blob: fdc8b8b296876cc7a6a383b8e481565ac23d9d19 [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This version is derived from the generic fma software implementation
// (__clc_sw_fma), but avoids the use of ulong in favor of uint2. The logic has
// been updated as appropriate.
#include <clc/clc.h>
#include "../../../generic/lib/clcmacro.h"
#include "../../../generic/lib/math/math.h"
struct fp {
uint2 mantissa;
int exponent;
uint sign;
};
_CLC_DEF _CLC_OVERLOAD float fma(float a, float b, float c) {
/* special cases */
if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) {
return mad(a, b, c);
}
/* If only c is inf, and both a,b are regular numbers, the result is c*/
if (isinf(c)) {
return c;
}
a = __clc_flush_denormal_if_not_supported(a);
b = __clc_flush_denormal_if_not_supported(b);
c = __clc_flush_denormal_if_not_supported(c);
if (a == 0.0f || b == 0.0f) {
return c;
}
if (c == 0) {
return a * b;
}
struct fp st_a, st_b, st_c;
st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127;
st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127;
st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127;
st_a.mantissa.lo = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000;
st_b.mantissa.lo = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000;
st_c.mantissa.lo = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000;
st_a.mantissa.hi = 0;
st_b.mantissa.hi = 0;
st_c.mantissa.hi = 0;
st_a.sign = as_uint(a) & 0x80000000;
st_b.sign = as_uint(b) & 0x80000000;
st_c.sign = as_uint(c) & 0x80000000;
// Multiplication.
// Move the product to the highest bits to maximize precision
// mantissa is 24 bits => product is 48 bits, 2bits non-fraction.
// Add one bit for future addition overflow,
// add another bit to detect subtraction underflow
struct fp st_mul;
st_mul.sign = st_a.sign ^ st_b.sign;
st_mul.mantissa.hi = mul_hi(st_a.mantissa.lo, st_b.mantissa.lo);
st_mul.mantissa.lo = st_a.mantissa.lo * st_b.mantissa.lo;
uint upper_14bits = (st_mul.mantissa.lo >> 18) & 0x3fff;
st_mul.mantissa.lo <<= 14;
st_mul.mantissa.hi <<= 14;
st_mul.mantissa.hi |= upper_14bits;
st_mul.exponent = (st_mul.mantissa.lo != 0 || st_mul.mantissa.hi != 0)
? st_a.exponent + st_b.exponent
: 0;
// Mantissa is 23 fractional bits, shift it the same way as product mantissa
#define C_ADJUST 37ul
// both exponents are bias adjusted
int exp_diff = st_mul.exponent - st_c.exponent;
uint abs_exp_diff = abs(exp_diff);
st_c.mantissa.hi = (st_c.mantissa.lo << 5);
st_c.mantissa.lo = 0;
uint2 cutoff_bits = (uint2)(0, 0);
uint2 cutoff_mask = (uint2)(0, 0);
if (abs_exp_diff < 32) {
cutoff_mask.lo = (1u << abs(exp_diff)) - 1u;
} else if (abs_exp_diff < 64) {
cutoff_mask.lo = 0xffffffff;
uint remaining = abs_exp_diff - 32;
cutoff_mask.hi = (1u << remaining) - 1u;
} else {
cutoff_mask = (uint2)(0, 0);
}
uint2 tmp = (exp_diff > 0) ? st_c.mantissa : st_mul.mantissa;
if (abs_exp_diff > 0) {
cutoff_bits = abs_exp_diff >= 64 ? tmp : (tmp & cutoff_mask);
if (abs_exp_diff < 32) {
// shift some of the hi bits into the shifted lo bits.
uint shift_mask = (1u << abs_exp_diff) - 1;
uint upper_saved_bits = tmp.hi & shift_mask;
upper_saved_bits = upper_saved_bits << (32 - abs_exp_diff);
tmp.hi >>= abs_exp_diff;
tmp.lo >>= abs_exp_diff;
tmp.lo |= upper_saved_bits;
} else if (abs_exp_diff < 64) {
tmp.lo = (tmp.hi >> (abs_exp_diff - 32));
tmp.hi = 0;
} else {
tmp = (uint2)(0, 0);
}
}
if (exp_diff > 0)
st_c.mantissa = tmp;
else
st_mul.mantissa = tmp;
struct fp st_fma;
st_fma.sign = st_mul.sign;
st_fma.exponent = max(st_mul.exponent, st_c.exponent);
st_fma.mantissa = (uint2)(0, 0);
if (st_c.sign == st_mul.sign) {
uint carry = (hadd(st_mul.mantissa.lo, st_c.mantissa.lo) >> 31) & 0x1;
st_fma.mantissa = st_mul.mantissa + st_c.mantissa;
st_fma.mantissa.hi += carry;
} else {
// cutoff bits borrow one
uint cutoff_borrow = ((cutoff_bits.lo != 0 || cutoff_bits.hi != 0) &&
(st_mul.exponent > st_c.exponent))
? 1
: 0;
uint borrow = 0;
if (st_c.mantissa.lo > st_mul.mantissa.lo) {
borrow = 1;
} else if (st_c.mantissa.lo == UINT_MAX && cutoff_borrow == 1) {
borrow = 1;
} else if ((st_c.mantissa.lo + cutoff_borrow) > st_mul.mantissa.lo) {
borrow = 1;
}
st_fma.mantissa.lo = st_mul.mantissa.lo - st_c.mantissa.lo - cutoff_borrow;
st_fma.mantissa.hi = st_mul.mantissa.hi - st_c.mantissa.hi - borrow;
}
// underflow: st_c.sign != st_mul.sign, and magnitude switches the sign
if (st_fma.mantissa.hi > INT_MAX) {
st_fma.mantissa = ~st_fma.mantissa;
uint carry = (hadd(st_fma.mantissa.lo, 1u) >> 31) & 0x1;
st_fma.mantissa.lo += 1;
st_fma.mantissa.hi += carry;
st_fma.sign = st_mul.sign ^ 0x80000000;
}
// detect overflow/underflow
uint leading_zeroes = clz(st_fma.mantissa.hi);
if (leading_zeroes == 32) {
leading_zeroes += clz(st_fma.mantissa.lo);
}
int overflow_bits = 3 - leading_zeroes;
// adjust exponent
st_fma.exponent += overflow_bits;
// handle underflow
if (overflow_bits < 0) {
uint shift = -overflow_bits;
if (shift < 32) {
uint shift_mask = (1u << shift) - 1;
uint saved_lo_bits = (st_fma.mantissa.lo >> (32 - shift)) & shift_mask;
st_fma.mantissa.lo <<= shift;
st_fma.mantissa.hi <<= shift;
st_fma.mantissa.hi |= saved_lo_bits;
} else if (shift < 64) {
st_fma.mantissa.hi = (st_fma.mantissa.lo << (64 - shift));
st_fma.mantissa.lo = 0;
} else {
st_fma.mantissa = (uint2)(0, 0);
}
overflow_bits = 0;
}
// rounding
// overflow_bits is now in the range of [0, 3] making the shift greater than
// 32 bits.
uint2 trunc_mask;
uint trunc_shift = C_ADJUST + overflow_bits - 32;
trunc_mask.hi = (1u << trunc_shift) - 1;
trunc_mask.lo = UINT_MAX;
uint2 trunc_bits = st_fma.mantissa & trunc_mask;
trunc_bits.lo |= (cutoff_bits.hi != 0 || cutoff_bits.lo != 0) ? 1 : 0;
uint2 last_bit;
last_bit.lo = 0;
last_bit.hi = st_fma.mantissa.hi & (1u << trunc_shift);
uint grs_shift = C_ADJUST - 3 + overflow_bits - 32;
uint2 grs_bits;
grs_bits.lo = 0;
grs_bits.hi = 0x4u << grs_shift;
// round to nearest even
if ((trunc_bits.hi > grs_bits.hi ||
(trunc_bits.hi == grs_bits.hi && trunc_bits.lo > grs_bits.lo)) ||
(trunc_bits.hi == grs_bits.hi && trunc_bits.lo == grs_bits.lo &&
last_bit.hi != 0)) {
uint shift = C_ADJUST + overflow_bits - 32;
st_fma.mantissa.hi += 1u << shift;
}
// Shift mantissa back to bit 23
st_fma.mantissa.lo = (st_fma.mantissa.hi >> (C_ADJUST + overflow_bits - 32));
st_fma.mantissa.hi = 0;
// Detect rounding overflow
if (st_fma.mantissa.lo > 0xffffff) {
++st_fma.exponent;
st_fma.mantissa.lo >>= 1;
}
if (st_fma.mantissa.lo == 0) {
return 0.0f;
}
// Flating point range limit
if (st_fma.exponent > 127) {
return as_float(as_uint(INFINITY) | st_fma.sign);
}
// Flush denormals
if (st_fma.exponent <= -127) {
return as_float(st_fma.sign);
}
return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) |
((uint)st_fma.mantissa.lo & 0x7fffff));
}
_CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, fma, float, float, float)