blob: 4b5e39007883575191a04d06577a8f7b60d52e17 [file] [log] [blame]
//===-- runtime/emit-encoded.h ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Templates for emitting CHARACTER values with conversion
#ifndef FORTRAN_RUNTIME_EMIT_ENCODED_H_
#define FORTRAN_RUNTIME_EMIT_ENCODED_H_
#include "connection.h"
#include "environment.h"
#include "tools.h"
#include "utf.h"
namespace Fortran::runtime::io {
template <typename CONTEXT, typename CHAR, bool NL_ADVANCES_RECORD = true>
RT_API_ATTRS bool EmitEncoded(
CONTEXT &to, const CHAR *data, std::size_t chars) {
ConnectionState &connection{to.GetConnectionState()};
if constexpr (NL_ADVANCES_RECORD) {
if (connection.access == Access::Stream &&
connection.internalIoCharKind == 0) {
// Stream output: treat newlines as record advancements so that the left
// tab limit is correctly managed
while (const CHAR * nl{FindCharacter(data, CHAR{'\n'}, chars)}) {
auto pos{static_cast<std::size_t>(nl - data)};
// The [data, data + pos) does not contain the newline,
// so we can avoid the recursion by calling proper specialization.
if (!EmitEncoded<CONTEXT, CHAR, false>(to, data, pos)) {
return false;
}
data += pos + 1;
chars -= pos + 1;
to.AdvanceRecord();
}
}
}
if (connection.useUTF8<CHAR>()) {
using UnsignedChar = std::make_unsigned_t<CHAR>;
const UnsignedChar *uData{reinterpret_cast<const UnsignedChar *>(data)};
char buffer[256];
std::size_t at{0};
while (chars-- > 0) {
auto len{EncodeUTF8(buffer + at, *uData++)};
at += len;
if (at + maxUTF8Bytes > sizeof buffer) {
if (!to.Emit(buffer, at)) {
return false;
}
at = 0;
}
}
return at == 0 || to.Emit(buffer, at);
} else {
std::size_t internalKind = connection.internalIoCharKind;
if (internalKind == 0 || internalKind == sizeof(CHAR)) {
const char *rawData{reinterpret_cast<const char *>(data)};
return to.Emit(rawData, chars * sizeof(CHAR), sizeof(CHAR));
} else {
// CHARACTER kind conversion for internal output
while (chars-- > 0) {
char32_t buffer = *data++;
char *p{reinterpret_cast<char *>(&buffer)};
if constexpr (!isHostLittleEndian) {
p += sizeof(buffer) - internalKind;
}
if (!to.Emit(p, internalKind)) {
return false;
}
}
return true;
}
}
}
template <typename CONTEXT>
RT_API_ATTRS bool EmitAscii(CONTEXT &to, const char *data, std::size_t chars) {
ConnectionState &connection{to.GetConnectionState()};
if (connection.internalIoCharKind <= 1 &&
connection.access != Access::Stream) {
return to.Emit(data, chars);
} else {
return EmitEncoded(to, data, chars);
}
}
template <typename CONTEXT>
RT_API_ATTRS bool EmitRepeated(CONTEXT &to, char ch, std::size_t n) {
if (n <= 0) {
return true;
}
ConnectionState &connection{to.GetConnectionState()};
if (connection.internalIoCharKind <= 1 &&
connection.access != Access::Stream) {
// faster path, no encoding needed
while (n-- > 0) {
if (!to.Emit(&ch, 1)) {
return false;
}
}
} else {
while (n-- > 0) {
if (!EmitEncoded(to, &ch, 1)) {
return false;
}
}
}
return true;
}
} // namespace Fortran::runtime::io
#endif // FORTRAN_RUNTIME_EMIT_ENCODED_H_