blob: 2109e7d19df69eae0d44c222b0a7263cece8523e [file] [log] [blame]
//===-- Unittests for strtof ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/FPUtil/FPBits.h"
#include "src/stdlib/strtof.h"
#include "utils/UnitTest/Test.h"
#include <errno.h>
#include <limits.h>
#include <stddef.h>
class LlvmLibcStrToFTest : public __llvm_libc::testing::Test {
public:
void runTest(const char *inputString, const ptrdiff_t expectedStrLen,
const uint32_t expectedRawData, const int expectedErrno = 0) {
// expectedRawData is the expected float result as a uint32_t, organized
// according to IEEE754:
//
// +-- 1 Sign Bit +-- 23 Mantissa bits
// | |
// | +----------+----------+
// | | |
// SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
// | |
// +--+---+
// |
// +-- 8 Exponent Bits
//
// This is so that the result can be compared in parts.
char *strEnd = nullptr;
__llvm_libc::fputil::FPBits<float> expectedFP =
__llvm_libc::fputil::FPBits<float>(expectedRawData);
errno = 0;
float result = __llvm_libc::strtof(inputString, &strEnd);
__llvm_libc::fputil::FPBits<float> actualFP =
__llvm_libc::fputil::FPBits<float>(result);
EXPECT_EQ(strEnd - inputString, expectedStrLen);
EXPECT_EQ(actualFP.bits, expectedFP.bits);
EXPECT_EQ(actualFP.getSign(), expectedFP.getSign());
EXPECT_EQ(actualFP.getExponent(), expectedFP.getExponent());
EXPECT_EQ(actualFP.getMantissa(), expectedFP.getMantissa());
EXPECT_EQ(errno, expectedErrno);
}
};
// This is the set of tests that I have working (verified correct when compared
// to system libc). This is here so I don't break more things when I try to fix
// them.
TEST_F(LlvmLibcStrToFTest, BasicDecimalTests) {
runTest("1", 1, 0x3f800000);
runTest("123", 3, 0x42f60000);
runTest("1234567890", 10, 0x4e932c06u);
runTest("123456789012345678901", 21, 0x60d629d4);
runTest("0.1", 3, 0x3dcccccdu);
runTest(".1", 2, 0x3dcccccdu);
runTest("-0.123456789", 12, 0xbdfcd6eau);
runTest("0.11111111111111111111", 22, 0x3de38e39u);
runTest("0.0000000000000000000000001", 27, 0x15f79688u);
}
TEST_F(LlvmLibcStrToFTest, DecimalOutOfRangeTests) {
runTest("555E36", 6, 0x7f800000, ERANGE);
runTest("1e-10000", 8, 0x0, ERANGE);
}
TEST_F(LlvmLibcStrToFTest, DecimalsWithRoundingProblems) {
runTest("20040229", 8, 0x4b98e512);
runTest("20040401", 8, 0x4b98e568);
runTest("9E9", 3, 0x50061c46);
}
TEST_F(LlvmLibcStrToFTest, DecimalSubnormals) {
runTest("1.4012984643248170709237295832899161312802619418765e-45", 55, 0x1);
}
TEST_F(LlvmLibcStrToFTest, DecimalWithLongExponent) {
runTest("1e2147483648", 12, 0x7f800000, ERANGE);
runTest("1e2147483646", 12, 0x7f800000, ERANGE);
runTest("100e2147483646", 14, 0x7f800000, ERANGE);
runTest("1e-2147483647", 13, 0x0, ERANGE);
runTest("1e-2147483649", 13, 0x0, ERANGE);
}
TEST_F(LlvmLibcStrToFTest, BasicHexadecimalTests) {
runTest("0x1", 3, 0x3f800000);
runTest("0x10", 4, 0x41800000);
runTest("0x11", 4, 0x41880000);
runTest("0x0.1234", 8, 0x3d91a000);
}
TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalTests) {
runTest("0x0.0000000000000000000000000000000002", 38, 0x4000);
// This is the largest subnormal number as represented in hex
runTest("0x0.00000000000000000000000000000003fffff8", 42, 0x7fffff);
}
TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalRoundingTests) {
// This is the largest subnormal number that gets rounded down to 0 (as a
// float)
runTest("0x0.00000000000000000000000000000000000004", 42, 0x0, ERANGE);
// This is slightly larger, and thus rounded up
runTest("0x0.000000000000000000000000000000000000041", 43, 0x00000001,
ERANGE);
// These check that we're rounding to even properly
runTest("0x0.0000000000000000000000000000000000000b", 42, 0x00000001, ERANGE);
runTest("0x0.0000000000000000000000000000000000000c", 42, 0x00000002, ERANGE);
}
TEST_F(LlvmLibcStrToFTest, HexadecimalNormalRoundingTests) {
// This also checks the round to even behavior by checking three adjacent
// numbers.
// This gets rounded down to even
runTest("0x123456500", 11, 0x4f91a2b2);
// This doesn't get rounded at all
runTest("0x123456600", 11, 0x4f91a2b3);
// This gets rounded up to even
runTest("0x123456700", 11, 0x4f91a2b4);
}
TEST_F(LlvmLibcStrToFTest, HexadecimalsWithRoundingProblems) {
runTest("0xFFFFFFFF", 10, 0x4f800000);
}
TEST_F(LlvmLibcStrToFTest, HexadecimalOutOfRangeTests) {
runTest("0x123456789123456789123456789123456789", 38, 0x7f800000, ERANGE);
runTest("-0x123456789123456789123456789123456789", 39, 0xff800000, ERANGE);
runTest("0x0.00000000000000000000000000000000000001", 42, 0x0, ERANGE);
}
TEST_F(LlvmLibcStrToFTest, InfTests) {
runTest("INF", 3, 0x7f800000);
runTest("INFinity", 8, 0x7f800000);
runTest("infnity", 3, 0x7f800000);
runTest("infinit", 3, 0x7f800000);
runTest("infinfinit", 3, 0x7f800000);
runTest("innf", 0, 0x0);
runTest("-inf", 4, 0xff800000);
runTest("-iNfInItY", 9, 0xff800000);
}
TEST_F(LlvmLibcStrToFTest, NaNTests) {
runTest("NaN", 3, 0x7fc00000);
runTest("-nAn", 4, 0xffc00000);
runTest("NaN()", 5, 0x7fc00000);
runTest("NaN(1234)", 9, 0x7fc004d2);
runTest("NaN( 1234)", 3, 0x7fc00000);
}