blob: cf1e61c0844d82e2d919c737d921077200814f86 [file] [log] [blame]
//===-- runtime/transformational.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements the transformational intrinsic functions of Fortran 2018 that
// rearrange or duplicate data without (much) regard to type. These are
// CSHIFT, EOSHIFT, PACK, RESHAPE, SPREAD, TRANSPOSE, and UNPACK.
//
// Many of these are defined in the 2018 standard with text that makes sense
// only if argument arrays have lower bounds of one. Rather than interpret
// these cases as implying a hidden constraint, these implementations
// work with arbitrary lower bounds. This may be technically an extension
// of the standard but it more likely to conform with its intent.
#include "flang/Runtime/transformational.h"
#include "copy.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Common/float128.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
// Utility for CSHIFT & EOSHIFT rank > 1 cases that determines the shift count
// for each of the vector sections of the result.
class ShiftControl {
public:
RT_API_ATTRS ShiftControl(const Descriptor &s, Terminator &t, int dim)
: shift_{s}, terminator_{t}, shiftRank_{s.rank()}, dim_{dim} {}
RT_API_ATTRS void Init(const Descriptor &source, const char *which) {
int rank{source.rank()};
RUNTIME_CHECK(terminator_, shiftRank_ == 0 || shiftRank_ == rank - 1);
auto catAndKind{shift_.type().GetCategoryAndKind()};
RUNTIME_CHECK(
terminator_, catAndKind && catAndKind->first == TypeCategory::Integer);
shiftElemLen_ = catAndKind->second;
if (shiftRank_ > 0) {
int k{0};
for (int j{0}; j < rank; ++j) {
if (j + 1 != dim_) {
const Dimension &shiftDim{shift_.GetDimension(k)};
lb_[k++] = shiftDim.LowerBound();
if (shiftDim.Extent() != source.GetDimension(j).Extent()) {
terminator_.Crash("%s: on dimension %d, SHIFT= has extent %jd but "
"SOURCE= has extent %jd",
which, k, static_cast<std::intmax_t>(shiftDim.Extent()),
static_cast<std::intmax_t>(source.GetDimension(j).Extent()));
}
}
}
} else if (auto count{GetInt64Safe(
shift_.OffsetElement<char>(), shiftElemLen_, terminator_)}) {
shiftCount_ = *count;
} else {
terminator_.Crash("%s: SHIFT= value exceeds 64 bits", which);
}
}
RT_API_ATTRS SubscriptValue GetShift(const SubscriptValue resultAt[]) const {
if (shiftRank_ > 0) {
SubscriptValue shiftAt[maxRank];
int k{0};
for (int j{0}; j < shiftRank_ + 1; ++j) {
if (j + 1 != dim_) {
shiftAt[k] = lb_[k] + resultAt[j] - 1;
++k;
}
}
auto count{GetInt64Safe(
shift_.Element<char>(shiftAt), shiftElemLen_, terminator_)};
RUNTIME_CHECK(terminator_, count.has_value());
return *count;
} else {
return shiftCount_; // invariant count extracted in Init()
}
}
private:
const Descriptor &shift_;
Terminator &terminator_;
int shiftRank_;
int dim_;
SubscriptValue lb_[maxRank];
std::size_t shiftElemLen_;
SubscriptValue shiftCount_{};
};
// Fill an EOSHIFT result with default boundary values
static RT_API_ATTRS void DefaultInitialize(
const Descriptor &result, Terminator &terminator) {
auto catAndKind{result.type().GetCategoryAndKind()};
RUNTIME_CHECK(
terminator, catAndKind && catAndKind->first != TypeCategory::Derived);
std::size_t elementLen{result.ElementBytes()};
std::size_t bytes{result.Elements() * elementLen};
if (catAndKind->first == TypeCategory::Character) {
switch (int kind{catAndKind->second}) {
case 1:
Fortran::runtime::fill_n(result.OffsetElement<char>(), bytes, ' ');
break;
case 2:
Fortran::runtime::fill_n(result.OffsetElement<char16_t>(), bytes / 2,
static_cast<char16_t>(' '));
break;
case 4:
Fortran::runtime::fill_n(result.OffsetElement<char32_t>(), bytes / 4,
static_cast<char32_t>(' '));
break;
default:
terminator.Crash(
"not yet implemented: CHARACTER(KIND=%d) in EOSHIFT intrinsic", kind);
}
} else {
std::memset(result.raw().base_addr, 0, bytes);
}
}
static inline RT_API_ATTRS std::size_t AllocateResult(Descriptor &result,
const Descriptor &source, int rank, const SubscriptValue extent[],
Terminator &terminator, const char *function) {
std::size_t elementLen{source.ElementBytes()};
const DescriptorAddendum *sourceAddendum{source.Addendum()};
result.Establish(source.type(), elementLen, nullptr, rank, extent,
CFI_attribute_allocatable, sourceAddendum != nullptr);
if (sourceAddendum) {
*result.Addendum() = *sourceAddendum;
}
for (int j{0}; j < rank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"%s: Could not allocate memory for result (stat=%d)", function, stat);
}
return elementLen;
}
template <TypeCategory CAT, int KIND>
static inline RT_API_ATTRS std::size_t AllocateBesselResult(Descriptor &result,
int32_t n1, int32_t n2, Terminator &terminator, const char *function) {
int rank{1};
SubscriptValue extent[maxRank];
for (int j{0}; j < maxRank; j++) {
extent[j] = 0;
}
if (n1 <= n2) {
extent[0] = n2 - n1 + 1;
}
std::size_t elementLen{Descriptor::BytesFor(CAT, KIND)};
result.Establish(TypeCode{CAT, KIND}, elementLen, nullptr, rank, extent,
CFI_attribute_allocatable, false);
for (int j{0}; j < rank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"%s: Could not allocate memory for result (stat=%d)", function, stat);
}
return elementLen;
}
template <TypeCategory CAT, int KIND>
static inline RT_API_ATTRS void DoBesselJn(Descriptor &result, int32_t n1,
int32_t n2, CppTypeFor<CAT, KIND> x, CppTypeFor<CAT, KIND> bn2,
CppTypeFor<CAT, KIND> bn2_1, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_JN");
// The standard requires that n1 and n2 be non-negative. However, some other
// compilers generate results even when n1 and/or n2 are negative. For now,
// we also do not enforce the non-negativity constraint.
if (n2 < n1) {
return;
}
SubscriptValue at[maxRank];
for (int j{0}; j < maxRank; ++j) {
at[j] = 0;
}
// if n2 >= n1, there will be at least one element in the result.
at[0] = n2 - n1 + 1;
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn2;
if (n2 == n1) {
return;
}
at[0] = n2 - n1;
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn2_1;
// Bessel functions of the first kind are stable for a backward recursion
// (see https://dlmf.nist.gov/10.74.iv and https://dlmf.nist.gov/10.6.E1).
//
// J(n-1, x) = (2.0 / x) * n * J(n, x) - J(n+1, x)
//
// which is equivalent to
//
// J(n, x) = (2.0 / x) * (n + 1) * J(n+1, x) - J(n+2, x)
//
CppTypeFor<CAT, KIND> bn_2 = bn2;
CppTypeFor<CAT, KIND> bn_1 = bn2_1;
CppTypeFor<CAT, KIND> twoOverX = 2.0 / x;
for (int n{n2 - 2}; n >= n1; --n) {
auto bn = twoOverX * (n + 1) * bn_1 - bn_2;
at[0] = n - n1 + 1;
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn;
bn_2 = bn_1;
bn_1 = bn;
}
}
template <TypeCategory CAT, int KIND>
static inline RT_API_ATTRS void DoBesselJnX0(Descriptor &result, int32_t n1,
int32_t n2, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_JN");
// The standard requires that n1 and n2 be non-negative. However, some other
// compilers generate results even when n1 and/or n2 are negative. For now,
// we also do not enforce the non-negativity constraint.
if (n2 < n1) {
return;
}
SubscriptValue at[maxRank];
for (int j{0}; j < maxRank; ++j) {
at[j] = 0;
}
// J(0, 0.0) = 1.0, when n == 0.
// J(n, 0.0) = 0.0, when n > 0.
at[0] = 1;
*result.Element<CppTypeFor<CAT, KIND>>(at) = (n1 == 0) ? 1.0 : 0.0;
for (int j{2}; j <= n2 - n1 + 1; ++j) {
at[0] = j;
*result.Element<CppTypeFor<CAT, KIND>>(at) = 0.0;
}
}
template <TypeCategory CAT, int KIND>
static inline RT_API_ATTRS void DoBesselYn(Descriptor &result, int32_t n1,
int32_t n2, CppTypeFor<CAT, KIND> x, CppTypeFor<CAT, KIND> bn1,
CppTypeFor<CAT, KIND> bn1_1, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_YN");
// The standard requires that n1 and n2 be non-negative. However, some other
// compilers generate results even when n1 and/or n2 are negative. For now,
// we also do not enforce the non-negativity constraint.
if (n2 < n1) {
return;
}
SubscriptValue at[maxRank];
for (int j{0}; j < maxRank; ++j) {
at[j] = 0;
}
// if n2 >= n1, there will be at least one element in the result.
at[0] = 1;
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn1;
if (n2 == n1) {
return;
}
at[0] = 2;
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn1_1;
// Bessel functions of the second kind are stable for a forward recursion
// (see https://dlmf.nist.gov/10.74.iv and https://dlmf.nist.gov/10.6.E1).
//
// Y(n+1, x) = (2.0 / x) * n * Y(n, x) - Y(n-1, x)
//
// which is equivalent to
//
// Y(n, x) = (2.0 / x) * (n - 1) * Y(n-1, x) - Y(n-2, x)
//
CppTypeFor<CAT, KIND> bn_2 = bn1;
CppTypeFor<CAT, KIND> bn_1 = bn1_1;
CppTypeFor<CAT, KIND> twoOverX = 2.0 / x;
for (int n{n1 + 2}; n <= n2; ++n) {
auto bn = twoOverX * (n - 1) * bn_1 - bn_2;
at[0] = n - n1 + 1;
*result.Element<CppTypeFor<CAT, KIND>>(at) = bn;
bn_2 = bn_1;
bn_1 = bn;
}
}
template <TypeCategory CAT, int KIND>
static inline RT_API_ATTRS void DoBesselYnX0(Descriptor &result, int32_t n1,
int32_t n2, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
AllocateBesselResult<CAT, KIND>(result, n1, n2, terminator, "BESSEL_YN");
// The standard requires that n1 and n2 be non-negative. However, some other
// compilers generate results even when n1 and/or n2 are negative. For now,
// we also do not enforce the non-negativity constraint.
if (n2 < n1) {
return;
}
SubscriptValue at[maxRank];
for (int j{0}; j < maxRank; ++j) {
at[j] = 0;
}
// Y(n, 0.0) = -Inf, when n >= 0
for (int j{1}; j <= n2 - n1 + 1; ++j) {
at[0] = j;
*result.Element<CppTypeFor<CAT, KIND>>(at) =
-std::numeric_limits<CppTypeFor<CAT, KIND>>::infinity();
}
}
extern "C" {
RT_EXT_API_GROUP_BEGIN
// BESSEL_JN
// TODO: REAL(2 & 3)
void RTDEF(BesselJn_4)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 4> x, CppTypeFor<TypeCategory::Real, 4> bn2,
CppTypeFor<TypeCategory::Real, 4> bn2_1, const char *sourceFile, int line) {
DoBesselJn<TypeCategory::Real, 4>(
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
}
void RTDEF(BesselJn_8)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 8> x, CppTypeFor<TypeCategory::Real, 8> bn2,
CppTypeFor<TypeCategory::Real, 8> bn2_1, const char *sourceFile, int line) {
DoBesselJn<TypeCategory::Real, 8>(
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
}
#if LDBL_MANT_DIG == 64
void RTDEF(BesselJn_10)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 10> x,
CppTypeFor<TypeCategory::Real, 10> bn2,
CppTypeFor<TypeCategory::Real, 10> bn2_1, const char *sourceFile,
int line) {
DoBesselJn<TypeCategory::Real, 10>(
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
}
#endif
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
void RTDEF(BesselJn_16)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 16> x,
CppTypeFor<TypeCategory::Real, 16> bn2,
CppTypeFor<TypeCategory::Real, 16> bn2_1, const char *sourceFile,
int line) {
DoBesselJn<TypeCategory::Real, 16>(
result, n1, n2, x, bn2, bn2_1, sourceFile, line);
}
#endif
// TODO: REAL(2 & 3)
void RTDEF(BesselJnX0_4)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselJnX0<TypeCategory::Real, 4>(result, n1, n2, sourceFile, line);
}
void RTDEF(BesselJnX0_8)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselJnX0<TypeCategory::Real, 8>(result, n1, n2, sourceFile, line);
}
#if LDBL_MANT_DIG == 64
void RTDEF(BesselJnX0_10)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselJnX0<TypeCategory::Real, 10>(result, n1, n2, sourceFile, line);
}
#endif
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
void RTDEF(BesselJnX0_16)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselJnX0<TypeCategory::Real, 16>(result, n1, n2, sourceFile, line);
}
#endif
// BESSEL_YN
// TODO: REAL(2 & 3)
void RTDEF(BesselYn_4)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 4> x, CppTypeFor<TypeCategory::Real, 4> bn1,
CppTypeFor<TypeCategory::Real, 4> bn1_1, const char *sourceFile, int line) {
DoBesselYn<TypeCategory::Real, 4>(
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
}
void RTDEF(BesselYn_8)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 8> x, CppTypeFor<TypeCategory::Real, 8> bn1,
CppTypeFor<TypeCategory::Real, 8> bn1_1, const char *sourceFile, int line) {
DoBesselYn<TypeCategory::Real, 8>(
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
}
#if LDBL_MANT_DIG == 64
void RTDEF(BesselYn_10)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 10> x,
CppTypeFor<TypeCategory::Real, 10> bn1,
CppTypeFor<TypeCategory::Real, 10> bn1_1, const char *sourceFile,
int line) {
DoBesselYn<TypeCategory::Real, 10>(
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
}
#endif
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
void RTDEF(BesselYn_16)(Descriptor &result, int32_t n1, int32_t n2,
CppTypeFor<TypeCategory::Real, 16> x,
CppTypeFor<TypeCategory::Real, 16> bn1,
CppTypeFor<TypeCategory::Real, 16> bn1_1, const char *sourceFile,
int line) {
DoBesselYn<TypeCategory::Real, 16>(
result, n1, n2, x, bn1, bn1_1, sourceFile, line);
}
#endif
// TODO: REAL(2 & 3)
void RTDEF(BesselYnX0_4)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselYnX0<TypeCategory::Real, 4>(result, n1, n2, sourceFile, line);
}
void RTDEF(BesselYnX0_8)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselYnX0<TypeCategory::Real, 8>(result, n1, n2, sourceFile, line);
}
#if LDBL_MANT_DIG == 64
void RTDEF(BesselYnX0_10)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselYnX0<TypeCategory::Real, 10>(result, n1, n2, sourceFile, line);
}
#endif
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
void RTDEF(BesselYnX0_16)(Descriptor &result, int32_t n1, int32_t n2,
const char *sourceFile, int line) {
DoBesselYnX0<TypeCategory::Real, 16>(result, n1, n2, sourceFile, line);
}
#endif
// CSHIFT where rank of ARRAY argument > 1
void RTDEF(Cshift)(Descriptor &result, const Descriptor &source,
const Descriptor &shift, int dim, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
int rank{source.rank()};
RUNTIME_CHECK(terminator, rank > 1);
if (dim < 1 || dim > rank) {
terminator.Crash(
"CSHIFT: DIM=%d must be >= 1 and <= SOURCE= rank %d", dim, rank);
}
ShiftControl shiftControl{shift, terminator, dim};
shiftControl.Init(source, "CSHIFT");
SubscriptValue extent[maxRank];
source.GetShape(extent);
AllocateResult(result, source, rank, extent, terminator, "CSHIFT");
SubscriptValue resultAt[maxRank];
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
SubscriptValue sourceLB[maxRank];
source.GetLowerBounds(sourceLB);
SubscriptValue dimExtent{extent[dim - 1]};
SubscriptValue dimLB{sourceLB[dim - 1]};
SubscriptValue &resDim{resultAt[dim - 1]};
for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) {
SubscriptValue shiftCount{shiftControl.GetShift(resultAt)};
SubscriptValue sourceAt[maxRank];
for (int j{0}; j < rank; ++j) {
sourceAt[j] = sourceLB[j] + resultAt[j] - 1;
}
SubscriptValue &sourceDim{sourceAt[dim - 1]};
sourceDim = dimLB + shiftCount % dimExtent;
if (sourceDim < dimLB) {
sourceDim += dimExtent;
}
for (resDim = 1; resDim <= dimExtent; ++resDim) {
CopyElement(result, resultAt, source, sourceAt, terminator);
if (++sourceDim == dimLB + dimExtent) {
sourceDim = dimLB;
}
}
result.IncrementSubscripts(resultAt);
}
}
// CSHIFT where rank of ARRAY argument == 1
void RTDEF(CshiftVector)(Descriptor &result, const Descriptor &source,
std::int64_t shift, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, source.rank() == 1);
const Dimension &sourceDim{source.GetDimension(0)};
SubscriptValue extent{sourceDim.Extent()};
AllocateResult(result, source, 1, &extent, terminator, "CSHIFT");
SubscriptValue lb{sourceDim.LowerBound()};
for (SubscriptValue j{0}; j < extent; ++j) {
SubscriptValue resultAt{1 + j};
SubscriptValue sourceAt{lb + (j + shift) % extent};
if (sourceAt < lb) {
sourceAt += extent;
}
CopyElement(result, &resultAt, source, &sourceAt, terminator);
}
}
// EOSHIFT of rank > 1
void RTDEF(Eoshift)(Descriptor &result, const Descriptor &source,
const Descriptor &shift, const Descriptor *boundary, int dim,
const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
SubscriptValue extent[maxRank];
int rank{source.GetShape(extent)};
RUNTIME_CHECK(terminator, rank > 1);
if (dim < 1 || dim > rank) {
terminator.Crash(
"EOSHIFT: DIM=%d must be >= 1 and <= SOURCE= rank %d", dim, rank);
}
std::size_t elementLen{
AllocateResult(result, source, rank, extent, terminator, "EOSHIFT")};
int boundaryRank{-1};
if (boundary) {
boundaryRank = boundary->rank();
RUNTIME_CHECK(terminator, boundaryRank == 0 || boundaryRank == rank - 1);
RUNTIME_CHECK(terminator, boundary->type() == source.type());
if (boundary->ElementBytes() != elementLen) {
terminator.Crash("EOSHIFT: BOUNDARY= has element byte length %zd, but "
"SOURCE= has length %zd",
boundary->ElementBytes(), elementLen);
}
if (boundaryRank > 0) {
int k{0};
for (int j{0}; j < rank; ++j) {
if (j != dim - 1) {
if (boundary->GetDimension(k).Extent() != extent[j]) {
terminator.Crash("EOSHIFT: BOUNDARY= has extent %jd on dimension "
"%d but must conform with extent %jd of SOURCE=",
static_cast<std::intmax_t>(boundary->GetDimension(k).Extent()),
k + 1, static_cast<std::intmax_t>(extent[j]));
}
++k;
}
}
}
}
ShiftControl shiftControl{shift, terminator, dim};
shiftControl.Init(source, "EOSHIFT");
SubscriptValue resultAt[maxRank];
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
if (!boundary) {
DefaultInitialize(result, terminator);
}
SubscriptValue sourceLB[maxRank];
source.GetLowerBounds(sourceLB);
SubscriptValue boundaryAt[maxRank];
if (boundaryRank > 0) {
boundary->GetLowerBounds(boundaryAt);
}
SubscriptValue dimExtent{extent[dim - 1]};
SubscriptValue dimLB{sourceLB[dim - 1]};
SubscriptValue &resDim{resultAt[dim - 1]};
for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) {
SubscriptValue shiftCount{shiftControl.GetShift(resultAt)};
SubscriptValue sourceAt[maxRank];
for (int j{0}; j < rank; ++j) {
sourceAt[j] = sourceLB[j] + resultAt[j] - 1;
}
SubscriptValue &sourceDim{sourceAt[dim - 1]};
sourceDim = dimLB + shiftCount;
for (resDim = 1; resDim <= dimExtent; ++resDim) {
if (sourceDim >= dimLB && sourceDim < dimLB + dimExtent) {
CopyElement(result, resultAt, source, sourceAt, terminator);
} else if (boundary) {
CopyElement(result, resultAt, *boundary, boundaryAt, terminator);
}
++sourceDim;
}
result.IncrementSubscripts(resultAt);
if (boundaryRank > 0) {
boundary->IncrementSubscripts(boundaryAt);
}
}
}
// EOSHIFT of vector
void RTDEF(EoshiftVector)(Descriptor &result, const Descriptor &source,
std::int64_t shift, const Descriptor *boundary, const char *sourceFile,
int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, source.rank() == 1);
SubscriptValue extent{source.GetDimension(0).Extent()};
std::size_t elementLen{
AllocateResult(result, source, 1, &extent, terminator, "EOSHIFT")};
if (boundary) {
RUNTIME_CHECK(terminator, boundary->rank() == 0);
RUNTIME_CHECK(terminator, boundary->type() == source.type());
if (boundary->ElementBytes() != elementLen) {
terminator.Crash("EOSHIFT: BOUNDARY= has element byte length %zd but "
"SOURCE= has length %zd",
boundary->ElementBytes(), elementLen);
}
}
if (!boundary) {
DefaultInitialize(result, terminator);
}
SubscriptValue lb{source.GetDimension(0).LowerBound()};
for (SubscriptValue j{1}; j <= extent; ++j) {
SubscriptValue sourceAt{lb + j - 1 + shift};
if (sourceAt >= lb && sourceAt < lb + extent) {
CopyElement(result, &j, source, &sourceAt, terminator);
} else if (boundary) {
CopyElement(result, &j, *boundary, 0, terminator);
}
}
}
// PACK
void RTDEF(Pack)(Descriptor &result, const Descriptor &source,
const Descriptor &mask, const Descriptor *vector, const char *sourceFile,
int line) {
Terminator terminator{sourceFile, line};
CheckConformability(source, mask, terminator, "PACK", "ARRAY=", "MASK=");
auto maskType{mask.type().GetCategoryAndKind()};
RUNTIME_CHECK(
terminator, maskType && maskType->first == TypeCategory::Logical);
SubscriptValue trues{0};
if (mask.rank() == 0) {
if (IsLogicalElementTrue(mask, nullptr)) {
trues = source.Elements();
}
} else {
SubscriptValue maskAt[maxRank];
mask.GetLowerBounds(maskAt);
for (std::size_t n{mask.Elements()}; n > 0; --n) {
if (IsLogicalElementTrue(mask, maskAt)) {
++trues;
}
mask.IncrementSubscripts(maskAt);
}
}
SubscriptValue extent{trues};
if (vector) {
RUNTIME_CHECK(terminator, vector->rank() == 1);
RUNTIME_CHECK(terminator, source.type() == vector->type());
if (source.ElementBytes() != vector->ElementBytes()) {
terminator.Crash("PACK: SOURCE= has element byte length %zd, but VECTOR= "
"has length %zd",
source.ElementBytes(), vector->ElementBytes());
}
extent = vector->GetDimension(0).Extent();
if (extent < trues) {
terminator.Crash("PACK: VECTOR= has extent %jd but there are %jd MASK= "
"elements that are .TRUE.",
static_cast<std::intmax_t>(extent),
static_cast<std::intmax_t>(trues));
}
}
AllocateResult(result, source, 1, &extent, terminator, "PACK");
SubscriptValue sourceAt[maxRank], resultAt{1};
source.GetLowerBounds(sourceAt);
if (mask.rank() == 0) {
if (IsLogicalElementTrue(mask, nullptr)) {
for (SubscriptValue n{trues}; n > 0; --n) {
CopyElement(result, &resultAt, source, sourceAt, terminator);
++resultAt;
source.IncrementSubscripts(sourceAt);
}
}
} else {
SubscriptValue maskAt[maxRank];
mask.GetLowerBounds(maskAt);
for (std::size_t n{source.Elements()}; n > 0; --n) {
if (IsLogicalElementTrue(mask, maskAt)) {
CopyElement(result, &resultAt, source, sourceAt, terminator);
++resultAt;
}
source.IncrementSubscripts(sourceAt);
mask.IncrementSubscripts(maskAt);
}
}
if (vector) {
SubscriptValue vectorAt{
vector->GetDimension(0).LowerBound() + resultAt - 1};
for (; resultAt <= extent; ++resultAt, ++vectorAt) {
CopyElement(result, &resultAt, *vector, &vectorAt, terminator);
}
}
}
// RESHAPE
// F2018 16.9.163
void RTDEF(Reshape)(Descriptor &result, const Descriptor &source,
const Descriptor &shape, const Descriptor *pad, const Descriptor *order,
const char *sourceFile, int line) {
// Compute and check the rank of the result.
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, shape.rank() == 1);
RUNTIME_CHECK(terminator, shape.type().IsInteger());
SubscriptValue resultRank{shape.GetDimension(0).Extent()};
if (resultRank < 0 || resultRank > static_cast<SubscriptValue>(maxRank)) {
terminator.Crash(
"RESHAPE: SHAPE= vector length %jd implies a bad result rank",
static_cast<std::intmax_t>(resultRank));
}
// Extract and check the shape of the result; compute its element count.
SubscriptValue resultExtent[maxRank];
std::size_t shapeElementBytes{shape.ElementBytes()};
std::size_t resultElements{1};
SubscriptValue shapeSubscript{shape.GetDimension(0).LowerBound()};
for (int j{0}; j < resultRank; ++j, ++shapeSubscript) {
auto extent{GetInt64Safe(
shape.Element<char>(&shapeSubscript), shapeElementBytes, terminator)};
if (!extent) {
terminator.Crash("RESHAPE: value of SHAPE(%d) exceeds 64 bits", j + 1);
} else if (*extent < 0) {
terminator.Crash("RESHAPE: bad value for SHAPE(%d)=%jd", j + 1,
static_cast<std::intmax_t>(*extent));
}
resultExtent[j] = *extent;
resultElements *= resultExtent[j];
}
// Check that there are sufficient elements in the SOURCE=, or that
// the optional PAD= argument is present and nonempty.
std::size_t elementBytes{source.ElementBytes()};
std::size_t sourceElements{source.Elements()};
std::size_t padElements{pad ? pad->Elements() : 0};
if (resultElements > sourceElements) {
if (padElements <= 0) {
terminator.Crash(
"RESHAPE: not enough elements, need %zd but only have %zd",
resultElements, sourceElements);
}
if (pad->ElementBytes() != elementBytes) {
terminator.Crash("RESHAPE: PAD= has element byte length %zd but SOURCE= "
"has length %zd",
pad->ElementBytes(), elementBytes);
}
}
// Extract and check the optional ORDER= argument, which must be a
// permutation of [1..resultRank].
int dimOrder[maxRank];
if (order) {
RUNTIME_CHECK(terminator, order->rank() == 1);
RUNTIME_CHECK(terminator, order->type().IsInteger());
if (order->GetDimension(0).Extent() != resultRank) {
terminator.Crash("RESHAPE: the extent of ORDER (%jd) must match the rank"
" of the SHAPE (%d)",
static_cast<std::intmax_t>(order->GetDimension(0).Extent()),
resultRank);
}
std::uint64_t values{0};
SubscriptValue orderSubscript{order->GetDimension(0).LowerBound()};
std::size_t orderElementBytes{order->ElementBytes()};
for (SubscriptValue j{0}; j < resultRank; ++j, ++orderSubscript) {
auto k{GetInt64Safe(order->Element<char>(&orderSubscript),
orderElementBytes, terminator)};
if (!k) {
terminator.Crash("RESHAPE: ORDER element value exceeds 64 bits");
} else if (*k < 1 || *k > resultRank || ((values >> *k) & 1)) {
terminator.Crash("RESHAPE: bad value for ORDER element (%jd)",
static_cast<std::intmax_t>(*k));
}
values |= std::uint64_t{1} << *k;
dimOrder[j] = *k - 1;
}
} else {
for (int j{0}; j < resultRank; ++j) {
dimOrder[j] = j;
}
}
// Allocate result descriptor
AllocateResult(
result, source, resultRank, resultExtent, terminator, "RESHAPE");
// Populate the result's elements.
SubscriptValue resultSubscript[maxRank];
result.GetLowerBounds(resultSubscript);
SubscriptValue sourceSubscript[maxRank];
source.GetLowerBounds(sourceSubscript);
std::size_t resultElement{0};
std::size_t elementsFromSource{std::min(resultElements, sourceElements)};
for (; resultElement < elementsFromSource; ++resultElement) {
CopyElement(result, resultSubscript, source, sourceSubscript, terminator);
source.IncrementSubscripts(sourceSubscript);
result.IncrementSubscripts(resultSubscript, dimOrder);
}
if (resultElement < resultElements) {
// Remaining elements come from the optional PAD= argument.
SubscriptValue padSubscript[maxRank];
pad->GetLowerBounds(padSubscript);
for (; resultElement < resultElements; ++resultElement) {
CopyElement(result, resultSubscript, *pad, padSubscript, terminator);
pad->IncrementSubscripts(padSubscript);
result.IncrementSubscripts(resultSubscript, dimOrder);
}
}
}
// SPREAD
void RTDEF(Spread)(Descriptor &result, const Descriptor &source, int dim,
std::int64_t ncopies, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
int rank{source.rank() + 1};
RUNTIME_CHECK(terminator, rank <= maxRank);
if (dim < 1 || dim > rank) {
terminator.Crash("SPREAD: DIM=%d argument for rank-%d source array "
"must be greater than 1 and less than or equal to %d",
dim, rank - 1, rank);
}
ncopies = std::max<std::int64_t>(ncopies, 0);
SubscriptValue extent[maxRank];
int k{0};
for (int j{0}; j < rank; ++j) {
extent[j] = j == dim - 1 ? ncopies : source.GetDimension(k++).Extent();
}
AllocateResult(result, source, rank, extent, terminator, "SPREAD");
SubscriptValue resultAt[maxRank];
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
SubscriptValue &resultDim{resultAt[dim - 1]};
SubscriptValue sourceAt[maxRank];
source.GetLowerBounds(sourceAt);
for (std::size_t n{result.Elements()}; n > 0; n -= ncopies) {
for (resultDim = 1; resultDim <= ncopies; ++resultDim) {
CopyElement(result, resultAt, source, sourceAt, terminator);
}
result.IncrementSubscripts(resultAt);
source.IncrementSubscripts(sourceAt);
}
}
// TRANSPOSE
void RTDEF(Transpose)(Descriptor &result, const Descriptor &matrix,
const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, matrix.rank() == 2);
SubscriptValue extent[2]{
matrix.GetDimension(1).Extent(), matrix.GetDimension(0).Extent()};
AllocateResult(result, matrix, 2, extent, terminator, "TRANSPOSE");
SubscriptValue resultAt[2]{1, 1};
SubscriptValue matrixLB[2];
matrix.GetLowerBounds(matrixLB);
for (std::size_t n{result.Elements()}; n-- > 0;
result.IncrementSubscripts(resultAt)) {
SubscriptValue matrixAt[2]{
matrixLB[0] + resultAt[1] - 1, matrixLB[1] + resultAt[0] - 1};
CopyElement(result, resultAt, matrix, matrixAt, terminator);
}
}
// UNPACK
void RTDEF(Unpack)(Descriptor &result, const Descriptor &vector,
const Descriptor &mask, const Descriptor &field, const char *sourceFile,
int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, vector.rank() == 1);
int rank{mask.rank()};
RUNTIME_CHECK(terminator, rank > 0);
SubscriptValue extent[maxRank];
mask.GetShape(extent);
CheckConformability(mask, field, terminator, "UNPACK", "MASK=", "FIELD=");
std::size_t elementLen{
AllocateResult(result, field, rank, extent, terminator, "UNPACK")};
RUNTIME_CHECK(terminator, vector.type() == field.type());
if (vector.ElementBytes() != elementLen) {
terminator.Crash(
"UNPACK: VECTOR= has element byte length %zd but FIELD= has length %zd",
vector.ElementBytes(), elementLen);
}
SubscriptValue resultAt[maxRank], maskAt[maxRank], fieldAt[maxRank],
vectorAt{vector.GetDimension(0).LowerBound()};
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
mask.GetLowerBounds(maskAt);
field.GetLowerBounds(fieldAt);
SubscriptValue vectorElements{vector.GetDimension(0).Extent()};
SubscriptValue vectorLeft{vectorElements};
for (std::size_t n{result.Elements()}; n-- > 0;) {
if (IsLogicalElementTrue(mask, maskAt)) {
if (vectorLeft-- == 0) {
terminator.Crash(
"UNPACK: VECTOR= argument has fewer elements (%d) than "
"MASK= has .TRUE. entries",
vectorElements);
}
CopyElement(result, resultAt, vector, &vectorAt, terminator);
++vectorAt;
} else {
CopyElement(result, resultAt, field, fieldAt, terminator);
}
result.IncrementSubscripts(resultAt);
mask.IncrementSubscripts(maskAt);
field.IncrementSubscripts(fieldAt);
}
}
RT_EXT_API_GROUP_END
} // extern "C"
} // namespace Fortran::runtime