| //===-- divtc3.c - Implement __divtc3 -------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements __divtc3 for the compiler_rt library. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define QUAD_PRECISION |
| #include "fp_lib.h" |
| |
| #if defined(CRT_HAS_128BIT) && defined(CRT_HAS_F128) |
| |
| // Returns: the quotient of (a + ib) / (c + id) |
| |
| COMPILER_RT_ABI Qcomplex __divtc3(fp_t __a, fp_t __b, fp_t __c, fp_t __d) { |
| int __ilogbw = 0; |
| fp_t __logbw = __compiler_rt_logbtf( |
| __compiler_rt_fmaxtf(crt_fabstf(__c), crt_fabstf(__d))); |
| if (crt_isfinite(__logbw)) { |
| __ilogbw = (int)__logbw; |
| __c = __compiler_rt_scalbntf(__c, -__ilogbw); |
| __d = __compiler_rt_scalbntf(__d, -__ilogbw); |
| } |
| fp_t __denom = __c * __c + __d * __d; |
| Qcomplex z; |
| COMPLEXTF_REAL(z) = |
| __compiler_rt_scalbntf((__a * __c + __b * __d) / __denom, -__ilogbw); |
| COMPLEXTF_IMAGINARY(z) = |
| __compiler_rt_scalbntf((__b * __c - __a * __d) / __denom, -__ilogbw); |
| if (crt_isnan(COMPLEXTF_REAL(z)) && crt_isnan(COMPLEXTF_IMAGINARY(z))) { |
| if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) { |
| COMPLEXTF_REAL(z) = crt_copysigntf(CRT_INFINITY, __c) * __a; |
| COMPLEXTF_IMAGINARY(z) = crt_copysigntf(CRT_INFINITY, __c) * __b; |
| } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) && |
| crt_isfinite(__d)) { |
| __a = crt_copysigntf(crt_isinf(__a) ? (fp_t)1.0 : (fp_t)0.0, __a); |
| __b = crt_copysigntf(crt_isinf(__b) ? (fp_t)1.0 : (fp_t)0.0, __b); |
| COMPLEXTF_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); |
| COMPLEXTF_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); |
| } else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) && |
| crt_isfinite(__b)) { |
| __c = crt_copysigntf(crt_isinf(__c) ? (fp_t)1.0 : (fp_t)0.0, __c); |
| __d = crt_copysigntf(crt_isinf(__d) ? (fp_t)1.0 : (fp_t)0.0, __d); |
| COMPLEXTF_REAL(z) = 0.0 * (__a * __c + __b * __d); |
| COMPLEXTF_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d); |
| } |
| } |
| return z; |
| } |
| |
| #endif |