| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Computes arcsin(x). |
| // |
| // The incoming argument is first reduced by noting that arcsin(x) is invalid |
| // for abs(x) > 1 and arcsin(-x) = -arcsin(x). |
| // |
| // For denormal and small arguments, arcsin(x) = x to machine accuracy. |
| // |
| // Remaining argument ranges are handled as follows: |
| // * For abs(x) <= 0.5 use: |
| // arcsin(x) = x + x^3 * R(x^2) |
| // where R(x^2) is a rational minimax approximation to (arcsin(x) - x)/x^3. |
| // * For abs(x) > 0.5 exploit the identity: |
| // arcsin(x) = pi/2 - 2 * arcsin(sqrt(1 - x)/2) |
| // together with the above rational approximation, and reconstruct the terms |
| // carefully. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #if __CLC_FPSIZE == 32 |
| |
| _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_asin(__CLC_GENTYPE x) { |
| // 0x33a22168 |
| const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(7.5497894159e-08); |
| // 0x3f490fda |
| const __CLC_GENTYPE hpiby2_head = __CLC_FP_LIT(7.8539812565e-01); |
| // 0x3fc90fdb |
| const __CLC_GENTYPE piby2 = __CLC_FP_LIT(1.5707963705e+00); |
| |
| __CLC_UINTN ux = __CLC_AS_UINTN(x); |
| __CLC_UINTN aux = ux & EXSIGNBIT_SP32; |
| __CLC_UINTN xs = ux ^ aux; |
| __CLC_GENTYPE spiby2 = __CLC_AS_GENTYPE(xs | __CLC_AS_UINTN(piby2)); |
| __CLC_INTN xexp = __CLC_AS_INTN(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; |
| __CLC_GENTYPE y = __CLC_AS_GENTYPE(aux); |
| |
| // abs(x) >= 0.5 |
| __CLC_INTN transform = xexp >= -1; |
| |
| __CLC_GENTYPE y2 = y * y; |
| __CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y); |
| __CLC_GENTYPE r = transform ? rt : y2; |
| |
| // Use a rational approximation for [0.0, 0.5] |
| __CLC_GENTYPE a = |
| __clc_mad(r, |
| __clc_mad(r, |
| __clc_mad(r, -0.00396137437848476485201154797087F, |
| -0.0133819288943925804214011424456F), |
| -0.0565298683201845211985026327361F), |
| 0.184161606965100694821398249421F); |
| |
| __CLC_GENTYPE b = __clc_mad(r, -0.836411276854206731913362287293F, |
| 1.10496961524520294485512696706F); |
| __CLC_GENTYPE u = r * MATH_DIVIDE(a, b); |
| |
| __CLC_GENTYPE s = __clc_sqrt(r); |
| __CLC_GENTYPE s1 = __CLC_AS_GENTYPE(__CLC_AS_UINTN(s) & 0xffff0000); |
| __CLC_GENTYPE c = MATH_DIVIDE(__clc_mad(-s1, s1, r), s + s1); |
| __CLC_GENTYPE p = __clc_mad(2.0f * s, u, -__clc_mad(c, -2.0f, piby2_tail)); |
| __CLC_GENTYPE q = __clc_mad(s1, -2.0f, hpiby2_head); |
| __CLC_GENTYPE vt = hpiby2_head - (p - q); |
| __CLC_GENTYPE v = __clc_mad(y, u, y); |
| v = transform ? vt : v; |
| |
| __CLC_GENTYPE ret = __CLC_AS_GENTYPE(xs | __CLC_AS_UINTN(v)); |
| ret = aux > 0x3f800000U ? __CLC_GENTYPE_NAN : ret; |
| ret = aux == 0x3f800000U ? spiby2 : ret; |
| ret = xexp < -14 ? x : ret; |
| |
| return ret; |
| } |
| |
| #elif __CLC_FPSIZE == 64 |
| |
| _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_asin(__CLC_GENTYPE x) { |
| // 0x3c91a62633145c07 |
| const __CLC_GENTYPE piby2_tail = __CLC_FP_LIT(6.1232339957367660e-17); |
| // 0x3fe921fb54442d18 |
| const __CLC_GENTYPE hpiby2_head = 7.8539816339744831e-01; |
| // 0x3ff921fb54442d18 |
| const __CLC_GENTYPE piby2 = 1.5707963267948965e+00; |
| |
| __CLC_GENTYPE y = __clc_fabs(x); |
| __CLC_LONGN xneg = x < __CLC_FP_LIT(0.0); |
| __CLC_INTN xexp = __CLC_CONVERT_INTN( |
| (__CLC_AS_ULONGN(y) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64); |
| |
| // abs(x) >= 0.5 |
| __CLC_LONGN transform = __CLC_CONVERT_LONGN(xexp >= -1); |
| |
| __CLC_GENTYPE rt = __CLC_FP_LIT(0.5) * (__CLC_FP_LIT(1.0) - y); |
| __CLC_GENTYPE y2 = y * y; |
| __CLC_GENTYPE r = transform ? rt : y2; |
| |
| // Use a rational approximation for [0.0, 0.5] |
| |
| __CLC_GENTYPE un = __clc_fma( |
| r, |
| __clc_fma( |
| r, |
| __clc_fma(r, |
| __clc_fma(r, |
| __clc_fma(r, 0.0000482901920344786991880522822991, |
| 0.00109242697235074662306043804220), |
| -0.0549989809235685841612020091328), |
| 0.275558175256937652532686256258), |
| -0.445017216867635649900123110649), |
| 0.227485835556935010735943483075); |
| |
| __CLC_GENTYPE ud = __clc_fma( |
| r, |
| __clc_fma(r, |
| __clc_fma(r, |
| __clc_fma(r, 0.105869422087204370341222318533, |
| -0.943639137032492685763471240072), |
| 2.76568859157270989520376345954), |
| -3.28431505720958658909889444194), |
| 1.36491501334161032038194214209); |
| |
| __CLC_GENTYPE u = r * MATH_DIVIDE(un, ud); |
| |
| // Reconstruct asin carefully in transformed region |
| __CLC_GENTYPE s = __clc_sqrt(r); |
| __CLC_GENTYPE sh = |
| __CLC_AS_GENTYPE(__CLC_AS_ULONGN(s) & 0xffffffff00000000UL); |
| __CLC_GENTYPE c = MATH_DIVIDE(__clc_fma(-sh, sh, r), s + sh); |
| __CLC_GENTYPE p = __clc_fma(2.0 * s, u, -__clc_fma(-2.0, c, piby2_tail)); |
| __CLC_GENTYPE q = __clc_fma(-2.0, sh, hpiby2_head); |
| __CLC_GENTYPE vt = hpiby2_head - (p - q); |
| __CLC_GENTYPE v = __clc_fma(y, u, y); |
| v = transform ? vt : v; |
| |
| v = __CLC_CONVERT_LONGN(xexp < -28) ? y : v; |
| v = __CLC_CONVERT_LONGN(xexp >= 0) ? __CLC_GENTYPE_NAN : v; |
| v = y == 1.0 ? piby2 : v; |
| |
| return xneg ? -v : v; |
| } |
| |
| #elif __CLC_FPSIZE == 16 |
| |
| _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE __clc_asin(__CLC_GENTYPE x) { |
| return __CLC_CONVERT_GENTYPE(__clc_asin(__CLC_CONVERT_FLOATN(x))); |
| } |
| |
| #endif |