType *tag_type = qual_type->getAs<clang::TagType>();
if (tag_type) {
clang::TagDecl *tag_decl = tag_type->getDecl();
if (auto *cxx_record_decl = llvm::dyn_cast<CXXRecordDecl>(tag_decl)) {
// If we have a move constructor declared but no copy constructor we
// need to explicitly mark it as deleted. Usually Sema would do this for
// us in Sema::DeclareImplicitCopyConstructor but we don't have a Sema
// when building an AST from debug information.
// See also:
// C++11 [class.copy]p7, p18:
// If the class definition declares a move constructor or move assignment
// operator, an implicitly declared copy constructor or copy assignment
// operator is defined as deleted.
if (cxx_record_decl->hasUserDeclaredMoveConstructor() ||
cxx_record_decl->hasUserDeclaredMoveAssignment()) {
if (cxx_record_decl->needsImplicitCopyConstructor())
cxx_record_decl->setImplicitCopyConstructorIsDeleted();
if (cxx_record_decl->needsImplicitCopyAssignment())
cxx_record_decl->setImplicitCopyAssignmentIsDeleted();
}
if (!cxx_record_decl->isCompleteDefinition())
cxx_record_decl->completeDefinition();
cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true);
cxx_record_decl->setHasExternalLexicalStorage(false);
cxx_record_decl->setHasExternalVisibleStorage(false);
return true;
}
}
const clang::EnumType *enutype = qual_type->getAs<clang::EnumType>();
if (!enutype)
return false;
clang::EnumDecl *enum_decl = enutype->getDecl();
if (enum_decl->isCompleteDefinition())
return true;
TypeSystemClang *lldb_ast =
llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (lldb_ast == nullptr)
return false;
clang::ASTContext &ast = lldb_ast->getASTContext();
/// TODO This really needs to be fixed.
QualType integer_type(enum_decl->getIntegerType());
if (!integer_type.isNull()) {
unsigned NumPositiveBits = 1;
unsigned NumNegativeBits = 0;
clang::QualType promotion_qual_type;
// If the enum integer type is less than an integer in bit width,
// then we must promote it to an integer size.
if (ast.getTypeSize(enum_decl->getIntegerType()) <
ast.getTypeSize(ast.IntTy)) {
if (enum_decl->getIntegerType()->isSignedIntegerType())
promotion_qual_type = ast.IntTy;
else
promotion_qual_type = ast.UnsignedIntTy;
} else
promotion_qual_type = enum_decl->getIntegerType();
enum_decl->completeDefinition(enum_decl->getIntegerType(),
promotion_qual_type, NumPositiveBits,
NumNegativeBits);
}
return true;
}
clang::EnumConstantDecl *TypeSystemClang::AddEnumerationValueToEnumerationType(
const CompilerType &enum_type, const Declaration &decl, const char *name,
const llvm::APSInt &value) {
if (!enum_type || ConstString(name).IsEmpty())
return nullptr;
lldbassert(enum_type.GetTypeSystem() == static_cast<TypeSystem *>(this));
lldb::opaque_compiler_type_t enum_opaque_compiler_type =
enum_type.GetOpaqueQualType();
if (!enum_opaque_compiler_type)
return nullptr;
clang::QualType enum_qual_type(
GetCanonicalQualType(enum_opaque_compiler_type));
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (!clang_type)
return nullptr;
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(clang_type);
if (!enutype)
return nullptr;
clang::EnumConstantDecl *enumerator_decl =
clang::EnumConstantDecl::CreateDeserialized(getASTContext(), 0);
enumerator_decl->setDeclContext(enutype->getDecl());
if (name && name[0])
enumerator_decl->setDeclName(&getASTContext().Idents.get(name));
enumerator_decl->setType(clang::QualType(enutype, 0));
enumerator_decl->setInitVal(value);
SetMemberOwningModule(enumerator_decl, enutype->getDecl());
if (!enumerator_decl)
return nullptr;
enutype->getDecl()->addDecl(enumerator_decl);
VerifyDecl(enumerator_decl);
return enumerator_decl;
}
clang::EnumConstantDecl *TypeSystemClang::AddEnumerationValueToEnumerationType(
const CompilerType &enum_type, const Declaration &decl, const char *name,
int64_t enum_value, uint32_t enum_value_bit_size) {
CompilerType underlying_type = GetEnumerationIntegerType(enum_type);
bool is_signed = false;
underlying_type.IsIntegerType(is_signed);
llvm::APSInt value(enum_value_bit_size, is_signed);
value = enum_value;
return AddEnumerationValueToEnumerationType(enum_type, decl, name, value);
}
CompilerType TypeSystemClang::GetEnumerationIntegerType(CompilerType type) {
clang::QualType qt(ClangUtil::GetQualType(type));
const clang::Type *clang_type = qt.getTypePtrOrNull();
const auto *enum_type = llvm::dyn_cast_or_null<clang::EnumType>(clang_type);
if (!enum_type)
return CompilerType();
return GetType(enum_type->getDecl()->getIntegerType());
}
CompilerType
TypeSystemClang::CreateMemberPointerType(const CompilerType &type,
const CompilerType &pointee_type) {
if (type && pointee_type.IsValid() &&
type.GetTypeSystem() == pointee_type.GetTypeSystem()) {
TypeSystemClang *ast =
llvm::dyn_cast<TypeSystemClang>(type.GetTypeSystem());
if (!ast)
return CompilerType();
return ast->GetType(ast->getASTContext().getMemberPointerType(
ClangUtil::GetQualType(pointee_type),
ClangUtil::GetQualType(type).getTypePtr()));
}
return CompilerType();
}
// Dumping types
#define DEPTH_INCREMENT 2
#ifndef NDEBUG
LLVM_DUMP_METHOD void
TypeSystemClang::dump(lldb::opaque_compiler_type_t type) const {
if (!type)
return;
clang::QualType qual_type(GetQualType(type));
qual_type.dump();
}
#endif
void TypeSystemClang::Dump(Stream &s) {
Decl *tu = Decl::castFromDeclContext(GetTranslationUnitDecl());
tu->dump(s.AsRawOstream());
}
void TypeSystemClang::DumpFromSymbolFile(Stream &s,
llvm::StringRef symbol_name) {
SymbolFile *symfile = GetSymbolFile();
if (!symfile)
return;
lldb_private::TypeList type_list;
symfile->GetTypes(nullptr, eTypeClassAny, type_list);
size_t ntypes = type_list.GetSize();
for (size_t i = 0; i < ntypes; ++i) {
TypeSP type = type_list.GetTypeAtIndex(i);
if (!symbol_name.empty())
if (symbol_name != type->GetName().GetStringRef())
continue;
s << type->GetName().AsCString() << "\n";
CompilerType full_type = type->GetFullCompilerType();
if (clang::TagDecl *tag_decl = GetAsTagDecl(full_type)) {
tag_decl->dump(s.AsRawOstream());
continue;
}
if (clang::TypedefNameDecl *typedef_decl = GetAsTypedefDecl(full_type)) {
typedef_decl->dump(s.AsRawOstream());
continue;
}
if (auto *objc_obj = llvm::dyn_cast<clang::ObjCObjectType>(
ClangUtil::GetQualType(full_type).getTypePtr())) {
if (clang::ObjCInterfaceDecl *interface_decl = objc_obj->getInterface()) {
interface_decl->dump(s.AsRawOstream());
continue;
}
}
GetCanonicalQualType(full_type.GetOpaqueQualType())
.dump(s.AsRawOstream(), getASTContext());
}
}
void TypeSystemClang::DumpValue(
lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s,
lldb::Format format, const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset, size_t data_byte_size,
uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, bool show_types,
bool show_summary, bool verbose, uint32_t depth) {
if (!type)
return;
clang::QualType qual_type(GetQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteType(type)) {
const clang::RecordType *record_type =
llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t field_bit_offset = 0;
uint32_t field_byte_offset = 0;
const clang::ASTRecordLayout &record_layout =
getASTContext().getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl) {
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class,
base_class_end;
for (base_class = cxx_record_decl->bases_begin(),
base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end; ++base_class) {
const clang::CXXRecordDecl *base_class_decl =
llvm::cast<clang::CXXRecordDecl>(
base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (!verbose && !TypeSystemClang::RecordHasFields(base_class_decl))
continue;
if (base_class->isVirtual())
field_bit_offset =
record_layout.getVBaseClassOffset(base_class_decl)
.getQuantity() *
8;
else
field_bit_offset = record_layout.getBaseClassOffset(base_class_decl)
.getQuantity() *
8;
field_byte_offset = field_bit_offset / 8;
assert(field_bit_offset % 8 == 0);
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
clang::QualType base_class_qual_type = base_class->getType();
std::string base_class_type_name(base_class_qual_type.getAsString());
// Indent and print the base class type name
s->Format("\n{0}{1}", llvm::fmt_repeat(" ", depth + DEPTH_INCREMENT),
base_class_type_name);
clang::TypeInfo base_class_type_info =
getASTContext().getTypeInfo(base_class_qual_type);
// Dump the value of the member
CompilerType base_clang_type = GetType(base_class_qual_type);
base_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
base_clang_type
.GetFormat(), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset, // Offset into "data" where
// to grab value from
base_class_type_info.Width / 8, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable
// types
show_summary, // Boolean indicating if we should show a summary
// for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have
// children
++child_idx;
}
}
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(),
field_end = record_decl->field_end();
field != field_end; ++field, ++field_idx, ++child_idx) {
// Print the starting squiggly bracket (if this is the first member) or
// comma (for member 2 and beyond) for the struct/union/class member.
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent
s->Printf("\n%*s", depth + DEPTH_INCREMENT, "");
clang::QualType field_type = field->getType();
// Print the member type if requested
// Figure out the type byte size (field_type_info.first) and alignment
// (field_type_info.second) from the AST context.
clang::TypeInfo field_type_info =
getASTContext().getTypeInfo(field_type);
assert(field_idx < record_layout.getFieldCount());
// Figure out the field offset within the current struct/union/class
// type
field_bit_offset = record_layout.getFieldOffset(field_idx);
field_byte_offset = field_bit_offset / 8;
uint32_t field_bitfield_bit_size = 0;
uint32_t field_bitfield_bit_offset = 0;
if (FieldIsBitfield(*field, field_bitfield_bit_size))
field_bitfield_bit_offset = field_bit_offset % 8;
if (show_types) {
std::string field_type_name(field_type.getAsString());
if (field_bitfield_bit_size > 0)
s->Printf("(%s:%u) ", field_type_name.c_str(),
field_bitfield_bit_size);
else
s->Printf("(%s) ", field_type_name.c_str());
}
// Print the member name and equal sign
s->Printf("%s = ", field->getNameAsString().c_str());
// Dump the value of the member
CompilerType field_clang_type = GetType(field_type);
field_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
field_clang_type
.GetFormat(), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset, // Offset into "data" where to
// grab value from
field_type_info.Width / 8, // Size of this type in bytes
field_bitfield_bit_size, // Bitfield bit size
field_bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable
// types
show_summary, // Boolean indicating if we should show a summary for
// the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have
// children
}
// Indent the trailing squiggly bracket
if (child_idx > 0)
s->Printf("\n%*s}", depth, "");
}
return;
case clang::Type::Enum:
if (GetCompleteType(type)) {
const clang::EnumType *enutype =
llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enutype->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
lldb::offset_t offset = data_byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield(
&offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(),
enum_end_pos = enum_decl->enumerator_end();
enum_pos != enum_end_pos; ++enum_pos) {
if (enum_pos->getInitVal() == enum_value) {
s->Printf("%s", enum_pos->getNameAsString().c_str());
return;
}
}
// If we have gotten here we didn't get find the enumerator in the enum
// decl, so just print the integer.
s->Printf("%" PRIi64, enum_value);
}
return;
case clang::Type::ConstantArray: {
const clang::ConstantArrayType *array =
llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr());
bool is_array_of_characters = false;
clang::QualType element_qual_type = array->getElementType();
const clang::Type *canonical_type =
element_qual_type->getCanonicalTypeInternal().getTypePtr();
if (canonical_type)
is_array_of_characters = canonical_type->isCharType();
const uint64_t element_count = array->getSize().getLimitedValue();
clang::TypeInfo field_type_info =
getASTContext().getTypeInfo(element_qual_type);
uint32_t element_idx = 0;
uint32_t element_offset = 0;
uint64_t element_byte_size = field_type_info.Width / 8;
uint32_t element_stride = element_byte_size;
if (is_array_of_characters) {
s->PutChar('"');
DumpDataExtractor(data, s, data_byte_offset, lldb::eFormatChar,
element_byte_size, element_count, UINT32_MAX,
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('"');
return;
} else {
CompilerType element_clang_type = GetType(element_qual_type);
lldb::Format element_format = element_clang_type.GetFormat();
for (element_idx = 0; element_idx < element_count; ++element_idx) {
// Print the starting squiggly bracket (if this is the first member) or
// comman (for member 2 and beyong) for the struct/union/class member.
if (element_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent and print the index
s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx);
// Figure out the field offset within the current struct/union/class
// type
element_offset = element_idx * element_stride;
// Dump the value of the member
element_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
element_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset +
element_offset, // Offset into "data" where to grab value from
element_byte_size, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable
// types
show_summary, // Boolean indicating if we should show a summary for
// the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have
// children
}
// Indent the trailing squiggly bracket
if (element_idx > 0)
s->Printf("\n%*s}", depth, "");
}
}
return;
case clang::Type::Typedef: {
clang::QualType typedef_qual_type =
llvm::cast<clang::TypedefType>(qual_type)
->getDecl()
->getUnderlyingType();
CompilerType typedef_clang_type = GetType(typedef_qual_type);
lldb::Format typedef_format = typedef_clang_type.GetFormat();
clang::TypeInfo typedef_type_info =
getASTContext().getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.Width / 8;
return typedef_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
typedef_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the
// current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
} break;
case clang::Type::Auto: {
clang::QualType elaborated_qual_type =
llvm::cast<clang::AutoType>(qual_type)->getDeducedType();
CompilerType elaborated_clang_type = GetType(elaborated_qual_type);
lldb::Format elaborated_format = elaborated_clang_type.GetFormat();
clang::TypeInfo elaborated_type_info =
getASTContext().getTypeInfo(elaborated_qual_type);
uint64_t elaborated_byte_size = elaborated_type_info.Width / 8;
return elaborated_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
elaborated_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
elaborated_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the
// current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
} break;
case clang::Type::Elaborated: {
clang::QualType elaborated_qual_type =
llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType();
CompilerType elaborated_clang_type = GetType(elaborated_qual_type);
lldb::Format elaborated_format = elaborated_clang_type.GetFormat();
clang::TypeInfo elaborated_type_info =
getASTContext().getTypeInfo(elaborated_qual_type);
uint64_t elaborated_byte_size = elaborated_type_info.Width / 8;
return elaborated_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
elaborated_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
elaborated_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the
// current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
} break;
case clang::Type::Paren: {
clang::QualType desugar_qual_type =
llvm::cast<clang::ParenType>(qual_type)->desugar();
CompilerType desugar_clang_type = GetType(desugar_qual_type);
lldb::Format desugar_format = desugar_clang_type.GetFormat();
clang::TypeInfo desugar_type_info =
getASTContext().getTypeInfo(desugar_qual_type);
uint64_t desugar_byte_size = desugar_type_info.Width / 8;
return desugar_clang_type.DumpValue(
exe_ctx,
s, // Stream to dump to
desugar_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
desugar_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the
// current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
} break;
default:
// We are down to a scalar type that we just need to display.
DumpDataExtractor(data, s, data_byte_offset, format, data_byte_size, 1,
UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size,
bitfield_bit_offset);
if (show_summary)
DumpSummary(type, exe_ctx, s, data, data_byte_offset, data_byte_size);
break;
}
}
static bool DumpEnumValue(const clang::QualType &qual_type, Stream *s,
const DataExtractor &data, lldb::offset_t byte_offset,
size_t byte_size, uint32_t bitfield_bit_offset,
uint32_t bitfield_bit_size) {
const clang::EnumType *enutype =
llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enutype->getDecl();
assert(enum_decl);
lldb::offset_t offset = byte_offset;
const uint64_t enum_svalue = data.GetMaxS64Bitfield(
&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
bool can_be_bitfield = true;
uint64_t covered_bits = 0;
int num_enumerators = 0;
// Try to find an exact match for the value.
// At the same time, we're applying a heuristic to determine whether we want
// to print this enum as a bitfield. We're likely dealing with a bitfield if
// every enumerator is either a one bit value or a superset of the previous
// enumerators. Also 0 doesn't make sense when the enumerators are used as
// flags.
for (auto *enumerator : enum_decl->enumerators()) {
uint64_t val = enumerator->getInitVal().getSExtValue();
val = llvm::SignExtend64(val, 8*byte_size);
if (llvm::countPopulation(val) != 1 && (val & ~covered_bits) != 0)
can_be_bitfield = false;
covered_bits |= val;
++num_enumerators;
if (val == enum_svalue) {
// Found an exact match, that's all we need to do.
s->PutCString(enumerator->getNameAsString());
return true;
}
}
// Unsigned values make more sense for flags.
offset = byte_offset;
const uint64_t enum_uvalue = data.GetMaxU64Bitfield(
&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
// No exact match, but we don't think this is a bitfield. Print the value as
// decimal.
if (!can_be_bitfield) {
if (qual_type->isSignedIntegerOrEnumerationType())
s->Printf("%" PRIi64, enum_svalue);
else
s->Printf("%" PRIu64, enum_uvalue);
return true;
}
uint64_t remaining_value = enum_uvalue;
std::vector<std::pair<uint64_t, llvm::StringRef>> values;
values.reserve(num_enumerators);
for (auto *enumerator : enum_decl->enumerators())
if (auto val = enumerator->getInitVal().getZExtValue())
values.emplace_back(val, enumerator->getName());
// Sort in reverse order of the number of the population count, so that in
// `enum {A, B, ALL = A|B }` we visit ALL first. Use a stable sort so that
// A | C where A is declared before C is displayed in this order.
std::stable_sort(values.begin(), values.end(), [](const auto &a, const auto &b) {
return llvm::countPopulation(a.first) > llvm::countPopulation(b.first);
});
for (const auto &val : values) {
if ((remaining_value & val.first) != val.first)
continue;
remaining_value &= ~val.first;
s->PutCString(val.second);
if (remaining_value)
s->PutCString(" | ");
}
// If there is a remainder that is not covered by the value, print it as hex.
if (remaining_value)
s->Printf("0x%" PRIx64, remaining_value);
return true;
}
bool TypeSystemClang::DumpTypeValue(
lldb::opaque_compiler_type_t type, Stream *s, lldb::Format format,
const lldb_private::DataExtractor &data, lldb::offset_t byte_offset,
size_t byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset,
ExecutionContextScope *exe_scope) {
if (!type)
return false;
if (IsAggregateType(type)) {
return false;
} else {
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
if (type_class == clang::Type::Elaborated) {
qual_type = llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType();
return DumpTypeValue(qual_type.getAsOpaquePtr(), s, format, data, byte_offset, byte_size,
bitfield_bit_size, bitfield_bit_offset, exe_scope);
}
switch (type_class) {
case clang::Type::Typedef: {
clang::QualType typedef_qual_type =
llvm::cast<clang::TypedefType>(qual_type)
->getDecl()
->getUnderlyingType();
CompilerType typedef_clang_type = GetType(typedef_qual_type);
if (format == eFormatDefault)
format = typedef_clang_type.GetFormat();
clang::TypeInfo typedef_type_info =
getASTContext().getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.Width / 8;
return typedef_clang_type.DumpTypeValue(
s,
format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Size in bits of a bitfield value, if zero don't
// treat as a bitfield
bitfield_bit_offset, // Offset in bits of a bitfield value if
// bitfield_bit_size != 0
exe_scope);
} break;
case clang::Type::Enum:
// If our format is enum or default, show the enumeration value as its
// enumeration string value, else just display it as requested.
if ((format == eFormatEnum || format == eFormatDefault) &&
GetCompleteType(type))
return DumpEnumValue(qual_type, s, data, byte_offset, byte_size,
bitfield_bit_offset, bitfield_bit_size);
// format was not enum, just fall through and dump the value as
// requested....
LLVM_FALLTHROUGH;
default:
// We are down to a scalar type that we just need to display.
{
uint32_t item_count = 1;
// A few formats, we might need to modify our size and count for
// depending
// on how we are trying to display the value...
switch (format) {
default:
case eFormatBoolean:
case eFormatBinary:
case eFormatComplex:
case eFormatCString: // NULL terminated C strings
case eFormatDecimal:
case eFormatEnum:
case eFormatHex:
case eFormatHexUppercase:
case eFormatFloat:
case eFormatOctal:
case eFormatOSType:
case eFormatUnsigned:
case eFormatPointer:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray:
case eFormatBytes:
case eFormatBytesWithASCII:
item_count = byte_size;
byte_size = 1;
break;
case eFormatUnicode16:
item_count = byte_size / 2;
byte_size = 2;
break;
case eFormatUnicode32:
item_count = byte_size / 4;
byte_size = 4;
break;
}
return DumpDataExtractor(data, s, byte_offset, format, byte_size,
item_count, UINT32_MAX, LLDB_INVALID_ADDRESS,
bitfield_bit_size, bitfield_bit_offset,
exe_scope);
}
break;
}
}
return false;
}
void TypeSystemClang::DumpSummary(lldb::opaque_compiler_type_t type,
ExecutionContext *exe_ctx, Stream *s,
const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size) {
uint32_t length = 0;
if (IsCStringType(type, length)) {
if (exe_ctx) {
Process *process = exe_ctx->GetProcessPtr();
if (process) {
lldb::offset_t offset = data_byte_offset;
lldb::addr_t pointer_address = data.GetMaxU64(&offset, data_byte_size);
std::vector<uint8_t> buf;
if (length > 0)
buf.resize(length);
else
buf.resize(256);
DataExtractor cstr_data(&buf.front(), buf.size(),
process->GetByteOrder(), 4);
buf.back() = '\0';
size_t bytes_read;
size_t total_cstr_len = 0;
Status error;
while ((bytes_read = process->ReadMemory(pointer_address, &buf.front(),
buf.size(), error)) > 0) {
const size_t len = strlen((const char *)&buf.front());
if (len == 0)
break;
if (total_cstr_len == 0)
s->PutCString(" \"");
DumpDataExtractor(cstr_data, s, 0, lldb::eFormatChar, 1, len,
UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
total_cstr_len += len;
if (len < buf.size())
break;
pointer_address += total_cstr_len;
}
if (total_cstr_len > 0)
s->PutChar('"');
}
}
}
}
void TypeSystemClang::DumpTypeDescription(lldb::opaque_compiler_type_t type,
lldb::DescriptionLevel level) {
StreamFile s(stdout, false);
DumpTypeDescription(type, &s, level);
CompilerType ct(this, type);
const clang::Type *clang_type = ClangUtil::GetQualType(ct).getTypePtr();
ClangASTMetadata *metadata = GetMetadata(clang_type);
if (metadata) {
metadata->Dump(&s);
}
}
void TypeSystemClang::DumpTypeDescription(lldb::opaque_compiler_type_t type,
Stream *s,
lldb::DescriptionLevel level) {
if (type) {
clang::QualType qual_type =
RemoveWrappingTypes(GetQualType(type), {clang::Type::Typedef});
llvm::SmallVector<char, 1024> buf;
llvm::raw_svector_ostream llvm_ostrm(buf);
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface: {
GetCompleteType(type);
auto *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert(objc_class_type);
if (!objc_class_type)
break;
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
if (!class_interface_decl)
break;
if (level == eDescriptionLevelVerbose)
class_interface_decl->dump(llvm_ostrm);
else
class_interface_decl->print(llvm_ostrm,
getASTContext().getPrintingPolicy(),
s->GetIndentLevel());
} break;
case clang::Type::Typedef: {
auto *typedef_type = qual_type->getAs<clang::TypedefType>();
if (!typedef_type)
break;
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
if (level == eDescriptionLevelVerbose)
typedef_decl->dump(llvm_ostrm);
else {
std::string clang_typedef_name(GetTypeNameForDecl(typedef_decl));
if (!clang_typedef_name.empty()) {
s->PutCString("typedef ");
s->PutCString(clang_typedef_name);
}
}
} break;
case clang::Type::Record: {
GetCompleteType(type);
auto *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (level == eDescriptionLevelVerbose)
record_decl->dump(llvm_ostrm);
else {
if (auto *cxx_record_decl =
llvm::dyn_cast<clang::CXXRecordDecl>(record_decl))
cxx_record_decl->print(llvm_ostrm,
getASTContext().getPrintingPolicy(),
s->GetIndentLevel());
else
record_decl->print(llvm_ostrm, getASTContext().getPrintingPolicy(),
s->GetIndentLevel());
}
} break;
default: {
if (auto *tag_type =
llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr())) {
if (clang::TagDecl *tag_decl = tag_type->getDecl()) {
if (level == eDescriptionLevelVerbose)
tag_decl->dump(llvm_ostrm);
else
tag_decl->print(llvm_ostrm, 0);
}
} else {
if (level == eDescriptionLevelVerbose)
qual_type->dump(llvm_ostrm, getASTContext());
else {
std::string clang_type_name(qual_type.getAsString());
if (!clang_type_name.empty())
s->PutCString(clang_type_name);
}
}
}
}
if (buf.size() > 0) {
s->Write(buf.data(), buf.size());
}
}
}
void TypeSystemClang::DumpTypeName(const CompilerType &type) {
if (ClangUtil::IsClangType(type)) {
clang::QualType qual_type(
ClangUtil::GetCanonicalQualType(ClangUtil::RemoveFastQualifiers(type)));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class) {
case clang::Type::Record: {
const clang::CXXRecordDecl *cxx_record_decl =
qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
printf("class %s", cxx_record_decl->getName().str().c_str());
} break;
case clang::Type::Enum: {
clang::EnumDecl *enum_decl =
llvm::cast<clang::EnumType>(qual_type)->getDecl();
if (enum_decl) {
printf("enum %s", enum_decl->getName().str().c_str());
}
} break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface: {
const clang::ObjCObjectType *objc_class_type =
llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type) {
clang::ObjCInterfaceDecl *class_interface_decl =
objc_class_type->getInterface();
// We currently can't complete objective C types through the newly
// added ASTContext because it only supports TagDecl objects right
// now...
if (class_interface_decl)
printf("@class %s", class_interface_decl->getName().str().c_str());
}
} break;
case clang::Type::Typedef:
printf("typedef %s", llvm::cast<clang::TypedefType>(qual_type)
->getDecl()
->getName()
.str()
.c_str());
break;
case clang::Type::Auto:
printf("auto ");
return DumpTypeName(CompilerType(type.GetTypeSystem(),
llvm::cast<clang::AutoType>(qual_type)
->getDeducedType()
.getAsOpaquePtr()));
case clang::Type::Elaborated:
printf("elaborated ");
return DumpTypeName(CompilerType(
type.GetTypeSystem(), llvm::cast<clang::ElaboratedType>(qual_type)
->getNamedType()
.getAsOpaquePtr()));
case clang::Type::Paren:
printf("paren ");
return DumpTypeName(CompilerType(
type.GetTypeSystem(),
llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr()));
default:
printf("TypeSystemClang::DumpTypeName() type_class = %u", type_class);
break;
}
}
}
clang::ClassTemplateDecl *TypeSystemClang::ParseClassTemplateDecl(
clang::DeclContext *decl_ctx, OptionalClangModuleID owning_module,
lldb::AccessType access_type, const char *parent_name, int tag_decl_kind,
const TypeSystemClang::TemplateParameterInfos &template_param_infos) {
if (template_param_infos.IsValid()) {
std::string template_basename(parent_name);
template_basename.erase(template_basename.find('<'));
return CreateClassTemplateDecl(decl_ctx, owning_module, access_type,
template_basename.c_str(), tag_decl_kind,
template_param_infos);
}
return nullptr;
}
void TypeSystemClang::CompleteTagDecl(clang::TagDecl *decl) {
SymbolFile *sym_file = GetSymbolFile();
if (sym_file) {
CompilerType clang_type = GetTypeForDecl(decl);
if (clang_type)
sym_file->CompleteType(clang_type);
}
}
void TypeSystemClang::CompleteObjCInterfaceDecl(
clang::ObjCInterfaceDecl *decl) {
SymbolFile *sym_file = GetSymbolFile();
if (sym_file) {
CompilerType clang_type = GetTypeForDecl(decl);
if (clang_type)
sym_file->CompleteType(clang_type);
}
}
DWARFASTParser *TypeSystemClang::GetDWARFParser() {
if (!m_dwarf_ast_parser_up)
m_dwarf_ast_parser_up = std::make_unique<DWARFASTParserClang>(*this);
return m_dwarf_ast_parser_up.get();
}
PDBASTParser *TypeSystemClang::GetPDBParser() {
if (!m_pdb_ast_parser_up)
m_pdb_ast_parser_up = std::make_unique<PDBASTParser>(*this);
return m_pdb_ast_parser_up.get();
}
bool TypeSystemClang::LayoutRecordType(
const clang::RecordDecl *record_decl, uint64_t &bit_size,
uint64_t &alignment,
llvm::DenseMap<const clang::FieldDecl *, uint64_t> &field_offsets,
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits>
&base_offsets,
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits>
&vbase_offsets) {
lldb_private::ClangASTImporter *importer = nullptr;
if (m_dwarf_ast_parser_up)
importer = &m_dwarf_ast_parser_up->GetClangASTImporter();
if (!importer && m_pdb_ast_parser_up)
importer = &m_pdb_ast_parser_up->GetClangASTImporter();
if (!importer)
return false;
return importer->LayoutRecordType(record_decl, bit_size, alignment,
field_offsets, base_offsets, vbase_offsets);
}
// CompilerDecl override functions
ConstString TypeSystemClang::DeclGetName(void *opaque_decl) {
if (opaque_decl) {
clang::NamedDecl *nd =
llvm::dyn_cast<NamedDecl>((clang::Decl *)opaque_decl);
if (nd != nullptr)
return ConstString(nd->getDeclName().getAsString());
}
return ConstString();
}
ConstString TypeSystemClang::DeclGetMangledName(void *opaque_decl) {
if (opaque_decl) {
clang::NamedDecl *nd =
llvm::dyn_cast<clang::NamedDecl>((clang::Decl *)opaque_decl);
if (nd != nullptr && !llvm::isa<clang::ObjCMethodDecl>(nd)) {
clang::MangleContext *mc = getMangleContext();
if (mc && mc->shouldMangleCXXName(nd)) {
llvm::SmallVector<char, 1024> buf;
llvm::raw_svector_ostream llvm_ostrm(buf);
if (llvm::isa<clang::CXXConstructorDecl>(nd)) {
mc->mangleName(
clang::GlobalDecl(llvm::dyn_cast<clang::CXXConstructorDecl>(nd),
Ctor_Complete),
llvm_ostrm);
} else if (llvm::isa<clang::CXXDestructorDecl>(nd)) {
mc->mangleName(
clang::GlobalDecl(llvm::dyn_cast<clang::CXXDestructorDecl>(nd),
Dtor_Complete),
llvm_ostrm);
} else {
mc->mangleName(nd, llvm_ostrm);
}
if (buf.size() > 0)
return ConstString(buf.data(), buf.size());
}
}
}
return ConstString();
}
CompilerDeclContext TypeSystemClang::DeclGetDeclContext(void *opaque_decl) {
if (opaque_decl)
return CreateDeclContext(((clang::Decl *)opaque_decl)->getDeclContext());
return CompilerDeclContext();
}
CompilerType TypeSystemClang::DeclGetFunctionReturnType(void *opaque_decl) {
if (clang::FunctionDecl *func_decl =
llvm::dyn_cast<clang::FunctionDecl>((clang::Decl *)opaque_decl))
return GetType(func_decl->getReturnType());
if (clang::ObjCMethodDecl *objc_method =
llvm::dyn_cast<clang::ObjCMethodDecl>((clang::Decl *)opaque_decl))
return GetType(objc_method->getReturnType());
else
return CompilerType();
}
size_t TypeSystemClang::DeclGetFunctionNumArguments(void *opaque_decl) {
if (clang::FunctionDecl *func_decl =
llvm::dyn_cast<clang::FunctionDecl>((clang::Decl *)opaque_decl))
return func_decl->param_size();
if (clang::ObjCMethodDecl *objc_method =
llvm::dyn_cast<clang::ObjCMethodDecl>((clang::Decl *)opaque_decl))
return objc_method->param_size();
else
return 0;
}
CompilerType TypeSystemClang::DeclGetFunctionArgumentType(void *opaque_decl,
size_t idx) {
if (clang::FunctionDecl *func_decl =
llvm::dyn_cast<clang::FunctionDecl>((clang::Decl *)opaque_decl)) {
if (idx < func_decl->param_size()) {
ParmVarDecl *var_decl = func_decl->getParamDecl(idx);
if (var_decl)
return GetType(var_decl->getOriginalType());
}
} else if (clang::ObjCMethodDecl *objc_method =
llvm::dyn_cast<clang::ObjCMethodDecl>(
(clang::Decl *)opaque_decl)) {
if (idx < objc_method->param_size())
return GetType(objc_method->parameters()[idx]->getOriginalType());
}
return CompilerType();
}
// CompilerDeclContext functions
std::vector<CompilerDecl> TypeSystemClang::DeclContextFindDeclByName(
void *opaque_decl_ctx, ConstString name, const bool ignore_using_decls) {
std::vector<CompilerDecl> found_decls;
if (opaque_decl_ctx) {
DeclContext *root_decl_ctx = (DeclContext *)opaque_decl_ctx;
std::set<DeclContext *> searched;
std::multimap<DeclContext *, DeclContext *> search_queue;
SymbolFile *symbol_file = GetSymbolFile();
for (clang::DeclContext *decl_context = root_decl_ctx;
decl_context != nullptr && found_decls.empty();
decl_context = decl_context->getParent()) {
search_queue.insert(std::make_pair(decl_context, decl_context));
for (auto it = search_queue.find(decl_context); it != search_queue.end();
it++) {
if (!searched.insert(it->second).second)
continue;
symbol_file->ParseDeclsForContext(
CreateDeclContext(it->second));
for (clang::Decl *child : it->second->decls()) {
if (clang::UsingDirectiveDecl *ud =
llvm::dyn_cast<clang::UsingDirectiveDecl>(child)) {
if (ignore_using_decls)
continue;
clang::DeclContext *from = ud->getCommonAncestor();
if (searched.find(ud->getNominatedNamespace()) == searched.end())
search_queue.insert(
std::make_pair(from, ud->getNominatedNamespace()));
} else if (clang::UsingDecl *ud =
llvm::dyn_cast<clang::UsingDecl>(child)) {
if (ignore_using_decls)
continue;
for (clang::UsingShadowDecl *usd : ud->shadows()) {
clang::Decl *target = usd->getTargetDecl();
if (clang::NamedDecl *nd =
llvm::dyn_cast<clang::NamedDecl>(target)) {
IdentifierInfo *ii = nd->getIdentifier();
if (ii != nullptr &&
ii->getName().equals(name.AsCString(nullptr)))
found_decls.push_back(GetCompilerDecl(nd));
}
}
} else if (clang::NamedDecl *nd =
llvm::dyn_cast<clang::NamedDecl>(child)) {
IdentifierInfo *ii = nd->getIdentifier();
if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr)))
found_decls.push_back(GetCompilerDecl(nd));
}
}
}
}
}
return found_decls;
}
// Look for child_decl_ctx's lookup scope in frame_decl_ctx and its parents,
// and return the number of levels it took to find it, or
// LLDB_INVALID_DECL_LEVEL if not found. If the decl was imported via a using
// declaration, its name and/or type, if set, will be used to check that the
// decl found in the scope is a match.
//
// The optional name is required by languages (like C++) to handle using
// declarations like:
//
// void poo();
// namespace ns {
// void foo();
// void goo();
// }
// void bar() {
// using ns::foo;
// // CountDeclLevels returns 0 for 'foo', 1 for 'poo', and
// // LLDB_INVALID_DECL_LEVEL for 'goo'.
// }
//
// The optional type is useful in the case that there's a specific overload
// that we're looking for that might otherwise be shadowed, like:
//
// void foo(int);
// namespace ns {
// void foo();
// }
// void bar() {
// using ns::foo;
// // CountDeclLevels returns 0 for { 'foo', void() },
// // 1 for { 'foo', void(int) }, and
// // LLDB_INVALID_DECL_LEVEL for { 'foo', void(int, int) }.
// }
//
// NOTE: Because file statics are at the TranslationUnit along with globals, a
// function at file scope will return the same level as a function at global
// scope. Ideally we'd like to treat the file scope as an additional scope just
// below the global scope. More work needs to be done to recognise that, if
// the decl we're trying to look up is static, we should compare its source
// file with that of the current scope and return a lower number for it.
uint32_t TypeSystemClang::CountDeclLevels(clang::DeclContext *frame_decl_ctx,
clang::DeclContext *child_decl_ctx,
ConstString *child_name,
CompilerType *child_type) {
if (frame_decl_ctx) {
std::set<DeclContext *> searched;
std::multimap<DeclContext *, DeclContext *> search_queue;
SymbolFile *symbol_file = GetSymbolFile();
// Get the lookup scope for the decl we're trying to find.
clang::DeclContext *parent_decl_ctx = child_decl_ctx->getParent();
// Look for it in our scope's decl context and its parents.
uint32_t level = 0;
for (clang::DeclContext *decl_ctx = frame_decl_ctx; decl_ctx != nullptr;
decl_ctx = decl_ctx->getParent()) {
if (!decl_ctx->isLookupContext())
continue;
if (decl_ctx == parent_decl_ctx)
// Found it!
return level;
search_queue.insert(std::make_pair(decl_ctx, decl_ctx));
for (auto it = search_queue.find(decl_ctx); it != search_queue.end();
it++) {
if (searched.find(it->second) != searched.end())
continue;
// Currently DWARF has one shared translation unit for all Decls at top
// level, so this would erroneously find using statements anywhere. So
// don't look at the top-level translation unit.
// TODO fix this and add a testcase that depends on it.
if (llvm::isa<clang::TranslationUnitDecl>(it->second))
continue;
searched.insert(it->second);
symbol_file->ParseDeclsForContext(
CreateDeclContext(it->second));
for (clang::Decl *child : it->second->decls()) {
if (clang::UsingDirectiveDecl *ud =
llvm::dyn_cast<clang::UsingDirectiveDecl>(child)) {
clang::DeclContext *ns = ud->getNominatedNamespace();
if (ns == parent_decl_ctx)
// Found it!
return level;
clang::DeclContext *from = ud->getCommonAncestor();
if (searched.find(ns) == searched.end())
search_queue.insert(std::make_pair(from, ns));
} else if (child_name) {
if (clang::UsingDecl *ud =
llvm::dyn_cast<clang::UsingDecl>(child)) {
for (clang::UsingShadowDecl *usd : ud->shadows()) {
clang::Decl *target = usd->getTargetDecl();
clang::NamedDecl *nd = llvm::dyn_cast<clang::NamedDecl>(target);
if (!nd)
continue;
// Check names.
IdentifierInfo *ii = nd->getIdentifier();
if (ii == nullptr ||
!ii->getName().equals(child_name->AsCString(nullptr)))
continue;
// Check types, if one was provided.
if (child_type) {
CompilerType clang_type = GetTypeForDecl(nd);
if (!AreTypesSame(clang_type, *child_type,
/*ignore_qualifiers=*/true))
continue;
}
// Found it!
return level;
}
}
}
}
}
++level;
}
}
return LLDB_INVALID_DECL_LEVEL;
}
ConstString TypeSystemClang::DeclContextGetName(void *opaque_decl_ctx) {
if (opaque_decl_ctx) {
clang::NamedDecl *named_decl =
llvm::dyn_cast<clang::NamedDecl>((clang::DeclContext *)opaque_decl_ctx);
if (named_decl)
return ConstString(named_decl->getName());
}
return ConstString();
}
ConstString
TypeSystemClang::DeclContextGetScopeQualifiedName(void *opaque_decl_ctx) {
if (opaque_decl_ctx) {
clang::NamedDecl *named_decl =
llvm::dyn_cast<clang::NamedDecl>((clang::DeclContext *)opaque_decl_ctx);
if (named_decl)
return ConstString(GetTypeNameForDecl(named_decl));
}
return ConstString();
}
bool TypeSystemClang::DeclContextIsClassMethod(
void *opaque_decl_ctx, lldb::LanguageType *language_ptr,
bool *is_instance_method_ptr, ConstString *language_object_name_ptr) {
if (opaque_decl_ctx) {
clang::DeclContext *decl_ctx = (clang::DeclContext *)opaque_decl_ctx;
if (ObjCMethodDecl *objc_method =
llvm::dyn_cast<clang::ObjCMethodDecl>(decl_ctx)) {
if (is_instance_method_ptr)
*is_instance_method_ptr = objc_method->isInstanceMethod();
if (language_ptr)
*language_ptr = eLanguageTypeObjC;
if (language_object_name_ptr)
language_object_name_ptr->SetCString("self");
return true;
} else if (CXXMethodDecl *cxx_method =
llvm::dyn_cast<clang::CXXMethodDecl>(decl_ctx)) {
if (is_instance_method_ptr)
*is_instance_method_ptr = cxx_method->isInstance();
if (language_ptr)
*language_ptr = eLanguageTypeC_plus_plus;
if (language_object_name_ptr)
language_object_name_ptr->SetCString("this");
return true;
} else if (clang::FunctionDecl *function_decl =
llvm::dyn_cast<clang::FunctionDecl>(decl_ctx)) {
ClangASTMetadata *metadata = GetMetadata(function_decl);
if (metadata && metadata->HasObjectPtr()) {
if (is_instance_method_ptr)
*is_instance_method_ptr = true;
if (language_ptr)
*language_ptr = eLanguageTypeObjC;
if (language_object_name_ptr)
language_object_name_ptr->SetCString(metadata->GetObjectPtrName());
return true;
}
}
}
return false;
}
bool TypeSystemClang::DeclContextIsContainedInLookup(
void *opaque_decl_ctx, void *other_opaque_decl_ctx) {
auto *decl_ctx = (clang::DeclContext *)opaque_decl_ctx;
auto *other = (clang::DeclContext *)other_opaque_decl_ctx;
do {
// A decl context always includes its own contents in its lookup.
if (decl_ctx == other)
return true;
// If we have an inline namespace, then the lookup of the parent context
// also includes the inline namespace contents.
} while (other->isInlineNamespace() && (other = other->getParent()));
return false;
}
static bool IsClangDeclContext(const CompilerDeclContext &dc) {
return dc.IsValid() && isa<TypeSystemClang>(dc.GetTypeSystem());
}
clang::DeclContext *
TypeSystemClang::DeclContextGetAsDeclContext(const CompilerDeclContext &dc) {
if (IsClangDeclContext(dc))
return (clang::DeclContext *)dc.GetOpaqueDeclContext();
return nullptr;
}
ObjCMethodDecl *
TypeSystemClang::DeclContextGetAsObjCMethodDecl(const CompilerDeclContext &dc) {
if (IsClangDeclContext(dc))
return llvm::dyn_cast<clang::ObjCMethodDecl>(
(clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
CXXMethodDecl *
TypeSystemClang::DeclContextGetAsCXXMethodDecl(const CompilerDeclContext &dc) {
if (IsClangDeclContext(dc))
return llvm::dyn_cast<clang::CXXMethodDecl>(
(clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
clang::FunctionDecl *
TypeSystemClang::DeclContextGetAsFunctionDecl(const CompilerDeclContext &dc) {
if (IsClangDeclContext(dc))
return llvm::dyn_cast<clang::FunctionDecl>(
(clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
clang::NamespaceDecl *
TypeSystemClang::DeclContextGetAsNamespaceDecl(const CompilerDeclContext &dc) {
if (IsClangDeclContext(dc))
return llvm::dyn_cast<clang::NamespaceDecl>(
(clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
ClangASTMetadata *
TypeSystemClang::DeclContextGetMetaData(const CompilerDeclContext &dc,
const Decl *object) {
TypeSystemClang *ast = llvm::cast<TypeSystemClang>(dc.GetTypeSystem());
return ast->GetMetadata(object);
}
clang::ASTContext *
TypeSystemClang::DeclContextGetTypeSystemClang(const CompilerDeclContext &dc) {
TypeSystemClang *ast =
llvm::dyn_cast_or_null<TypeSystemClang>(dc.GetTypeSystem());
if (ast)
return &ast->getASTContext();
return nullptr;
}
namespace {
/// A specialized scratch AST used within ScratchTypeSystemClang.
/// These are the ASTs backing the different IsolatedASTKinds. They behave
/// like a normal ScratchTypeSystemClang but they don't own their own
/// persistent storage or target reference.
class SpecializedScratchAST : public TypeSystemClang {
public:
/// \param name The display name of the TypeSystemClang instance.
/// \param triple The triple used for the TypeSystemClang instance.
/// \param ast_source The ClangASTSource that should be used to complete
/// type information.
SpecializedScratchAST(llvm::StringRef name, llvm::Triple triple,
std::unique_ptr<ClangASTSource> ast_source)
: TypeSystemClang(name, triple),
m_scratch_ast_source_up(std::move(ast_source)) {
// Setup the ClangASTSource to complete this AST.
m_scratch_ast_source_up->InstallASTContext(*this);
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> proxy_ast_source(
m_scratch_ast_source_up->CreateProxy());
SetExternalSource(proxy_ast_source);
}
/// The ExternalASTSource that performs lookups and completes types.
std::unique_ptr<ClangASTSource> m_scratch_ast_source_up;
};
} // namespace
char ScratchTypeSystemClang::ID;
const llvm::NoneType ScratchTypeSystemClang::DefaultAST = llvm::None;
ScratchTypeSystemClang::ScratchTypeSystemClang(Target &target,
llvm::Triple triple)
: TypeSystemClang("scratch ASTContext", triple), m_triple(triple),
m_target_wp(target.shared_from_this()),
m_persistent_variables(new ClangPersistentVariables) {
m_scratch_ast_source_up = CreateASTSource();
m_scratch_ast_source_up->InstallASTContext(*this);
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> proxy_ast_source(
m_scratch_ast_source_up->CreateProxy());
SetExternalSource(proxy_ast_source);
}
void ScratchTypeSystemClang::Finalize() {
TypeSystemClang::Finalize();
m_scratch_ast_source_up.reset();
}
TypeSystemClang *
ScratchTypeSystemClang::GetForTarget(Target &target,
llvm::Optional<IsolatedASTKind> ast_kind,
bool create_on_demand) {
auto type_system_or_err = target.GetScratchTypeSystemForLanguage(
lldb::eLanguageTypeC, create_on_demand);
if (auto err = type_system_or_err.takeError()) {
LLDB_LOG_ERROR(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_TARGET),
std::move(err), "Couldn't get scratch TypeSystemClang");
return nullptr;
}
ScratchTypeSystemClang &scratch_ast =
llvm::cast<ScratchTypeSystemClang>(type_system_or_err.get());
// If no dedicated sub-AST was requested, just return the main AST.
if (ast_kind == DefaultAST)
return &scratch_ast;
// Search the sub-ASTs.
return &scratch_ast.GetIsolatedAST(*ast_kind);
}
UserExpression *ScratchTypeSystemClang::GetUserExpression(
llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language,
Expression::ResultType desired_type,
const EvaluateExpressionOptions &options, ValueObject *ctx_obj) {
TargetSP target_sp = m_target_wp.lock();
if (!target_sp)
return nullptr;
return new ClangUserExpression(*target_sp.get(), expr, prefix, language,
desired_type, options, ctx_obj);
}
FunctionCaller *ScratchTypeSystemClang::GetFunctionCaller(
const CompilerType &return_type, const Address &function_address,
const ValueList &arg_value_list, const char *name) {
TargetSP target_sp = m_target_wp.lock();
if (!target_sp)
return nullptr;
Process *process = target_sp->GetProcessSP().get();
if (!process)
return nullptr;
return new ClangFunctionCaller(*process, return_type, function_address,
arg_value_list, name);
}
std::unique_ptr<UtilityFunction>
ScratchTypeSystemClang::CreateUtilityFunction(std::string text,
std::string name) {
TargetSP target_sp = m_target_wp.lock();
if (!target_sp)
return {};
return std::make_unique<ClangUtilityFunction>(
*target_sp.get(), std::move(text), std::move(name));
}
PersistentExpressionState *
ScratchTypeSystemClang::GetPersistentExpressionState() {
return m_persistent_variables.get();
}
void ScratchTypeSystemClang::ForgetSource(ASTContext *src_ctx,
ClangASTImporter &importer) {
// Remove it as a source from the main AST.
importer.ForgetSource(&getASTContext(), src_ctx);
// Remove it as a source from all created sub-ASTs.
for (const auto &a : m_isolated_asts)
importer.ForgetSource(&a.second->getASTContext(), src_ctx);
}
std::unique_ptr<ClangASTSource> ScratchTypeSystemClang::CreateASTSource() {
return std::make_unique<ClangASTSource>(
m_target_wp.lock()->shared_from_this(),
m_persistent_variables->GetClangASTImporter());
}
static llvm::StringRef
GetSpecializedASTName(ScratchTypeSystemClang::IsolatedASTKind feature) {
switch (feature) {
case ScratchTypeSystemClang::IsolatedASTKind::CppModules:
return "scratch ASTContext for C++ module types";
}
llvm_unreachable("Unimplemented ASTFeature kind?");
}
TypeSystemClang &ScratchTypeSystemClang::GetIsolatedAST(
ScratchTypeSystemClang::IsolatedASTKind feature) {
auto found_ast = m_isolated_asts.find(feature);
if (found_ast != m_isolated_asts.end())
return *found_ast->second;
// Couldn't find the requested sub-AST, so create it now.
std::unique_ptr<TypeSystemClang> new_ast;
new_ast.reset(new SpecializedScratchAST(GetSpecializedASTName(feature),
m_triple, CreateASTSource()));
m_isolated_asts[feature] = std::move(new_ast);
return *m_isolated_asts[feature];
}