| //===-- lib/Evaluate/fold-real.cpp ----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "fold-implementation.h" |
| #include "fold-reduction.h" |
| |
| namespace Fortran::evaluate { |
| |
| template <int KIND> |
| Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction( |
| FoldingContext &context, |
| FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) { |
| using T = Type<TypeCategory::Real, KIND>; |
| using ComplexT = Type<TypeCategory::Complex, KIND>; |
| ActualArguments &args{funcRef.arguments()}; |
| auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; |
| CHECK(intrinsic); |
| std::string name{intrinsic->name}; |
| if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" || |
| (name == "atan" && args.size() == 1) || name == "atanh" || |
| name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" || |
| name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" || |
| name == "erfc" || name == "erfc_scaled" || name == "exp" || |
| name == "gamma" || name == "log" || name == "log10" || |
| name == "log_gamma" || name == "sin" || name == "sinh" || name == "tan" || |
| name == "tanh") { |
| CHECK(args.size() == 1); |
| if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) { |
| return FoldElementalIntrinsic<T, T>( |
| context, std::move(funcRef), *callable); |
| } else { |
| context.messages().Say( |
| "%s(real(kind=%d)) cannot be folded on host"_en_US, name, KIND); |
| } |
| } else if (name == "amax0" || name == "amin0" || name == "amin1" || |
| name == "amax1" || name == "dmin1" || name == "dmax1") { |
| return RewriteSpecificMINorMAX(context, std::move(funcRef)); |
| } else if (name == "atan" || name == "atan2" || name == "mod") { |
| std::string localName{name == "atan" ? "atan2" : name}; |
| CHECK(args.size() == 2); |
| if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) { |
| return FoldElementalIntrinsic<T, T, T>( |
| context, std::move(funcRef), *callable); |
| } else { |
| context.messages().Say( |
| "%s(real(kind=%d), real(kind%d)) cannot be folded on host"_en_US, |
| name, KIND, KIND); |
| } |
| } else if (name == "bessel_jn" || name == "bessel_yn") { |
| if (args.size() == 2) { // elemental |
| // runtime functions use int arg |
| using Int4 = Type<TypeCategory::Integer, 4>; |
| if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) { |
| return FoldElementalIntrinsic<T, Int4, T>( |
| context, std::move(funcRef), *callable); |
| } else { |
| context.messages().Say( |
| "%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_en_US, |
| name, KIND); |
| } |
| } |
| } else if (name == "abs") { |
| // Argument can be complex or real |
| if (auto *x{UnwrapExpr<Expr<SomeReal>>(args[0])}) { |
| return FoldElementalIntrinsic<T, T>( |
| context, std::move(funcRef), &Scalar<T>::ABS); |
| } else if (auto *z{UnwrapExpr<Expr<SomeComplex>>(args[0])}) { |
| return FoldElementalIntrinsic<T, ComplexT>(context, std::move(funcRef), |
| ScalarFunc<T, ComplexT>([](const Scalar<ComplexT> &z) -> Scalar<T> { |
| return z.ABS().value; |
| })); |
| } else { |
| common::die(" unexpected argument type inside abs"); |
| } |
| } else if (name == "aimag") { |
| return FoldElementalIntrinsic<T, ComplexT>( |
| context, std::move(funcRef), &Scalar<ComplexT>::AIMAG); |
| } else if (name == "aint" || name == "anint") { |
| // ANINT rounds ties away from zero, not to even |
| common::RoundingMode mode{name == "aint" |
| ? common::RoundingMode::ToZero |
| : common::RoundingMode::TiesAwayFromZero}; |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>([&name, &context, mode]( |
| const Scalar<T> &x) -> Scalar<T> { |
| ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)}; |
| if (y.flags.test(RealFlag::Overflow)) { |
| context.messages().Say("%s intrinsic folding overflow"_en_US, name); |
| } |
| return y.value; |
| })); |
| } else if (name == "dprod") { |
| if (auto scalars{GetScalarConstantArguments<T, T>(context, args)}) { |
| return Fold(context, |
| Expr<T>{Multiply<T>{ |
| Expr<T>{std::get<0>(*scalars)}, Expr<T>{std::get<1>(*scalars)}}}); |
| } |
| } else if (name == "epsilon") { |
| return Expr<T>{Scalar<T>::EPSILON()}; |
| } else if (name == "huge") { |
| return Expr<T>{Scalar<T>::HUGE()}; |
| } else if (name == "hypot") { |
| CHECK(args.size() == 2); |
| return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T, T>( |
| [](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> { |
| return x.HYPOT(y).value; |
| })); |
| } else if (name == "max") { |
| return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater); |
| } else if (name == "maxval") { |
| return FoldMaxvalMinval<T>(context, std::move(funcRef), |
| RelationalOperator::GT, T::Scalar::HUGE().Negate()); |
| } else if (name == "merge") { |
| return FoldMerge<T>(context, std::move(funcRef)); |
| } else if (name == "min") { |
| return FoldMINorMAX(context, std::move(funcRef), Ordering::Less); |
| } else if (name == "minval") { |
| return FoldMaxvalMinval<T>( |
| context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE()); |
| } else if (name == "product") { |
| auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value}; |
| return FoldProduct<T>(context, std::move(funcRef), one); |
| } else if (name == "real") { |
| if (auto *expr{args[0].value().UnwrapExpr()}) { |
| return ToReal<KIND>(context, std::move(*expr)); |
| } |
| } else if (name == "sign") { |
| return FoldElementalIntrinsic<T, T, T>( |
| context, std::move(funcRef), &Scalar<T>::SIGN); |
| } else if (name == "sqrt") { |
| return FoldElementalIntrinsic<T, T>(context, std::move(funcRef), |
| ScalarFunc<T, T>( |
| [](const Scalar<T> &x) -> Scalar<T> { return x.SQRT().value; })); |
| } else if (name == "sum") { |
| return FoldSum<T>(context, std::move(funcRef)); |
| } else if (name == "tiny") { |
| return Expr<T>{Scalar<T>::TINY()}; |
| } |
| // TODO: dim, dot_product, fraction, matmul, |
| // maxloc, minloc, modulo, nearest, norm2, rrspacing, scale, |
| // set_exponent, spacing, transfer, |
| // bessel_jn (transformational) and bessel_yn (transformational) |
| return Expr<T>{std::move(funcRef)}; |
| } |
| |
| template <int KIND> |
| Expr<Type<TypeCategory::Real, KIND>> FoldOperation( |
| FoldingContext &context, ComplexComponent<KIND> &&x) { |
| using Operand = Type<TypeCategory::Complex, KIND>; |
| using Result = Type<TypeCategory::Real, KIND>; |
| if (auto array{ApplyElementwise(context, x, |
| std::function<Expr<Result>(Expr<Operand> &&)>{ |
| [=](Expr<Operand> &&operand) { |
| return Expr<Result>{ComplexComponent<KIND>{ |
| x.isImaginaryPart, std::move(operand)}}; |
| }})}) { |
| return *array; |
| } |
| using Part = Type<TypeCategory::Real, KIND>; |
| auto &operand{x.left()}; |
| if (auto value{GetScalarConstantValue<Operand>(operand)}) { |
| if (x.isImaginaryPart) { |
| return Expr<Part>{Constant<Part>{value->AIMAG()}}; |
| } else { |
| return Expr<Part>{Constant<Part>{value->REAL()}}; |
| } |
| } |
| return Expr<Part>{std::move(x)}; |
| } |
| |
| FOR_EACH_REAL_KIND(template class ExpressionBase, ) |
| template class ExpressionBase<SomeReal>; |
| } // namespace Fortran::evaluate |