blob: c78137346640a090c7f7a12571a0fb6ea36fbcdd [file] [log] [blame]
//===--- CompilerInstance.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Frontend/CompilerInstance.h"
#include "flang/Common/Fortran-features.h"
#include "flang/Frontend/CompilerInvocation.h"
#include "flang/Frontend/TextDiagnosticPrinter.h"
#include "flang/Parser/parsing.h"
#include "flang/Parser/provenance.h"
#include "flang/Semantics/semantics.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/TargetParser/Triple.h"
using namespace Fortran::frontend;
CompilerInstance::CompilerInstance()
: invocation(new CompilerInvocation()),
allSources(new Fortran::parser::AllSources()),
allCookedSources(new Fortran::parser::AllCookedSources(*allSources)),
parsing(new Fortran::parser::Parsing(*allCookedSources)) {
// TODO: This is a good default during development, but ultimately we should
// give the user the opportunity to specify this.
allSources->set_encoding(Fortran::parser::Encoding::UTF_8);
}
CompilerInstance::~CompilerInstance() {
assert(outputFiles.empty() && "Still output files in flight?");
}
void CompilerInstance::setInvocation(
std::shared_ptr<CompilerInvocation> value) {
invocation = std::move(value);
}
void CompilerInstance::setSemaOutputStream(raw_ostream &value) {
ownedSemaOutputStream.release();
semaOutputStream = &value;
}
void CompilerInstance::setSemaOutputStream(std::unique_ptr<raw_ostream> value) {
ownedSemaOutputStream.swap(value);
semaOutputStream = ownedSemaOutputStream.get();
}
// Helper method to generate the path of the output file. The following logic
// applies:
// 1. If the user specifies the output file via `-o`, then use that (i.e.
// the outputFilename parameter).
// 2. If the user does not specify the name of the output file, derive it from
// the input file (i.e. inputFilename + extension)
// 3. If the output file is not specified and the input file is `-`, then set
// the output file to `-` as well.
static std::string getOutputFilePath(llvm::StringRef outputFilename,
llvm::StringRef inputFilename,
llvm::StringRef extension) {
// Output filename _is_ specified. Just use that.
if (!outputFilename.empty())
return std::string(outputFilename);
// Output filename _is not_ specified. Derive it from the input file name.
std::string outFile = "-";
if (!extension.empty() && (inputFilename != "-")) {
llvm::SmallString<128> path(inputFilename);
llvm::sys::path::replace_extension(path, extension);
outFile = std::string(path);
}
return outFile;
}
std::unique_ptr<llvm::raw_pwrite_stream>
CompilerInstance::createDefaultOutputFile(bool binary, llvm::StringRef baseName,
llvm::StringRef extension) {
// Get the path of the output file
std::string outputFilePath =
getOutputFilePath(getFrontendOpts().outputFile, baseName, extension);
// Create the output file
llvm::Expected<std::unique_ptr<llvm::raw_pwrite_stream>> os =
createOutputFileImpl(outputFilePath, binary);
// If successful, add the file to the list of tracked output files and
// return.
if (os) {
outputFiles.emplace_back(OutputFile(outputFilePath));
return std::move(*os);
}
// If unsuccessful, issue an error and return Null
unsigned diagID = getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "unable to open output file '%0': '%1'");
getDiagnostics().Report(diagID)
<< outputFilePath << llvm::errorToErrorCode(os.takeError()).message();
return nullptr;
}
llvm::Expected<std::unique_ptr<llvm::raw_pwrite_stream>>
CompilerInstance::createOutputFileImpl(llvm::StringRef outputFilePath,
bool binary) {
// Creates the file descriptor for the output file
std::unique_ptr<llvm::raw_fd_ostream> os;
std::error_code error;
os.reset(new llvm::raw_fd_ostream(
outputFilePath, error,
(binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_TextWithCRLF)));
if (error) {
return llvm::errorCodeToError(error);
}
// For seekable streams, just return the stream corresponding to the output
// file.
if (!binary || os->supportsSeeking())
return std::move(os);
// For non-seekable streams, we need to wrap the output stream into something
// that supports 'pwrite' and takes care of the ownership for us.
return std::make_unique<llvm::buffer_unique_ostream>(std::move(os));
}
void CompilerInstance::clearOutputFiles(bool eraseFiles) {
for (OutputFile &of : outputFiles)
if (!of.filename.empty() && eraseFiles)
llvm::sys::fs::remove(of.filename);
outputFiles.clear();
}
bool CompilerInstance::executeAction(FrontendAction &act) {
auto &invoc = this->getInvocation();
llvm::Triple targetTriple{llvm::Triple(invoc.getTargetOpts().triple)};
if (targetTriple.getArch() == llvm::Triple::ArchType::x86_64) {
invoc.getDefaultKinds().set_quadPrecisionKind(10);
}
// Set some sane defaults for the frontend.
invoc.setDefaultFortranOpts();
// Update the fortran options based on user-based input.
invoc.setFortranOpts();
// Set the encoding to read all input files in based on user input.
allSources->set_encoding(invoc.getFortranOpts().encoding);
if (!setUpTargetMachine())
return false;
// Create the semantics context
semaContext = invoc.getSemanticsCtx(*allCookedSources, getTargetMachine());
// Set options controlling lowering to FIR.
invoc.setLoweringOptions();
// Run the frontend action `act` for every input file.
for (const FrontendInputFile &fif : getFrontendOpts().inputs) {
if (act.beginSourceFile(*this, fif)) {
if (llvm::Error err = act.execute()) {
consumeError(std::move(err));
}
act.endSourceFile();
}
}
return !getDiagnostics().getClient()->getNumErrors();
}
void CompilerInstance::createDiagnostics(clang::DiagnosticConsumer *client,
bool shouldOwnClient) {
diagnostics =
createDiagnostics(&getDiagnosticOpts(), client, shouldOwnClient);
}
clang::IntrusiveRefCntPtr<clang::DiagnosticsEngine>
CompilerInstance::createDiagnostics(clang::DiagnosticOptions *opts,
clang::DiagnosticConsumer *client,
bool shouldOwnClient) {
clang::IntrusiveRefCntPtr<clang::DiagnosticIDs> diagID(
new clang::DiagnosticIDs());
clang::IntrusiveRefCntPtr<clang::DiagnosticsEngine> diags(
new clang::DiagnosticsEngine(diagID, opts));
// Create the diagnostic client for reporting errors or for
// implementing -verify.
if (client) {
diags->setClient(client, shouldOwnClient);
} else {
diags->setClient(new TextDiagnosticPrinter(llvm::errs(), opts));
}
return diags;
}
// Get feature string which represents combined explicit target features
// for AMD GPU and the target features specified by the user
static std::string
getExplicitAndImplicitAMDGPUTargetFeatures(clang::DiagnosticsEngine &diags,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
// Get the set of implicit target features
llvm::AMDGPU::fillAMDGPUFeatureMap(cpu, triple, implicitFeaturesMap);
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
std::string userKeyString = userFeature.substr(1);
implicitFeaturesMap[userKeyString] = (userFeature[0] == '+');
}
if (!llvm::AMDGPU::insertWaveSizeFeature(cpu, triple, implicitFeaturesMap,
errorMsg)) {
unsigned diagID = diags.getCustomDiagID(clang::DiagnosticsEngine::Error,
"Unsupported feature ID: %0");
diags.Report(diagID) << errorMsg.data();
return std::string();
}
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
// Get feature string which represents combined explicit target features
// for NVPTX and the target features specified by the user/
// TODO: Have a more robust target conf like `clang/lib/Basic/Targets/NVPTX.cpp`
static std::string
getExplicitAndImplicitNVPTXTargetFeatures(clang::DiagnosticsEngine &diags,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
bool ptxVer = false;
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
llvm::StringRef userKeyString(llvm::StringRef(userFeature).drop_front(1));
implicitFeaturesMap[userKeyString.str()] = (userFeature[0] == '+');
// Check if the user provided a PTX version
if (userKeyString.starts_with("ptx"))
ptxVer = true;
}
// Set the default PTX version to `ptx61` if none was provided.
// TODO: set the default PTX version based on the chip.
if (!ptxVer)
implicitFeaturesMap["ptx61"] = true;
// Set the compute capability.
implicitFeaturesMap[cpu.str()] = true;
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
std::string CompilerInstance::getTargetFeatures() {
const TargetOptions &targetOpts = getInvocation().getTargetOpts();
const llvm::Triple triple(targetOpts.triple);
// Clang does not append all target features to the clang -cc1 invocation.
// Some target features are parsed implicitly by clang::TargetInfo child
// class. Clang::TargetInfo classes are the basic clang classes and
// they cannot be reused by Flang.
// That's why we need to extract implicit target features and add
// them to the target features specified by the user
if (triple.isAMDGPU()) {
return getExplicitAndImplicitAMDGPUTargetFeatures(getDiagnostics(),
targetOpts, triple);
} else if (triple.isNVPTX()) {
return getExplicitAndImplicitNVPTXTargetFeatures(getDiagnostics(),
targetOpts, triple);
}
return llvm::join(targetOpts.featuresAsWritten.begin(),
targetOpts.featuresAsWritten.end(), ",");
}
bool CompilerInstance::setUpTargetMachine() {
const TargetOptions &targetOpts = getInvocation().getTargetOpts();
const std::string &theTriple = targetOpts.triple;
// Create `Target`
std::string error;
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(theTriple, error);
if (!theTarget) {
getDiagnostics().Report(clang::diag::err_fe_unable_to_create_target)
<< error;
return false;
}
// Create `TargetMachine`
const auto &CGOpts = getInvocation().getCodeGenOpts();
std::optional<llvm::CodeGenOptLevel> OptLevelOrNone =
llvm::CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
llvm::CodeGenOptLevel OptLevel = *OptLevelOrNone;
std::string featuresStr = getTargetFeatures();
targetMachine.reset(theTarget->createTargetMachine(
theTriple, /*CPU=*/targetOpts.cpu,
/*Features=*/featuresStr, llvm::TargetOptions(),
/*Reloc::Model=*/CGOpts.getRelocationModel(),
/*CodeModel::Model=*/std::nullopt, OptLevel));
assert(targetMachine && "Failed to create TargetMachine");
return true;
}