blob: 77611ad281c661695508f02dc42ab18652b3a8de [file] [log] [blame]
//===-- Bit representation of x86 long double numbers -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_LONG_DOUBLE_BITS_X86_H
#define LLVM_LIBC_SRC_SUPPORT_FPUTIL_LONG_DOUBLE_BITS_X86_H
#include "FPBits.h"
#include <stdint.h>
namespace __llvm_libc {
namespace fputil {
template <unsigned Width> struct Padding;
// i386 padding.
template <> struct Padding<4> { static constexpr unsigned value = 16; };
// x86_64 padding.
template <> struct Padding<8> { static constexpr unsigned value = 48; };
template <> union FPBits<long double> {
using UIntType = __uint128_t;
static constexpr int exponentBias = 0x3FFF;
static constexpr int maxExponent = 0x7FFF;
static constexpr UIntType minSubnormal = UIntType(1);
// Subnormal numbers include the implicit bit in x86 long double formats.
static constexpr UIntType maxSubnormal =
(UIntType(1) << (MantissaWidth<long double>::value)) - 1;
static constexpr UIntType minNormal =
(UIntType(3) << MantissaWidth<long double>::value);
static constexpr UIntType maxNormal =
((UIntType(maxExponent) - 1) << (MantissaWidth<long double>::value + 1)) |
(UIntType(1) << MantissaWidth<long double>::value) | maxSubnormal;
using FloatProp = FloatProperties<long double>;
UIntType bits;
void setMantissa(UIntType mantVal) {
mantVal &= (FloatProp::mantissaMask);
bits &= ~(FloatProp::mantissaMask);
bits |= mantVal;
}
UIntType getMantissa() const { return bits & FloatProp::mantissaMask; }
void setUnbiasedExponent(UIntType expVal) {
expVal = (expVal << (FloatProp::bitWidth - 1 - FloatProp::exponentWidth)) &
FloatProp::exponentMask;
bits &= ~(FloatProp::exponentMask);
bits |= expVal;
}
uint16_t getUnbiasedExponent() const {
return uint16_t((bits & FloatProp::exponentMask) >>
(FloatProp::bitWidth - 1 - FloatProp::exponentWidth));
}
void setImplicitBit(bool implicitVal) {
bits &= ~(UIntType(1) << FloatProp::mantissaWidth);
bits |= (UIntType(implicitVal) << FloatProp::mantissaWidth);
}
bool getImplicitBit() const {
return ((bits & (UIntType(1) << FloatProp::mantissaWidth)) >>
FloatProp::mantissaWidth);
}
void setSign(bool signVal) {
bits &= ~(FloatProp::signMask);
UIntType sign1 = UIntType(signVal) << (FloatProp::bitWidth - 1);
bits |= sign1;
}
bool getSign() const {
return ((bits & FloatProp::signMask) >> (FloatProp::bitWidth - 1));
}
long double val;
FPBits() : bits(0) {}
template <typename XType,
cpp::EnableIfType<cpp::IsSame<long double, XType>::Value, int> = 0>
explicit FPBits(XType x) : val(x) {
// bits starts uninitialized, and setting it to a long double only
// overwrites the first 80 bits. This clears those upper bits.
bits = bits & ((UIntType(1) << 80) - 1);
}
template <typename XType,
cpp::EnableIfType<cpp::IsSame<XType, UIntType>::Value, int> = 0>
explicit FPBits(XType x) : bits(x) {}
operator long double() { return val; }
UIntType uintval() {
// We zero the padding bits as they can contain garbage.
static constexpr UIntType mask =
(UIntType(1) << (sizeof(long double) * 8 -
Padding<sizeof(uintptr_t)>::value)) -
1;
return bits & mask;
}
int getExponent() const {
if (getUnbiasedExponent() == 0)
return int(1) - exponentBias;
return int(getUnbiasedExponent()) - exponentBias;
}
bool isZero() const {
return getUnbiasedExponent() == 0 && getMantissa() == 0 &&
getImplicitBit() == 0;
}
bool isInf() const {
return getUnbiasedExponent() == maxExponent && getMantissa() == 0 &&
getImplicitBit() == 1;
}
bool isNaN() const {
if (getUnbiasedExponent() == maxExponent) {
return (getImplicitBit() == 0) || getMantissa() != 0;
} else if (getUnbiasedExponent() != 0) {
return getImplicitBit() == 0;
}
return false;
}
bool isInfOrNaN() const {
return (getUnbiasedExponent() == maxExponent) ||
(getUnbiasedExponent() != 0 && getImplicitBit() == 0);
}
// Methods below this are used by tests.
static FPBits<long double> zero() { return FPBits<long double>(0.0l); }
static FPBits<long double> negZero() {
FPBits<long double> bits(0.0l);
bits.setSign(1);
return bits;
}
static FPBits<long double> inf() {
FPBits<long double> bits(0.0l);
bits.setUnbiasedExponent(maxExponent);
bits.setImplicitBit(1);
return bits;
}
static FPBits<long double> negInf() {
FPBits<long double> bits(0.0l);
bits.setUnbiasedExponent(maxExponent);
bits.setImplicitBit(1);
bits.setSign(1);
return bits;
}
static long double buildNaN(UIntType v) {
FPBits<long double> bits(0.0l);
bits.setUnbiasedExponent(maxExponent);
bits.setImplicitBit(1);
bits.setMantissa(v);
return bits;
}
};
static_assert(
sizeof(FPBits<long double>) == sizeof(long double),
"Internal long double representation does not match the machine format.");
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_LONG_DOUBLE_BITS_X86_H