blob: 4e35fc050055f61fa3d1042a952b9f9acdd6bdc0 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <memory>
// unique_ptr
//=============================================================================
// TESTING std::unique_ptr::unique_ptr(pointer)
//
// Concerns:
// 1 The pointer constructor works for any default constructible deleter types.
// 2 The pointer constructor accepts pointers to derived types.
// 2 The stored type 'T' is allowed to be incomplete.
//
// Plan
// 1 Construct unique_ptr<T, D>'s with a pointer to 'T' and various deleter
// types (C-1)
// 2 Construct unique_ptr<T, D>'s with a pointer to 'D' and various deleter
// types where 'D' is derived from 'T'. (C-1,2)
// 3 Construct a unique_ptr<T, D> with a pointer to 'T' and various deleter
// types where 'T' is an incomplete type (C-1,3)
// Test unique_ptr(pointer) ctor
#include <memory>
#include <cassert>
#include "test_macros.h"
#include "unique_ptr_test_helper.h"
// unique_ptr(pointer) ctor should only require default Deleter ctor
template <bool IsArray>
void test_pointer() {
typedef typename std::conditional<!IsArray, A, A[]>::type ValueT;
const int expect_alive = IsArray ? 5 : 1;
#if TEST_STD_VER >= 11
{
using U1 = std::unique_ptr<ValueT>;
using U2 = std::unique_ptr<ValueT, Deleter<ValueT> >;
// Test for noexcept
static_assert(std::is_nothrow_constructible<U1, A*>::value, "");
static_assert(std::is_nothrow_constructible<U2, A*>::value, "");
// Test for explicit
static_assert(!std::is_convertible<A*, U1>::value, "");
static_assert(!std::is_convertible<A*, U2>::value, "");
}
#endif
{
A* p = newValue<ValueT>(expect_alive);
assert(A::count == expect_alive);
std::unique_ptr<ValueT> s(p);
assert(s.get() == p);
}
assert(A::count == 0);
{
A* p = newValue<ValueT>(expect_alive);
assert(A::count == expect_alive);
std::unique_ptr<ValueT, NCDeleter<ValueT> > s(p);
assert(s.get() == p);
assert(s.get_deleter().state() == 0);
}
assert(A::count == 0);
}
void test_derived() {
{
B* p = new B;
assert(A::count == 1);
assert(B::count == 1);
std::unique_ptr<A> s(p);
assert(s.get() == p);
}
assert(A::count == 0);
assert(B::count == 0);
{
B* p = new B;
assert(A::count == 1);
assert(B::count == 1);
std::unique_ptr<A, NCDeleter<A> > s(p);
assert(s.get() == p);
assert(s.get_deleter().state() == 0);
}
assert(A::count == 0);
assert(B::count == 0);
}
#if TEST_STD_VER >= 11
struct NonDefaultDeleter {
NonDefaultDeleter() = delete;
void operator()(void*) const {}
};
struct GenericDeleter {
void operator()(void*) const;
};
#endif
template <class T>
void test_sfinae() {
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resolution when
// the deleter is a pointer type
using U = std::unique_ptr<T, void (*)(void*)>;
static_assert(!std::is_constructible<U, T*>::value, "");
}
{ // the constructor does not participate in overload resolution when
// the deleter is not default constructible
using Del = CDeleter<T>;
using U1 = std::unique_ptr<T, NonDefaultDeleter>;
using U2 = std::unique_ptr<T, Del&>;
using U3 = std::unique_ptr<T, Del const&>;
static_assert(!std::is_constructible<U1, T*>::value, "");
static_assert(!std::is_constructible<U2, T*>::value, "");
static_assert(!std::is_constructible<U3, T*>::value, "");
}
#endif
}
static void test_sfinae_runtime() {
#if TEST_STD_VER >= 11
{ // the constructor does not participate in overload resolution when
// a base <-> derived conversion would occur.
using UA = std::unique_ptr<A[]>;
using UAD = std::unique_ptr<A[], GenericDeleter>;
using UAC = std::unique_ptr<const A[]>;
using UB = std::unique_ptr<B[]>;
using UBD = std::unique_ptr<B[], GenericDeleter>;
using UBC = std::unique_ptr<const B[]>;
static_assert(!std::is_constructible<UA, B*>::value, "");
static_assert(!std::is_constructible<UB, A*>::value, "");
static_assert(!std::is_constructible<UAD, B*>::value, "");
static_assert(!std::is_constructible<UBD, A*>::value, "");
static_assert(!std::is_constructible<UAC, const B*>::value, "");
static_assert(!std::is_constructible<UBC, const A*>::value, "");
}
#endif
}
DEFINE_AND_RUN_IS_INCOMPLETE_TEST({
{ doIncompleteTypeTest(1, getNewIncomplete()); }
checkNumIncompleteTypeAlive(0);
{
doIncompleteTypeTest<IncompleteType, NCDeleter<IncompleteType> >(
1, getNewIncomplete());
}
checkNumIncompleteTypeAlive(0);
})
int main(int, char**) {
{
test_pointer</*IsArray*/ false>();
test_derived();
test_sfinae<int>();
}
{
test_pointer</*IsArray*/ true>();
test_sfinae<int[]>();
test_sfinae_runtime();
}
return 0;
}