blob: 87db01416c86eef9ee21820c300e83f3cf3dafeb [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float acos(float x) {
// Computes arccos(x).
// The argument is first reduced by noting that arccos(x)
// is invalid for abs(x) > 1. For denormal and small
// arguments arccos(x) = pi/2 to machine accuracy.
// Remaining argument ranges are handled as follows.
// For abs(x) <= 0.5 use
// arccos(x) = pi/2 - arcsin(x)
// = pi/2 - (x + x^3*R(x^2))
// where R(x^2) is a rational minimax approximation to
// (arcsin(x) - x)/x^3.
// For abs(x) > 0.5 exploit the identity:
// arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
// together with the above rational approximation, and
// reconstruct the terms carefully.
// Some constants and split constants.
const float piby2 = 1.5707963705e+00F;
const float pi = 3.1415926535897933e+00F;
const float piby2_head = 1.5707963267948965580e+00F;
const float piby2_tail = 6.12323399573676603587e-17F;
uint ux = as_uint(x);
uint aux = ux & ~SIGNBIT_SP32;
int xneg = ux != aux;
int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
float y = as_float(aux);
// transform if |x| >= 0.5
int transform = xexp >= -1;
float y2 = y * y;
float yt = 0.5f * (1.0f - y);
float r = transform ? yt : y2;
// Use a rational approximation for [0.0, 0.5]
float a = mad(r,
mad(r,
mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
-0.0565298683201845211985026327361F),
0.184161606965100694821398249421F);
float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
float u = r * MATH_DIVIDE(a, b);
float s = MATH_SQRT(r);
y = s;
float s1 = as_float(as_uint(s) & 0xffff0000);
float c = MATH_DIVIDE(mad(s1, -s1, r), s + s1);
float rettn = mad(s + mad(y, u, -piby2_tail), -2.0f, pi);
float rettp = 2.0F * (s1 + mad(y, u, c));
float rett = xneg ? rettn : rettp;
float ret = piby2_head - (x - mad(x, -u, piby2_tail));
ret = transform ? rett : ret;
ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
ret = ux == 0x3f800000U ? 0.0f : ret;
ret = ux == 0xbf800000U ? pi : ret;
ret = xexp < -26 ? piby2 : ret;
return ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acos, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double acos(double x) {
// Computes arccos(x).
// The argument is first reduced by noting that arccos(x)
// is invalid for abs(x) > 1. For denormal and small
// arguments arccos(x) = pi/2 to machine accuracy.
// Remaining argument ranges are handled as follows.
// For abs(x) <= 0.5 use
// arccos(x) = pi/2 - arcsin(x)
// = pi/2 - (x + x^3*R(x^2))
// where R(x^2) is a rational minimax approximation to
// (arcsin(x) - x)/x^3.
// For abs(x) > 0.5 exploit the identity:
// arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
// together with the above rational approximation, and
// reconstruct the terms carefully.
const double pi = 3.1415926535897933e+00; /* 0x400921fb54442d18 */
const double piby2 = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */
const double piby2_head = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */
const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */
double y = fabs(x);
int xneg = as_int2(x).hi < 0;
int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
// abs(x) >= 0.5
int transform = xexp >= -1;
double rt = 0.5 * (1.0 - y);
double y2 = y * y;
double r = transform ? rt : y2;
// Use a rational approximation for [0.0, 0.5]
double un = fma(r,
fma(r,
fma(r,
fma(r,
fma(r, 0.0000482901920344786991880522822991,
0.00109242697235074662306043804220),
-0.0549989809235685841612020091328),
0.275558175256937652532686256258),
-0.445017216867635649900123110649),
0.227485835556935010735943483075);
double ud = fma(r,
fma(r,
fma(r,
fma(r, 0.105869422087204370341222318533,
-0.943639137032492685763471240072),
2.76568859157270989520376345954),
-3.28431505720958658909889444194),
1.36491501334161032038194214209);
double u = r * MATH_DIVIDE(un, ud);
// Reconstruct acos carefully in transformed region
double s = sqrt(r);
double ztn = fma(-2.0, (s + fma(s, u, -piby2_tail)), pi);
double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL);
double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1);
double ztp = 2.0 * (s1 + fma(s, u, c));
double zt = xneg ? ztn : ztp;
double z = piby2_head - (x - fma(-x, u, piby2_tail));
z = transform ? zt : z;
z = xexp < -56 ? piby2 : z;
z = isnan(x) ? as_double((as_ulong(x) | QNANBITPATT_DP64)) : z;
z = x == 1.0 ? 0.0 : z;
z = x == -1.0 ? pi : z;
return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acos, double);
#endif // cl_khr_fp64