blob: bffd8ea757555c7cc6b90c4263dd037318d42509 [file] [log] [blame]
//===-- lib/Evaluate/fold-real.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fold-implementation.h"
#include "fold-reduction.h"
namespace Fortran::evaluate {
template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldIntrinsicFunction(
FoldingContext &context,
FunctionRef<Type<TypeCategory::Real, KIND>> &&funcRef) {
using T = Type<TypeCategory::Real, KIND>;
using ComplexT = Type<TypeCategory::Complex, KIND>;
ActualArguments &args{funcRef.arguments()};
auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)};
CHECK(intrinsic);
std::string name{intrinsic->name};
if (name == "acos" || name == "acosh" || name == "asin" || name == "asinh" ||
(name == "atan" && args.size() == 1) || name == "atanh" ||
name == "bessel_j0" || name == "bessel_j1" || name == "bessel_y0" ||
name == "bessel_y1" || name == "cos" || name == "cosh" || name == "erf" ||
name == "erfc" || name == "erfc_scaled" || name == "exp" ||
name == "gamma" || name == "log" || name == "log10" ||
name == "log_gamma" || name == "sin" || name == "sinh" || name == "tan" ||
name == "tanh") {
CHECK(args.size() == 1);
if (auto callable{GetHostRuntimeWrapper<T, T>(name)}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d)) cannot be folded on host"_en_US, name, KIND);
}
} else if (name == "amax0" || name == "amin0" || name == "amin1" ||
name == "amax1" || name == "dmin1" || name == "dmax1") {
return RewriteSpecificMINorMAX(context, std::move(funcRef));
} else if (name == "atan" || name == "atan2" || name == "mod") {
std::string localName{name == "atan" ? "atan2" : name};
CHECK(args.size() == 2);
if (auto callable{GetHostRuntimeWrapper<T, T, T>(localName)}) {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(real(kind=%d), real(kind%d)) cannot be folded on host"_en_US,
name, KIND, KIND);
}
} else if (name == "bessel_jn" || name == "bessel_yn") {
if (args.size() == 2) { // elemental
// runtime functions use int arg
using Int4 = Type<TypeCategory::Integer, 4>;
if (auto callable{GetHostRuntimeWrapper<T, Int4, T>(name)}) {
return FoldElementalIntrinsic<T, Int4, T>(
context, std::move(funcRef), *callable);
} else {
context.messages().Say(
"%s(integer(kind=4), real(kind=%d)) cannot be folded on host"_en_US,
name, KIND);
}
}
} else if (name == "abs") {
// Argument can be complex or real
if (auto *x{UnwrapExpr<Expr<SomeReal>>(args[0])}) {
return FoldElementalIntrinsic<T, T>(
context, std::move(funcRef), &Scalar<T>::ABS);
} else if (auto *z{UnwrapExpr<Expr<SomeComplex>>(args[0])}) {
return FoldElementalIntrinsic<T, ComplexT>(context, std::move(funcRef),
ScalarFunc<T, ComplexT>([](const Scalar<ComplexT> &z) -> Scalar<T> {
return z.ABS().value;
}));
} else {
common::die(" unexpected argument type inside abs");
}
} else if (name == "aimag") {
return FoldElementalIntrinsic<T, ComplexT>(
context, std::move(funcRef), &Scalar<ComplexT>::AIMAG);
} else if (name == "aint" || name == "anint") {
// ANINT rounds ties away from zero, not to even
common::RoundingMode mode{name == "aint"
? common::RoundingMode::ToZero
: common::RoundingMode::TiesAwayFromZero};
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>([&name, &context, mode](
const Scalar<T> &x) -> Scalar<T> {
ValueWithRealFlags<Scalar<T>> y{x.ToWholeNumber(mode)};
if (y.flags.test(RealFlag::Overflow)) {
context.messages().Say("%s intrinsic folding overflow"_en_US, name);
}
return y.value;
}));
} else if (name == "dprod") {
if (auto scalars{GetScalarConstantArguments<T, T>(context, args)}) {
return Fold(context,
Expr<T>{Multiply<T>{
Expr<T>{std::get<0>(*scalars)}, Expr<T>{std::get<1>(*scalars)}}});
}
} else if (name == "epsilon") {
return Expr<T>{Scalar<T>::EPSILON()};
} else if (name == "huge") {
return Expr<T>{Scalar<T>::HUGE()};
} else if (name == "hypot") {
CHECK(args.size() == 2);
return FoldElementalIntrinsic<T, T, T>(context, std::move(funcRef),
ScalarFunc<T, T, T>(
[](const Scalar<T> &x, const Scalar<T> &y) -> Scalar<T> {
return x.HYPOT(y).value;
}));
} else if (name == "max") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Greater);
} else if (name == "maxval") {
return FoldMaxvalMinval<T>(context, std::move(funcRef),
RelationalOperator::GT, T::Scalar::HUGE().Negate());
} else if (name == "merge") {
return FoldMerge<T>(context, std::move(funcRef));
} else if (name == "min") {
return FoldMINorMAX(context, std::move(funcRef), Ordering::Less);
} else if (name == "minval") {
return FoldMaxvalMinval<T>(
context, std::move(funcRef), RelationalOperator::LT, T::Scalar::HUGE());
} else if (name == "product") {
auto one{Scalar<T>::FromInteger(value::Integer<8>{1}).value};
return FoldProduct<T>(context, std::move(funcRef), one);
} else if (name == "real") {
if (auto *expr{args[0].value().UnwrapExpr()}) {
return ToReal<KIND>(context, std::move(*expr));
}
} else if (name == "sign") {
return FoldElementalIntrinsic<T, T, T>(
context, std::move(funcRef), &Scalar<T>::SIGN);
} else if (name == "sqrt") {
return FoldElementalIntrinsic<T, T>(context, std::move(funcRef),
ScalarFunc<T, T>(
[](const Scalar<T> &x) -> Scalar<T> { return x.SQRT().value; }));
} else if (name == "sum") {
return FoldSum<T>(context, std::move(funcRef));
} else if (name == "tiny") {
return Expr<T>{Scalar<T>::TINY()};
}
// TODO: dim, dot_product, fraction, matmul,
// maxloc, minloc, modulo, nearest, norm2, rrspacing, scale,
// set_exponent, spacing, transfer,
// bessel_jn (transformational) and bessel_yn (transformational)
return Expr<T>{std::move(funcRef)};
}
template <int KIND>
Expr<Type<TypeCategory::Real, KIND>> FoldOperation(
FoldingContext &context, ComplexComponent<KIND> &&x) {
using Operand = Type<TypeCategory::Complex, KIND>;
using Result = Type<TypeCategory::Real, KIND>;
if (auto array{ApplyElementwise(context, x,
std::function<Expr<Result>(Expr<Operand> &&)>{
[=](Expr<Operand> &&operand) {
return Expr<Result>{ComplexComponent<KIND>{
x.isImaginaryPart, std::move(operand)}};
}})}) {
return *array;
}
using Part = Type<TypeCategory::Real, KIND>;
auto &operand{x.left()};
if (auto value{GetScalarConstantValue<Operand>(operand)}) {
if (x.isImaginaryPart) {
return Expr<Part>{Constant<Part>{value->AIMAG()}};
} else {
return Expr<Part>{Constant<Part>{value->REAL()}};
}
}
return Expr<Part>{std::move(x)};
}
FOR_EACH_REAL_KIND(template class ExpressionBase, )
template class ExpressionBase<SomeReal>;
} // namespace Fortran::evaluate