blob: 2f09de6b6a8664e9233a928827f49b6242e8097f [file] [log] [blame]
//===-- FIROps.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace fir;
/// Return true if a sequence type is of some incomplete size or a record type
/// is malformed or contains an incomplete sequence type. An incomplete sequence
/// type is one with more unknown extents in the type than have been provided
/// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
/// definition.
static bool verifyInType(mlir::Type inType,
llvm::SmallVectorImpl<llvm::StringRef> &visited,
unsigned dynamicExtents = 0) {
if (auto st = inType.dyn_cast<fir::SequenceType>()) {
auto shape = st.getShape();
if (shape.size() == 0)
return true;
for (std::size_t i = 0, end{shape.size()}; i < end; ++i) {
if (shape[i] != fir::SequenceType::getUnknownExtent())
continue;
if (dynamicExtents-- == 0)
return true;
}
} else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
// don't recurse if we're already visiting this one
if (llvm::is_contained(visited, rt.getName()))
return false;
// keep track of record types currently being visited
visited.push_back(rt.getName());
for (auto &field : rt.getTypeList())
if (verifyInType(field.second, visited))
return true;
visited.pop_back();
} else if (auto rt = inType.dyn_cast<fir::PointerType>()) {
return verifyInType(rt.getEleTy(), visited);
}
return false;
}
static bool verifyRecordLenParams(mlir::Type inType, unsigned numLenParams) {
if (numLenParams > 0) {
if (auto rt = inType.dyn_cast<fir::RecordType>())
return numLenParams != rt.getNumLenParams();
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// AddfOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult fir::AddfOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
return mlir::constFoldBinaryOp<FloatAttr>(
opnds, [](APFloat a, APFloat b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AllocaOp
//===----------------------------------------------------------------------===//
mlir::Type fir::AllocaOp::getAllocatedType() {
return getType().cast<ReferenceType>().getEleTy();
}
/// Create a legal memory reference as return type
mlir::Type fir::AllocaOp::wrapResultType(mlir::Type intype) {
// FIR semantics: memory references to memory references are disallowed
if (intype.isa<ReferenceType>())
return {};
return ReferenceType::get(intype);
}
mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
return ReferenceType::get(ty);
}
//===----------------------------------------------------------------------===//
// AllocMemOp
//===----------------------------------------------------------------------===//
mlir::Type fir::AllocMemOp::getAllocatedType() {
return getType().cast<HeapType>().getEleTy();
}
mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
return HeapType::get(ty);
}
/// Create a legal heap reference as return type
mlir::Type fir::AllocMemOp::wrapResultType(mlir::Type intype) {
// Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
// 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
// FIR semantics: one may not allocate a memory reference value
if (intype.isa<ReferenceType>() || intype.isa<HeapType>() ||
intype.isa<PointerType>() || intype.isa<FunctionType>())
return {};
return HeapType::get(intype);
}
//===----------------------------------------------------------------------===//
// ArrayCoorOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ArrayCoorOp op) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
if (!arrTy)
return op.emitOpError("must be a reference to an array");
auto arrDim = arrTy.getDimension();
if (auto shapeOp = op.shape()) {
auto shapeTy = shapeOp.getType();
unsigned shapeTyRank = 0;
if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
shapeTyRank = s.getRank();
} else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
shapeTyRank = ss.getRank();
} else {
auto s = shapeTy.cast<fir::ShiftType>();
shapeTyRank = s.getRank();
if (!op.memref().getType().isa<fir::BoxType>())
return op.emitOpError("shift can only be provided with fir.box memref");
}
if (arrDim && arrDim != shapeTyRank)
return op.emitOpError("rank of dimension mismatched");
if (shapeTyRank != op.indices().size())
return op.emitOpError("number of indices do not match dim rank");
}
if (auto sliceOp = op.slice())
if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
if (sliceTy.getRank() != arrDim)
return op.emitOpError("rank of dimension in slice mismatched");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayLoadOp
//===----------------------------------------------------------------------===//
std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
if (auto sh = shape())
if (auto *op = sh.getDefiningOp()) {
if (auto shOp = dyn_cast<fir::ShapeOp>(op))
return shOp.getExtents();
return cast<fir::ShapeShiftOp>(op).getExtents();
}
return {};
}
static mlir::LogicalResult verify(fir::ArrayLoadOp op) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
if (!arrTy)
return op.emitOpError("must be a reference to an array");
auto arrDim = arrTy.getDimension();
if (auto shapeOp = op.shape()) {
auto shapeTy = shapeOp.getType();
unsigned shapeTyRank = 0;
if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
shapeTyRank = s.getRank();
} else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
shapeTyRank = ss.getRank();
} else {
auto s = shapeTy.cast<fir::ShiftType>();
shapeTyRank = s.getRank();
if (!op.memref().getType().isa<fir::BoxType>())
return op.emitOpError("shift can only be provided with fir.box memref");
}
if (arrDim && arrDim != shapeTyRank)
return op.emitOpError("rank of dimension mismatched");
}
if (auto sliceOp = op.slice())
if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
if (sliceTy.getRank() != arrDim)
return op.emitOpError("rank of dimension in slice mismatched");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// BoxAddrOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (auto v = val().getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxOp>(v))
return box.memref();
if (auto box = dyn_cast<fir::EmboxCharOp>(v))
return box.memref();
}
return {};
}
//===----------------------------------------------------------------------===//
// BoxCharLenOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult
fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (auto v = val().getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxCharOp>(v))
return box.len();
}
return {};
}
//===----------------------------------------------------------------------===//
// BoxDimsOp
//===----------------------------------------------------------------------===//
/// Get the result types packed in a tuple tuple
mlir::Type fir::BoxDimsOp::getTupleType() {
// note: triple, but 4 is nearest power of 2
llvm::SmallVector<mlir::Type, 4> triple{
getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
return mlir::TupleType::get(getContext(), triple);
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
mlir::FunctionType fir::CallOp::getFunctionType() {
return mlir::FunctionType::get(getContext(), getOperandTypes(),
getResultTypes());
}
static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) {
auto callee = op.callee();
bool isDirect = callee.hasValue();
p << op.getOperationName() << ' ';
if (isDirect)
p << callee.getValue();
else
p << op.getOperand(0);
p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')';
p.printOptionalAttrDict(op->getAttrs(), {fir::CallOp::calleeAttrName()});
auto resultTypes{op.getResultTypes()};
llvm::SmallVector<Type, 8> argTypes(
llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1));
p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes);
}
static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> operands;
if (parser.parseOperandList(operands))
return mlir::failure();
mlir::NamedAttrList attrs;
mlir::SymbolRefAttr funcAttr;
bool isDirect = operands.empty();
if (isDirect)
if (parser.parseAttribute(funcAttr, fir::CallOp::calleeAttrName(), attrs))
return mlir::failure();
Type type;
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
parser.parseType(type))
return mlir::failure();
auto funcType = type.dyn_cast<mlir::FunctionType>();
if (!funcType)
return parser.emitError(parser.getNameLoc(), "expected function type");
if (isDirect) {
if (parser.resolveOperands(operands, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return mlir::failure();
} else {
auto funcArgs =
llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front();
if (parser.resolveOperand(operands[0], funcType, result.operands) ||
parser.resolveOperands(funcArgs, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return mlir::failure();
}
result.addTypes(funcType.getResults());
result.attributes = attrs;
return mlir::success();
}
//===----------------------------------------------------------------------===//
// CmpfOp
//===----------------------------------------------------------------------===//
// Note: getCmpFPredicateNames() is inline static in StandardOps/IR/Ops.cpp
mlir::CmpFPredicate fir::CmpfOp::getPredicateByName(llvm::StringRef name) {
auto pred = mlir::symbolizeCmpFPredicate(name);
assert(pred.hasValue() && "invalid predicate name");
return pred.getValue();
}
void fir::buildCmpFOp(OpBuilder &builder, OperationState &result,
CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(builder.getI1Type());
result.addAttribute(
CmpfOp::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
template <typename OPTY>
static void printCmpOp(OpAsmPrinter &p, OPTY op) {
p << op.getOperationName() << ' ';
auto predSym = mlir::symbolizeCmpFPredicate(
op->template getAttrOfType<mlir::IntegerAttr>(
OPTY::getPredicateAttrName())
.getInt());
assert(predSym.hasValue() && "invalid symbol value for predicate");
p << '"' << mlir::stringifyCmpFPredicate(predSym.getValue()) << '"' << ", ";
p.printOperand(op.lhs());
p << ", ";
p.printOperand(op.rhs());
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{OPTY::getPredicateAttrName()});
p << " : " << op.lhs().getType();
}
static void printCmpfOp(OpAsmPrinter &p, CmpfOp op) { printCmpOp(p, op); }
template <typename OPTY>
static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::SmallVector<mlir::OpAsmParser::OperandType, 2> ops;
mlir::NamedAttrList attrs;
mlir::Attribute predicateNameAttr;
mlir::Type type;
if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
attrs) ||
parser.parseComma() || parser.parseOperandList(ops, 2) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands))
return failure();
if (!predicateNameAttr.isa<mlir::StringAttr>())
return parser.emitError(parser.getNameLoc(),
"expected string comparison predicate attribute");
// Rewrite string attribute to an enum value.
llvm::StringRef predicateName =
predicateNameAttr.cast<mlir::StringAttr>().getValue();
auto predicate = fir::CmpfOp::getPredicateByName(predicateName);
auto builder = parser.getBuilder();
mlir::Type i1Type = builder.getI1Type();
attrs.set(OPTY::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
result.attributes = attrs;
result.addTypes({i1Type});
return success();
}
mlir::ParseResult fir::parseCmpfOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
return parseCmpOp<fir::CmpfOp>(parser, result);
}
//===----------------------------------------------------------------------===//
// CmpcOp
//===----------------------------------------------------------------------===//
void fir::buildCmpCOp(OpBuilder &builder, OperationState &result,
CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(builder.getI1Type());
result.addAttribute(
fir::CmpcOp::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); }
mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
return parseCmpOp<fir::CmpcOp>(parser, result);
}
//===----------------------------------------------------------------------===//
// ConvertOp
//===----------------------------------------------------------------------===//
void fir::ConvertOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
}
mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (value().getType() == getType())
return value();
if (matchPattern(value(), m_Op<fir::ConvertOp>())) {
auto inner = cast<fir::ConvertOp>(value().getDefiningOp());
// (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
if (auto toTy = getType().dyn_cast<fir::LogicalType>())
if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>())
if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
return inner.value();
// (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>())
if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
(fromTy.getWidth() == 1))
return inner.value();
}
return {};
}
bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() ||
ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>();
}
bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>();
}
bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() ||
ty.isa<fir::HeapType>() || ty.isa<mlir::MemRefType>() ||
ty.isa<mlir::FunctionType>() || ty.isa<fir::TypeDescType>();
}
//===----------------------------------------------------------------------===//
// CoordinateOp
//===----------------------------------------------------------------------===//
static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) {
p << op.getOperationName() << ' ' << op.ref() << ", " << op.coor();
p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"});
p << " : ";
p.printFunctionalType(op.getOperandTypes(), op->getResultTypes());
}
static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::OpAsmParser::OperandType memref;
if (parser.parseOperand(memref) || parser.parseComma())
return mlir::failure();
llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> coorOperands;
if (parser.parseOperandList(coorOperands))
return mlir::failure();
llvm::SmallVector<mlir::OpAsmParser::OperandType, 16> allOperands;
allOperands.push_back(memref);
allOperands.append(coorOperands.begin(), coorOperands.end());
mlir::FunctionType funcTy;
auto loc = parser.getCurrentLocation();
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(funcTy) ||
parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
result.operands))
return failure();
parser.addTypesToList(funcTy.getResults(), result.types);
result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
return mlir::success();
}
static mlir::LogicalResult verify(fir::CoordinateOp op) {
auto refTy = op.ref().getType();
if (fir::isa_ref_type(refTy)) {
auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
if (arrTy.hasUnknownShape())
return op.emitOpError("cannot find coordinate in unknown shape");
if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
return op.emitOpError("cannot find coordinate with unknown extents");
}
if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
fir::isa_char_string(eleTy)))
return op.emitOpError("cannot apply coordinate_of to this type");
}
// Recovering a LEN type parameter only makes sense from a boxed value. For a
// bare reference, the LEN type parameters must be passed as additional
// arguments to `op`.
for (auto co : op.coor())
if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) {
if (op.getNumOperands() != 2)
return op.emitOpError("len_param_index must be last argument");
if (!op.ref().getType().isa<BoxType>())
return op.emitOpError("len_param_index must be used on box type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// DispatchOp
//===----------------------------------------------------------------------===//
mlir::FunctionType fir::DispatchOp::getFunctionType() {
return mlir::FunctionType::get(getContext(), getOperandTypes(),
getResultTypes());
}
//===----------------------------------------------------------------------===//
// DispatchTableOp
//===----------------------------------------------------------------------===//
void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
auto &block = getBlock();
block.getOperations().insert(block.end(), op);
}
//===----------------------------------------------------------------------===//
// EmboxOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::EmboxOp op) {
auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType());
if (!eleTy)
return op.emitOpError("must embox a memory reference type");
bool isArray = false;
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
eleTy = seqTy.getEleTy();
isArray = true;
}
if (op.hasLenParams()) {
auto lenPs = op.numLenParams();
if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
if (lenPs != rt.getNumLenParams())
return op.emitOpError("number of LEN params does not correspond"
" to the !fir.type type");
} else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
if (strTy.getLen() != fir::CharacterType::unknownLen())
return op.emitOpError("CHARACTER already has static LEN");
} else {
return op.emitOpError("LEN parameters require CHARACTER or derived type");
}
for (auto lp : op.lenParams())
if (!fir::isa_integer(lp.getType()))
return op.emitOpError("LEN parameters must be integral type");
}
if (op.getShape()) {
auto shapeTy = op.getShape().getType();
if (!(shapeTy.isa<fir::ShapeType>() || shapeTy.isa<ShapeShiftType>()))
return op.emitOpError("must be shape or shapeshift type");
if (!isArray)
return op.emitOpError("shape must not be provided for a scalar");
}
if (op.getSlice()) {
auto sliceTy = op.getSlice().getType();
if (!sliceTy.isa<fir::SliceType>())
return op.emitOpError("must be a slice type");
if (!isArray)
return op.emitOpError("slice must not be provided for a scalar");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// GenTypeDescOp
//===----------------------------------------------------------------------===//
void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result,
mlir::TypeAttr inty) {
result.addAttribute("in_type", inty);
result.addTypes(TypeDescType::get(inty.getValue()));
}
//===----------------------------------------------------------------------===//
// GlobalOp
//===----------------------------------------------------------------------===//
static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) {
// Parse the optional linkage
llvm::StringRef linkage;
auto &builder = parser.getBuilder();
if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
if (fir::GlobalOp::verifyValidLinkage(linkage))
return mlir::failure();
mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr);
}
// Parse the name as a symbol reference attribute.
mlir::SymbolRefAttr nameAttr;
if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(),
result.attributes))
return mlir::failure();
result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
builder.getStringAttr(nameAttr.getRootReference()));
bool simpleInitializer = false;
if (mlir::succeeded(parser.parseOptionalLParen())) {
Attribute attr;
if (parser.parseAttribute(attr, fir::GlobalOp::initValAttrName(),
result.attributes) ||
parser.parseRParen())
return mlir::failure();
simpleInitializer = true;
}
if (succeeded(parser.parseOptionalKeyword("constant"))) {
// if "constant" keyword then mark this as a constant, not a variable
result.addAttribute(fir::GlobalOp::constantAttrName(),
builder.getUnitAttr());
}
mlir::Type globalType;
if (parser.parseColonType(globalType))
return mlir::failure();
result.addAttribute(fir::GlobalOp::typeAttrName(),
mlir::TypeAttr::get(globalType));
if (simpleInitializer) {
result.addRegion();
} else {
// Parse the optional initializer body.
auto parseResult = parser.parseOptionalRegion(
*result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None);
if (parseResult.hasValue() && mlir::failed(*parseResult))
return mlir::failure();
}
return mlir::success();
}
void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
getBlock().getOperations().push_back(op);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
Attribute initialVal, StringAttr linkage,
ArrayRef<NamedAttribute> attrs) {
result.addRegion();
result.addAttribute(typeAttrName(), mlir::TypeAttr::get(type));
result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(symbolAttrName(), builder.getSymbolRefAttr(name));
if (isConstant)
result.addAttribute(constantAttrName(), builder.getUnitAttr());
if (initialVal)
result.addAttribute(initValAttrName(), initialVal);
if (linkage)
result.addAttribute(linkageAttrName(), linkage);
result.attributes.append(attrs.begin(), attrs.end());
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type, Attribute initialVal,
StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, isConstant, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type, StringAttr linkage,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, isConstant, type, StringAttr{}, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, attrs);
}
mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) {
// Supporting only a subset of the LLVM linkage types for now
static const char *validNames[] = {"common", "internal", "linkonce", "weak"};
return mlir::success(llvm::is_contained(validNames, linkage));
}
//===----------------------------------------------------------------------===//
// InsertValueOp
//===----------------------------------------------------------------------===//
static bool checkIsIntegerConstant(mlir::Value v, int64_t conVal) {
if (auto c = dyn_cast_or_null<mlir::ConstantOp>(v.getDefiningOp())) {
auto attr = c.getValue();
if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
return iattr.getInt() == conVal;
}
return false;
}
static bool isZero(mlir::Value v) { return checkIsIntegerConstant(v, 0); }
static bool isOne(mlir::Value v) { return checkIsIntegerConstant(v, 1); }
// Undo some complex patterns created in the front-end and turn them back into
// complex ops.
template <typename FltOp, typename CpxOp>
struct UndoComplexPattern : public mlir::RewritePattern {
UndoComplexPattern(mlir::MLIRContext *ctx)
: mlir::RewritePattern("fir.insert_value", {}, 2, ctx) {}
mlir::LogicalResult
matchAndRewrite(mlir::Operation *op,
mlir::PatternRewriter &rewriter) const override {
auto insval = dyn_cast_or_null<fir::InsertValueOp>(op);
if (!insval || !insval.getType().isa<fir::ComplexType>())
return mlir::failure();
auto insval2 =
dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp());
if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp()))
return mlir::failure();
auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp());
auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp());
if (!binf || !binf2 || insval.coor().size() != 1 ||
!isOne(insval.coor()[0]) || insval2.coor().size() != 1 ||
!isZero(insval2.coor()[0]))
return mlir::failure();
auto eai =
dyn_cast_or_null<fir::ExtractValueOp>(binf.lhs().getDefiningOp());
auto ebi =
dyn_cast_or_null<fir::ExtractValueOp>(binf.rhs().getDefiningOp());
auto ear =
dyn_cast_or_null<fir::ExtractValueOp>(binf2.lhs().getDefiningOp());
auto ebr =
dyn_cast_or_null<fir::ExtractValueOp>(binf2.rhs().getDefiningOp());
if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() ||
ebr.adt() != ebi.adt() || eai.coor().size() != 1 ||
!isOne(eai.coor()[0]) || ebi.coor().size() != 1 ||
!isOne(ebi.coor()[0]) || ear.coor().size() != 1 ||
!isZero(ear.coor()[0]) || ebr.coor().size() != 1 ||
!isZero(ebr.coor()[0]))
return mlir::failure();
rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt());
return mlir::success();
}
};
void fir::InsertValueOp::getCanonicalizationPatterns(
mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
results.insert<UndoComplexPattern<fir::AddfOp, fir::AddcOp>,
UndoComplexPattern<fir::SubfOp, fir::SubcOp>>(context);
}
//===----------------------------------------------------------------------===//
// IterWhileOp
//===----------------------------------------------------------------------===//
void fir::IterWhileOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value lb,
mlir::Value ub, mlir::Value step,
mlir::Value iterate, bool finalCountValue,
mlir::ValueRange iterArgs,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands({lb, ub, step, iterate});
if (finalCountValue) {
result.addTypes(builder.getIndexType());
result.addAttribute(finalValueAttrName(), builder.getUnitAttr());
}
result.addTypes(iterate.getType());
result.addOperands(iterArgs);
for (auto v : iterArgs)
result.addTypes(v.getType());
mlir::Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block{});
bodyRegion->front().addArgument(builder.getIndexType());
bodyRegion->front().addArgument(iterate.getType());
bodyRegion->front().addArguments(iterArgs.getTypes());
result.addAttributes(attributes);
}
static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step;
if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) ||
parser.parseEqual())
return mlir::failure();
// Parse loop bounds.
auto indexType = builder.getIndexType();
auto i1Type = builder.getIntegerType(1);
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.parseRParen() ||
parser.resolveOperand(step, indexType, result.operands))
return mlir::failure();
mlir::OpAsmParser::OperandType iterateVar, iterateInput;
if (parser.parseKeyword("and") || parser.parseLParen() ||
parser.parseRegionArgument(iterateVar) || parser.parseEqual() ||
parser.parseOperand(iterateInput) || parser.parseRParen() ||
parser.resolveOperand(iterateInput, i1Type, result.operands))
return mlir::failure();
// Parse the initial iteration arguments.
llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> regionArgs;
auto prependCount = false;
// Induction variable.
regionArgs.push_back(inductionVariable);
regionArgs.push_back(iterateVar);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> operands;
llvm::SmallVector<mlir::Type, 4> regionTypes;
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(regionTypes))
return failure();
if (regionTypes.size() == operands.size() + 2)
prependCount = true;
llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
// Resolve input operands.
for (auto operand_type : llvm::zip(operands, resTypes))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
if (prependCount) {
// This is an assert here, because these types are verified.
assert(regionTypes[0].isa<mlir::IndexType>() &&
regionTypes[1].isSignlessInteger(1));
result.addTypes(regionTypes);
} else {
result.addTypes(i1Type);
result.addTypes(resTypes);
}
} else if (succeeded(parser.parseOptionalArrow())) {
llvm::SmallVector<mlir::Type, 4> typeList;
if (parser.parseLParen() || parser.parseTypeList(typeList) ||
parser.parseRParen())
return failure();
// Type list must be "(index, i1)".
if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
!typeList[1].isSignlessInteger(1))
return failure();
result.addTypes(typeList);
prependCount = true;
} else {
result.addTypes(i1Type);
}
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return mlir::failure();
llvm::SmallVector<mlir::Type, 4> argTypes;
// Induction variable (hidden)
if (prependCount)
result.addAttribute(IterWhileOp::finalValueAttrName(),
builder.getUnitAttr());
else
argTypes.push_back(indexType);
// Loop carried variables (including iterate)
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
auto *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
return mlir::success();
}
static mlir::LogicalResult verify(fir::IterWhileOp op) {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(1).getType().isInteger(1))
return op.emitOpError(
"expected body second argument to be an index argument for "
"the induction variable");
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (op.finalValue()) {
// Result type must be "(index, i1, ...)".
if (!op.getResult(0).getType().isa<mlir::IndexType>())
return op.emitOpError("result #0 expected to be index");
if (!op.getResult(1).getType().isSignlessInteger(1))
return op.emitOpError("result #1 expected to be i1");
opNumResults--;
} else {
// iterate_while always returns the early exit induction value.
// Result type must be "(i1, ...)"
if (!op.getResult(0).getType().isSignlessInteger(1))
return op.emitOpError("result #0 expected to be i1");
}
if (opNumResults == 0)
return mlir::failure();
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults =
op.finalValue() ? op.getResults().drop_front() : op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) {
p << fir::IterWhileOp::getOperationName() << " (" << op.getInductionVar()
<< " = " << op.lowerBound() << " to " << op.upperBound() << " step "
<< op.step() << ") and (";
assert(op.hasIterOperands());
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
p << regionArgs.front() << " = " << *operands.begin() << ")";
if (regionArgs.size() > 1) {
p << " iter_args(";
llvm::interleaveComma(
llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
[&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
auto resTypes = op.finalValue() ? op.getResultTypes()
: op.getResultTypes().drop_front();
p << ") -> (" << resTypes << ')';
} else if (op.finalValue()) {
p << " -> (" << op.getResultTypes() << ')';
}
p.printOptionalAttrDictWithKeyword(op->getAttrs(),
{IterWhileOp::finalValueAttrName()});
p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); }
bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) {
return !region().isAncestor(value.getParentRegion());
}
mlir::LogicalResult
fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
for (auto i : llvm::enumerate(initArgs()))
if (iterArg == i.value())
return region().front().getArgument(i.index() + 1);
return {};
}
void fir::IterWhileOp::resultToSourceOps(
llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
auto oper = finalValue() ? resultNum + 1 : resultNum;
auto *term = region().front().getTerminator();
if (oper < term->getNumOperands())
results.push_back(term->getOperand(oper));
}
mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
if (blockArgNum > 0 && blockArgNum <= initArgs().size())
return initArgs()[blockArgNum - 1];
return {};
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
/// Get the element type of a reference like type; otherwise null
static mlir::Type elementTypeOf(mlir::Type ref) {
return llvm::TypeSwitch<mlir::Type, mlir::Type>(ref)
.Case<ReferenceType, PointerType, HeapType>(
[](auto type) { return type.getEleTy(); })
.Default([](mlir::Type) { return mlir::Type{}; });
}
mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
if ((ele = elementTypeOf(ref)))
return mlir::success();
return mlir::failure();
}
//===----------------------------------------------------------------------===//
// DoLoopOp
//===----------------------------------------------------------------------===//
void fir::DoLoopOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value lb,
mlir::Value ub, mlir::Value step, bool unordered,
bool finalCountValue, mlir::ValueRange iterArgs,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
if (finalCountValue) {
result.addTypes(builder.getIndexType());
result.addAttribute(finalValueAttrName(), builder.getUnitAttr());
}
for (auto v : iterArgs)
result.addTypes(v.getType());
mlir::Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block{});
if (iterArgs.empty() && !finalCountValue)
DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
bodyRegion->front().addArgument(builder.getIndexType());
bodyRegion->front().addArguments(iterArgs.getTypes());
if (unordered)
result.addAttribute(unorderedAttrName(), builder.getUnitAttr());
result.addAttributes(attributes);
}
static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return mlir::failure();
// Parse loop bounds.
auto indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
result.addAttribute(fir::DoLoopOp::unorderedAttrName(),
builder.getUnitAttr());
// Parse the optional initial iteration arguments.
llvm::SmallVector<mlir::OpAsmParser::OperandType, 4> regionArgs, operands;
llvm::SmallVector<mlir::Type, 4> argTypes;
auto prependCount = false;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
if (result.types.size() == operands.size() + 1)
prependCount = true;
// Resolve input operands.
llvm::ArrayRef<mlir::Type> resTypes = result.types;
for (auto operand_type :
llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
} else if (succeeded(parser.parseOptionalArrow())) {
if (parser.parseKeyword("index"))
return failure();
result.types.push_back(indexType);
prependCount = true;
}
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return mlir::failure();
// Induction variable.
if (prependCount)
result.addAttribute(DoLoopOp::finalValueAttrName(), builder.getUnitAttr());
else
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
auto *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
DoLoopOp::ensureTerminator(*body, builder, result.location);
return mlir::success();
}
fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
auto ivArg = val.dyn_cast<mlir::BlockArgument>();
if (!ivArg)
return {};
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingInst = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<fir::DoLoopOp>(containingInst);
}
// Lifted from loop.loop
static mlir::LogicalResult verify(fir::DoLoopOp op) {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
if (op.finalValue()) {
if (op.unordered())
return op.emitOpError("unordered loop has no final value");
opNumResults--;
}
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults =
op.finalValue() ? op.getResults().drop_front() : op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return success();
}
static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) {
bool printBlockTerminators = false;
p << fir::DoLoopOp::getOperationName() << ' ' << op.getInductionVar() << " = "
<< op.lowerBound() << " to " << op.upperBound() << " step " << op.step();
if (op.unordered())
p << " unordered";
if (op.hasIterOperands()) {
p << " iter_args(";
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ") -> (" << op.getResultTypes() << ')';
printBlockTerminators = true;
} else if (op.finalValue()) {
p << " -> " << op.getResultTypes();
printBlockTerminators = true;
}
p.printOptionalAttrDictWithKeyword(op->getAttrs(),
{fir::DoLoopOp::unorderedAttrName(),
fir::DoLoopOp::finalValueAttrName()});
p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
printBlockTerminators);
}
mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); }
bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) {
return !region().isAncestor(value.getParentRegion());
}
mlir::LogicalResult
fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
/// Translate a value passed as an iter_arg to the corresponding block
/// argument in the body of the loop.
mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
for (auto i : llvm::enumerate(initArgs()))
if (iterArg == i.value())
return region().front().getArgument(i.index() + 1);
return {};
}
/// Translate the result vector (by index number) to the corresponding value
/// to the `fir.result` Op.
void fir::DoLoopOp::resultToSourceOps(
llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
auto oper = finalValue() ? resultNum + 1 : resultNum;
auto *term = region().front().getTerminator();
if (oper < term->getNumOperands())
results.push_back(term->getOperand(oper));
}
/// Translate the block argument (by index number) to the corresponding value
/// passed as an iter_arg to the parent DoLoopOp.
mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
if (blockArgNum > 0 && blockArgNum <= initArgs().size())
return initArgs()[blockArgNum - 1];
return {};
}
//===----------------------------------------------------------------------===//
// MulfOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult fir::MulfOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
return mlir::constFoldBinaryOp<FloatAttr>(
opnds, [](APFloat a, APFloat b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// ReboxOp
//===----------------------------------------------------------------------===//
/// Get the scalar type related to a fir.box type.
/// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
return seqTy.getEleTy();
return eleTy;
}
/// Get the rank from a !fir.box type
static unsigned getBoxRank(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
return seqTy.getDimension();
return 0;
}
static mlir::LogicalResult verify(fir::ReboxOp op) {
auto inputBoxTy = op.box().getType();
if (fir::isa_unknown_size_box(inputBoxTy))
return op.emitOpError("box operand must not have unknown rank or type");
auto outBoxTy = op.getType();
if (fir::isa_unknown_size_box(outBoxTy))
return op.emitOpError("result type must not have unknown rank or type");
auto inputRank = getBoxRank(inputBoxTy);
auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
auto outRank = getBoxRank(outBoxTy);
auto outEleTy = getBoxScalarEleTy(outBoxTy);
if (auto slice = op.slice()) {
// Slicing case
if (slice.getType().cast<fir::SliceType>().getRank() != inputRank)
return op.emitOpError("slice operand rank must match box operand rank");
if (auto shape = op.shape()) {
if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) {
if (shiftTy.getRank() != inputRank)
return op.emitOpError("shape operand and input box ranks must match "
"when there is a slice");
} else {
return op.emitOpError("shape operand must absent or be a fir.shift "
"when there is a slice");
}
}
if (auto sliceOp = slice.getDefiningOp()) {
auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
if (slicedRank != outRank)
return op.emitOpError("result type rank and rank after applying slice "
"operand must match");
}
} else {
// Reshaping case
unsigned shapeRank = inputRank;
if (auto shape = op.shape()) {
auto ty = shape.getType();
if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
shapeRank = shapeTy.getRank();
} else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
shapeRank = shapeShiftTy.getRank();
} else {
auto shiftTy = ty.cast<fir::ShiftType>();
shapeRank = shiftTy.getRank();
if (shapeRank != inputRank)
return op.emitOpError("shape operand and input box ranks must match "
"when the shape is a fir.shift");
}
}
if (shapeRank != outRank)
return op.emitOpError("result type and shape operand ranks must match");
}
if (inputEleTy != outEleTy)
// TODO: check that outBoxTy is a parent type of inputBoxTy for derived
// types.
if (!inputEleTy.isa<fir::RecordType>())
return op.emitOpError(
"op input and output element types must match for intrinsic types");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ResultOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ResultOp op) {
auto *parentOp = op->getParentOp();
auto results = parentOp->getResults();
auto operands = op->getOperands();
if (parentOp->getNumResults() != op.getNumOperands())
return op.emitOpError() << "parent of result must have same arity";
for (auto e : llvm::zip(results, operands))
if (std::get<0>(e).getType() != std::get<1>(e).getType())
return op.emitOpError()
<< "types mismatch between result op and its parent";
return success();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
static constexpr llvm::StringRef getCompareOffsetAttr() {
return "compare_operand_offsets";
}
static constexpr llvm::StringRef getTargetOffsetAttr() {
return "target_operand_offsets";
}
template <typename A, typename... AdditionalArgs>
static A getSubOperands(unsigned pos, A allArgs,
mlir::DenseIntElementsAttr ranges,
AdditionalArgs &&... additionalArgs) {
unsigned start = 0;
for (unsigned i = 0; i < pos; ++i)
start += (*(ranges.begin() + i)).getZExtValue();
return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
std::forward<AdditionalArgs>(additionalArgs)...);
}
static mlir::MutableOperandRange
getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
StringRef offsetAttr) {
Operation *owner = operands.getOwner();
NamedAttribute targetOffsetAttr =
*owner->getAttrDictionary().getNamed(offsetAttr);
return getSubOperands(
pos, operands, targetOffsetAttr.second.cast<DenseIntElementsAttr>(),
mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
}
static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
return attr.getNumElements();
}
llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
llvm::Optional<mlir::MutableOperandRange>
fir::SelectOp::getMutableSuccessorOperands(unsigned oper) {
return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
getTargetOffsetAttr());
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
unsigned fir::SelectOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
//===----------------------------------------------------------------------===//
// SelectCaseOp
//===----------------------------------------------------------------------===//
llvm::Optional<mlir::OperandRange>
fir::SelectCaseOp::getCompareOperands(unsigned cond) {
auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr());
return {getSubOperands(cond, compareArgs(), a)};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned cond) {
auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
}
llvm::Optional<mlir::MutableOperandRange>
fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) {
return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
getTargetOffsetAttr());
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
// parser for fir.select_case Op
static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::OpAsmParser::OperandType selector;
mlir::Type type;
if (parseSelector(parser, result, selector, type))
return mlir::failure();
llvm::SmallVector<mlir::Attribute, 8> attrs;
llvm::SmallVector<mlir::OpAsmParser::OperandType, 8> opers;
llvm::SmallVector<mlir::Block *, 8> dests;
llvm::SmallVector<llvm::SmallVector<mlir::Value, 8>, 8> destArgs;
llvm::SmallVector<int32_t, 8> argOffs;
int32_t offSize = 0;
while (true) {
mlir::Attribute attr;
mlir::Block *dest;
llvm::SmallVector<mlir::Value, 8> destArg;
mlir::NamedAttrList temp;
if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) ||
parser.parseComma())
return mlir::failure();
attrs.push_back(attr);
if (attr.dyn_cast_or_null<mlir::UnitAttr>()) {
argOffs.push_back(0);
} else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) {
mlir::OpAsmParser::OperandType oper1;
mlir::OpAsmParser::OperandType oper2;
if (parser.parseOperand(oper1) || parser.parseComma() ||
parser.parseOperand(oper2) || parser.parseComma())
return mlir::failure();
opers.push_back(oper1);
opers.push_back(oper2);
argOffs.push_back(2);
offSize += 2;
} else {
mlir::OpAsmParser::OperandType oper;
if (parser.parseOperand(oper) || parser.parseComma())
return mlir::failure();
opers.push_back(oper);
argOffs.push_back(1);
++offSize;
}
if (parser.parseSuccessorAndUseList(dest, destArg))
return mlir::failure();
dests.push_back(dest);
destArgs.push_back(destArg);
if (mlir::succeeded(parser.parseOptionalRSquare()))
break;
if (parser.parseComma())
return mlir::failure();
}
result.addAttribute(fir::SelectCaseOp::getCasesAttr(),
parser.getBuilder().getArrayAttr(attrs));
if (parser.resolveOperands(opers, type, result.operands))
return mlir::failure();
llvm::SmallVector<int32_t, 8> targOffs;
int32_t toffSize = 0;
const auto count = dests.size();
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
result.addSuccessors(dests[i]);
result.addOperands(destArgs[i]);
auto argSize = destArgs[i].size();
targOffs.push_back(argSize);
toffSize += argSize;
}
auto &bld = parser.getBuilder();
result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(),
bld.getI32VectorAttr({1, offSize, toffSize}));
result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs));
result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs));
return mlir::success();
}
unsigned fir::SelectCaseOp::compareOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getCompareOffsetAttr()));
}
unsigned fir::SelectCaseOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::Value selector,
llvm::ArrayRef<mlir::Attribute> compareAttrs,
llvm::ArrayRef<mlir::ValueRange> cmpOperands,
llvm::ArrayRef<mlir::Block *> destinations,
llvm::ArrayRef<mlir::ValueRange> destOperands,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands(selector);
result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs));
llvm::SmallVector<int32_t, 8> operOffs;
int32_t operSize = 0;
for (auto attr : compareAttrs) {
if (attr.isa<fir::ClosedIntervalAttr>()) {
operOffs.push_back(2);
operSize += 2;
} else if (attr.isa<mlir::UnitAttr>()) {
operOffs.push_back(0);
} else {
operOffs.push_back(1);
++operSize;
}
}
for (auto ops : cmpOperands)
result.addOperands(ops);
result.addAttribute(getCompareOffsetAttr(),
builder.getI32VectorAttr(operOffs));
const auto count = destinations.size();
for (auto d : destinations)
result.addSuccessors(d);
const auto opCount = destOperands.size();
llvm::SmallVector<int32_t, 8> argOffs;
int32_t sumArgs = 0;
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
if (i < opCount) {
result.addOperands(destOperands[i]);
const auto argSz = destOperands[i].size();
argOffs.push_back(argSz);
sumArgs += argSz;
} else {
argOffs.push_back(0);
}
}
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({1, operSize, sumArgs}));
result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
result.addAttributes(attributes);
}
/// This builder has a slightly simplified interface in that the list of
/// operands need not be partitioned by the builder. Instead the operands are
/// partitioned here, before being passed to the default builder. This
/// partitioning is unchecked, so can go awry on bad input.
void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
mlir::Value selector,
llvm::ArrayRef<mlir::Attribute> compareAttrs,
llvm::ArrayRef<mlir::Value> cmpOpList,
llvm::ArrayRef<mlir::Block *> destinations,
llvm::ArrayRef<mlir::ValueRange> destOperands,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
llvm::SmallVector<mlir::ValueRange, 16> cmpOpers;
auto iter = cmpOpList.begin();
for (auto &attr : compareAttrs) {
if (attr.isa<fir::ClosedIntervalAttr>()) {
cmpOpers.push_back(mlir::ValueRange({iter, iter + 2}));
iter += 2;
} else if (attr.isa<UnitAttr>()) {
cmpOpers.push_back(mlir::ValueRange{});
} else {
cmpOpers.push_back(mlir::ValueRange({iter, iter + 1}));
++iter;
}
}
build(builder, result, selector, compareAttrs, cmpOpers, destinations,
destOperands, attributes);
}
//===----------------------------------------------------------------------===//
// SelectRankOp
//===----------------------------------------------------------------------===//
llvm::Optional<mlir::OperandRange>
fir::SelectRankOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
llvm::Optional<mlir::MutableOperandRange>
fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) {
return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
getTargetOffsetAttr());
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
unsigned fir::SelectRankOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
//===----------------------------------------------------------------------===//
// SelectTypeOp
//===----------------------------------------------------------------------===//
llvm::Optional<mlir::OperandRange>
fir::SelectTypeOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
llvm::Optional<mlir::MutableOperandRange>
fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) {
return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
getTargetOffsetAttr());
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}
static ParseResult parseSelectType(OpAsmParser &parser,
OperationState &result) {
mlir::OpAsmParser::OperandType selector;
mlir::Type type;
if (parseSelector(parser, result, selector, type))
return mlir::failure();
llvm::SmallVector<mlir::Attribute, 8> attrs;
llvm::SmallVector<mlir::Block *, 8> dests;
llvm::SmallVector<llvm::SmallVector<mlir::Value, 8>, 8> destArgs;
while (true) {
mlir::Attribute attr;
mlir::Block *dest;
llvm::SmallVector<mlir::Value, 8> destArg;
mlir::NamedAttrList temp;
if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() ||
parser.parseSuccessorAndUseList(dest, destArg))
return mlir::failure();
attrs.push_back(attr);
dests.push_back(dest);
destArgs.push_back(destArg);
if (mlir::succeeded(parser.parseOptionalRSquare()))
break;
if (parser.parseComma())
return mlir::failure();
}
auto &bld = parser.getBuilder();
result.addAttribute(fir::SelectTypeOp::getCasesAttr(),
bld.getArrayAttr(attrs));
llvm::SmallVector<int32_t, 8> argOffs;
int32_t offSize = 0;
const auto count = dests.size();
for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
result.addSuccessors(dests[i]);
result.addOperands(destArgs[i]);
auto argSize = destArgs[i].size();
argOffs.push_back(argSize);
offSize += argSize;
}
result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(),
bld.getI32VectorAttr({1, 0, offSize}));
result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
return mlir::success();
}
unsigned fir::SelectTypeOp::targetOffsetSize() {
return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getTargetOffsetAttr()));
}
//===----------------------------------------------------------------------===//
// SliceOp
//===----------------------------------------------------------------------===//
/// Return the output rank of a slice op. The output rank must be between 1 and
/// the rank of the array being sliced (inclusive).
unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) {
unsigned rank = 0;
if (!triples.empty()) {
for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
auto op = triples[i].getDefiningOp();
if (!mlir::isa_and_nonnull<fir::UndefOp>(op))
++rank;
}
assert(rank > 0);
}
return rank;
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
mlir::Type fir::StoreOp::elementType(mlir::Type refType) {
if (auto ref = refType.dyn_cast<ReferenceType>())
return ref.getEleTy();
if (auto ref = refType.dyn_cast<PointerType>())
return ref.getEleTy();
if (auto ref = refType.dyn_cast<HeapType>())
return ref.getEleTy();
return {};
}
//===----------------------------------------------------------------------===//
// StringLitOp
//===----------------------------------------------------------------------===//
bool fir::StringLitOp::isWideValue() {
auto eleTy = getType().cast<fir::SequenceType>().getEleTy();
return eleTy.cast<fir::CharacterType>().getFKind() != 1;
}
//===----------------------------------------------------------------------===//
// SubfOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult fir::SubfOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
return mlir::constFoldBinaryOp<FloatAttr>(
opnds, [](APFloat a, APFloat b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result,
mlir::Value cond, bool withElseRegion) {
build(builder, result, llvm::None, cond, withElseRegion);
}
void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result,
mlir::TypeRange resultTypes, mlir::Value cond,
bool withElseRegion) {
result.addOperands(cond);
result.addTypes(resultTypes);
mlir::Region *thenRegion = result.addRegion();
thenRegion->push_back(new mlir::Block());
if (resultTypes.empty())
IfOp::ensureTerminator(*thenRegion, builder, result.location);
mlir::Region *elseRegion = result.addRegion();
if (withElseRegion) {
elseRegion->push_back(new mlir::Block());
if (resultTypes.empty())
IfOp::ensureTerminator(*elseRegion, builder, result.location);
}
}
static mlir::ParseResult parseIfOp(OpAsmParser &parser,
OperationState &result) {
result.regions.reserve(2);
mlir::Region *thenRegion = result.addRegion();
mlir::Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
mlir::Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return mlir::failure();
if (parser.parseOptionalArrowTypeList(result.types))
return mlir::failure();
if (parser.parseRegion(*thenRegion, {}, {}))
return mlir::failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
if (mlir::succeeded(parser.parseOptionalKeyword("else"))) {
if (parser.parseRegion(*elseRegion, {}, {}))
return mlir::failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return mlir::failure();
return mlir::success();
}
static LogicalResult verify(fir::IfOp op) {
if (op.getNumResults() != 0 && op.elseRegion().empty())
return op.emitOpError("must have an else block if defining values");
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::IfOp op) {
bool printBlockTerminators = false;
p << fir::IfOp::getOperationName() << ' ' << op.condition();
if (!op.results().empty()) {
p << " -> (" << op.getResultTypes() << ')';
printBlockTerminators = true;
}
p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false,
printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &otherReg = op.elseRegion();
if (!otherReg.empty()) {
p << " else";
p.printRegion(otherReg, /*printEntryBlockArgs=*/false,
printBlockTerminators);
}
p.printOptionalAttrDict(op->getAttrs());
}
void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results,
unsigned resultNum) {
auto *term = thenRegion().front().getTerminator();
if (resultNum < term->getNumOperands())
results.push_back(term->getOperand(resultNum));
term = elseRegion().front().getTerminator();
if (resultNum < term->getNumOperands())
results.push_back(term->getOperand(resultNum));
}
//===----------------------------------------------------------------------===//
mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) {
if (attr.dyn_cast_or_null<mlir::UnitAttr>() ||
attr.dyn_cast_or_null<ClosedIntervalAttr>() ||
attr.dyn_cast_or_null<PointIntervalAttr>() ||
attr.dyn_cast_or_null<LowerBoundAttr>() ||
attr.dyn_cast_or_null<UpperBoundAttr>())
return mlir::success();
return mlir::failure();
}
unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,
unsigned dest) {
unsigned o = 0;
for (unsigned i = 0; i < dest; ++i) {
auto &attr = cases[i];
if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) {
++o;
if (attr.dyn_cast_or_null<ClosedIntervalAttr>())
++o;
}
}
return o;
}
mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser,
mlir::OperationState &result,
mlir::OpAsmParser::OperandType &selector,
mlir::Type &type) {
if (parser.parseOperand(selector) || parser.parseColonType(type) ||
parser.resolveOperand(selector, type, result.operands) ||
parser.parseLSquare())
return mlir::failure();
return mlir::success();
}
/// Generic pretty-printer of a binary operation
static void printBinaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 2 && "binary op must have two operands");
assert(op->getNumResults() == 1 && "binary op must have one result");
p << op->getName() << ' ' << op->getOperand(0) << ", " << op->getOperand(1);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getResult(0).getType();
}
/// Generic pretty-printer of an unary operation
static void printUnaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 1 && "unary op must have one operand");
assert(op->getNumResults() == 1 && "unary op must have one result");
p << op->getName() << ' ' << op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getResult(0).getType();
}
bool fir::isReferenceLike(mlir::Type type) {
return type.isa<fir::ReferenceType>() || type.isa<fir::HeapType>() ||
type.isa<fir::PointerType>();
}
mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module,
StringRef name, mlir::FunctionType type,
llvm::ArrayRef<mlir::NamedAttribute> attrs) {
if (auto f = module.lookupSymbol<mlir::FuncOp>(name))
return f;
mlir::OpBuilder modBuilder(module.getBodyRegion());
modBuilder.setInsertionPoint(module.getBody()->getTerminator());
auto result = modBuilder.create<mlir::FuncOp>(loc, name, type, attrs);
result.setVisibility(mlir::SymbolTable::Visibility::Private);
return result;
}
fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module,
StringRef name, mlir::Type type,
llvm::ArrayRef<mlir::NamedAttribute> attrs) {
if (auto g = module.lookupSymbol<fir::GlobalOp>(name))
return g;
mlir::OpBuilder modBuilder(module.getBodyRegion());
auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs);
result.setVisibility(mlir::SymbolTable::Visibility::Private);
return result;
}
bool fir::valueHasFirAttribute(mlir::Value value,
llvm::StringRef attributeName) {
// If this is a fir.box that was loaded, the fir attributes will be on the
// related fir.ref<fir.box> creation.
if (value.getType().isa<fir::BoxType>())
if (auto definingOp = value.getDefiningOp())
if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp))
value = loadOp.memref();
// If this is a function argument, look in the argument attributes.
if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock())
if (auto funcOp =
mlir::dyn_cast<mlir::FuncOp>(blockArg.getOwner()->getParentOp()))
if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName))
return true;
return false;
}
if (auto definingOp = value.getDefiningOp()) {
// If this is an allocated value, look at the allocation attributes.
if (mlir::isa<fir::AllocMemOp>(definingOp) ||
mlir::isa<AllocaOp>(definingOp))
return definingOp->hasAttr(attributeName);
// If this is an imported global, look at AddrOfOp and GlobalOp attributes.
// Both operations are looked at because use/host associated variable (the
// AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate
// entity (the globalOp) does not have them.
if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) {
if (addressOfOp->hasAttr(attributeName))
return true;
if (auto module = definingOp->getParentOfType<mlir::ModuleOp>())
if (auto globalOp =
module.lookupSymbol<fir::GlobalOp>(addressOfOp.symbol()))
return globalOp->hasAttr(attributeName);
}
}
// TODO: Construct associated entities attributes. Decide where the fir
// attributes must be placed/looked for in this case.
return false;
}
// Tablegen operators
#define GET_OP_CLASSES
#include "flang/Optimizer/Dialect/FIROps.cpp.inc"