blob: 58326183678b845dba5a4b91333cacf98e3346d5 [file] [log] [blame]
//===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#include "FPBits.h"
#include "Sqrt.h"
#include "utils/CPP/TypeTraits.h"
namespace __llvm_libc {
namespace fputil {
namespace internal {
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 63, it will take
// ceil(log2(63)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56,
__uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63};
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
} // namespace internal
// Correctly rounded SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <> inline long double sqrt<long double, 0>(long double x) {
using UIntType = typename FPBits<long double>::UIntType;
constexpr UIntType One = UIntType(1)
<< int(MantissaWidth<long double>::value);
FPBits<long double> bits(x);
if (bits.isInfOrNaN()) {
if (bits.getSign() && (bits.getMantissa() == 0)) {
// sqrt(-Inf) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.getSign()) {
// sqrt( negative numbers ) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.getMantissa();
// Step 1a: Normalize denormal input
if (bits.getImplicitBit()) {
xMant |= One;
} else if (bits.getUnbiasedExponent() == 0) {
internal::normalize<long double>(xExp, xMant);
}
// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Append the exponent field.
xExp = ((xExp >> 1) + FPBits<long double>::exponentBias);
y |= (static_cast<UIntType>(xExp)
<< (MantissaWidth<long double>::value + 1));
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}
// Extract output
FPBits<long double> out(0.0L);
out.setUnbiasedExponent(xExp);
out.setImplicitBit(1);
out.setMantissa((y & (One - 1)));
return out;
}
}
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H