| Compiler-RT |
| ================================ |
| |
| This directory and its subdirectories contain source code for the compiler |
| support routines. |
| |
| Compiler-RT is open source software. You may freely distribute it under the |
| terms of the license agreement found in LICENSE.txt. |
| |
| ================================ |
| |
| This is a replacement library for libgcc. Each function is contained |
| in its own file. Each function has a corresponding unit test under |
| test/Unit. |
| |
| A rudimentary script to test each file is in the file called |
| test/Unit/test. |
| |
| Here is the specification for this library: |
| |
| http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc |
| |
| Please note that the libgcc specification explicitly mentions actual types of |
| arguments and returned values being expressed with machine modes. |
| In some cases particular types such as "int", "unsigned", "long long", etc. |
| may be specified just as examples there. |
| |
| Here is a synopsis of the contents of this library: |
| |
| typedef int32_t si_int; |
| typedef uint32_t su_int; |
| |
| typedef int64_t di_int; |
| typedef uint64_t du_int; |
| |
| // Integral bit manipulation |
| |
| di_int __ashldi3(di_int a, int b); // a << b |
| ti_int __ashlti3(ti_int a, int b); // a << b |
| |
| di_int __ashrdi3(di_int a, int b); // a >> b arithmetic (sign fill) |
| ti_int __ashrti3(ti_int a, int b); // a >> b arithmetic (sign fill) |
| di_int __lshrdi3(di_int a, int b); // a >> b logical (zero fill) |
| ti_int __lshrti3(ti_int a, int b); // a >> b logical (zero fill) |
| |
| int __clzsi2(si_int a); // count leading zeros |
| int __clzdi2(di_int a); // count leading zeros |
| int __clzti2(ti_int a); // count leading zeros |
| int __ctzsi2(si_int a); // count trailing zeros |
| int __ctzdi2(di_int a); // count trailing zeros |
| int __ctzti2(ti_int a); // count trailing zeros |
| |
| int __ffssi2(si_int a); // find least significant 1 bit |
| int __ffsdi2(di_int a); // find least significant 1 bit |
| int __ffsti2(ti_int a); // find least significant 1 bit |
| |
| int __paritysi2(si_int a); // bit parity |
| int __paritydi2(di_int a); // bit parity |
| int __parityti2(ti_int a); // bit parity |
| |
| int __popcountsi2(si_int a); // bit population |
| int __popcountdi2(di_int a); // bit population |
| int __popcountti2(ti_int a); // bit population |
| |
| uint32_t __bswapsi2(uint32_t a); // a byteswapped |
| uint64_t __bswapdi2(uint64_t a); // a byteswapped |
| |
| // Integral arithmetic |
| |
| di_int __negdi2 (di_int a); // -a |
| ti_int __negti2 (ti_int a); // -a |
| di_int __muldi3 (di_int a, di_int b); // a * b |
| ti_int __multi3 (ti_int a, ti_int b); // a * b |
| si_int __divsi3 (si_int a, si_int b); // a / b signed |
| di_int __divdi3 (di_int a, di_int b); // a / b signed |
| ti_int __divti3 (ti_int a, ti_int b); // a / b signed |
| su_int __udivsi3 (su_int n, su_int d); // a / b unsigned |
| du_int __udivdi3 (du_int a, du_int b); // a / b unsigned |
| tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned |
| si_int __modsi3 (si_int a, si_int b); // a % b signed |
| di_int __moddi3 (di_int a, di_int b); // a % b signed |
| ti_int __modti3 (ti_int a, ti_int b); // a % b signed |
| su_int __umodsi3 (su_int a, su_int b); // a % b unsigned |
| du_int __umoddi3 (du_int a, du_int b); // a % b unsigned |
| tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned |
| du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned |
| tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned |
| su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned |
| si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed |
| di_int __divmoddi4(di_int a, di_int b, di_int* rem); // a / b, *rem = a % b signed |
| ti_int __divmodti4(ti_int a, ti_int b, ti_int* rem); // a / b, *rem = a % b signed |
| |
| |
| |
| // Integral arithmetic with trapping overflow |
| |
| si_int __absvsi2(si_int a); // abs(a) |
| di_int __absvdi2(di_int a); // abs(a) |
| ti_int __absvti2(ti_int a); // abs(a) |
| |
| si_int __negvsi2(si_int a); // -a |
| di_int __negvdi2(di_int a); // -a |
| ti_int __negvti2(ti_int a); // -a |
| |
| si_int __addvsi3(si_int a, si_int b); // a + b |
| di_int __addvdi3(di_int a, di_int b); // a + b |
| ti_int __addvti3(ti_int a, ti_int b); // a + b |
| |
| si_int __subvsi3(si_int a, si_int b); // a - b |
| di_int __subvdi3(di_int a, di_int b); // a - b |
| ti_int __subvti3(ti_int a, ti_int b); // a - b |
| |
| si_int __mulvsi3(si_int a, si_int b); // a * b |
| di_int __mulvdi3(di_int a, di_int b); // a * b |
| ti_int __mulvti3(ti_int a, ti_int b); // a * b |
| |
| |
| // Integral arithmetic which returns if overflow |
| |
| si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range |
| di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range |
| ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to |
| one if result not in signed range |
| |
| |
| // Integral comparison: a < b -> 0 |
| // a == b -> 1 |
| // a > b -> 2 |
| |
| si_int __cmpdi2 (di_int a, di_int b); |
| si_int __cmpti2 (ti_int a, ti_int b); |
| si_int __ucmpdi2(du_int a, du_int b); |
| si_int __ucmpti2(tu_int a, tu_int b); |
| |
| // Integral / floating point conversion |
| |
| di_int __fixsfdi( float a); |
| di_int __fixdfdi( double a); |
| di_int __fixxfdi(long double a); |
| di_int __fixtfdi( tf_float a); |
| |
| ti_int __fixsfti( float a); |
| ti_int __fixdfti( double a); |
| ti_int __fixxfti(long double a); |
| ti_int __fixtfti( tf_float a); |
| |
| su_int __fixunssfsi( float a); |
| su_int __fixunsdfsi( double a); |
| su_int __fixunsxfsi(long double a); |
| su_int __fixunstfsi( tf_float a); |
| |
| du_int __fixunssfdi( float a); |
| du_int __fixunsdfdi( double a); |
| du_int __fixunsxfdi(long double a); |
| du_int __fixunstfdi( tf_float a); |
| |
| tu_int __fixunssfti( float a); |
| tu_int __fixunsdfti( double a); |
| tu_int __fixunsxfti(long double a); |
| tu_int __fixunstfti( tf_float a); |
| |
| float __floatdisf(di_int a); |
| double __floatdidf(di_int a); |
| long double __floatdixf(di_int a); |
| tf_float __floatditf(int64_t a); |
| |
| float __floattisf(ti_int a); |
| double __floattidf(ti_int a); |
| long double __floattixf(ti_int a); |
| tf_float __floattitf(ti_int a); |
| |
| float __floatundisf(du_int a); |
| double __floatundidf(du_int a); |
| long double __floatundixf(du_int a); |
| tf_float __floatunditf(du_int a); |
| |
| float __floatuntisf(tu_int a); |
| double __floatuntidf(tu_int a); |
| long double __floatuntixf(tu_int a); |
| tf_float __floatuntixf(tu_int a); |
| |
| // Floating point raised to integer power |
| |
| float __powisf2( float a, int b); // a ^ b |
| double __powidf2( double a, int b); // a ^ b |
| long double __powixf2(long double a, int b); // a ^ b |
| tf_float __powitf2( tf_float a, int b); // a ^ b |
| |
| // Complex arithmetic |
| |
| // (a + ib) * (c + id) |
| |
| float _Complex __mulsc3( float a, float b, float c, float d); |
| double _Complex __muldc3(double a, double b, double c, double d); |
| long double _Complex __mulxc3(long double a, long double b, |
| long double c, long double d); |
| tf_float _Complex __multc3(tf_float a, tf_float b, tf_float c, tf_float d); |
| |
| // (a + ib) / (c + id) |
| |
| float _Complex __divsc3( float a, float b, float c, float d); |
| double _Complex __divdc3(double a, double b, double c, double d); |
| long double _Complex __divxc3(long double a, long double b, |
| long double c, long double d); |
| tf_float _Complex __divtc3(tf_float a, tf_float b, tf_float c, tf_float d); |
| |
| |
| // Runtime support |
| |
| // __clear_cache() is used to tell process that new instructions have been |
| // written to an address range. Necessary on processors that do not have |
| // a unified instruction and data cache. |
| void __clear_cache(void* start, void* end); |
| |
| // __enable_execute_stack() is used with nested functions when a trampoline |
| // function is written onto the stack and that page range needs to be made |
| // executable. |
| void __enable_execute_stack(void* addr); |
| |
| // __gcc_personality_v0() is normally only called by the system unwinder. |
| // C code (as opposed to C++) normally does not need a personality function |
| // because there are no catch clauses or destructors to be run. But there |
| // is a C language extension __attribute__((cleanup(func))) which marks local |
| // variables as needing the cleanup function "func" to be run when the |
| // variable goes out of scope. That includes when an exception is thrown, |
| // so a personality handler is needed. |
| _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions, |
| uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject, |
| _Unwind_Context_t context); |
| |
| // for use with some implementations of assert() in <assert.h> |
| void __eprintf(const char* format, const char* assertion_expression, |
| const char* line, const char* file); |
| |
| // for systems with emulated thread local storage |
| void* __emutls_get_address(struct __emutls_control*); |
| |
| |
| // Power PC specific functions |
| |
| // There is no C interface to the saveFP/restFP functions. They are helper |
| // functions called by the prolog and epilog of functions that need to save |
| // a number of non-volatile float point registers. |
| saveFP |
| restFP |
| |
| // PowerPC has a standard template for trampoline functions. This function |
| // generates a custom trampoline function with the specific realFunc |
| // and localsPtr values. |
| void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, |
| const void* realFunc, void* localsPtr); |
| |
| // adds two 128-bit double-double precision values ( x + y ) |
| long double __gcc_qadd(long double x, long double y); |
| |
| // subtracts two 128-bit double-double precision values ( x - y ) |
| long double __gcc_qsub(long double x, long double y); |
| |
| // multiples two 128-bit double-double precision values ( x * y ) |
| long double __gcc_qmul(long double x, long double y); |
| |
| // divides two 128-bit double-double precision values ( x / y ) |
| long double __gcc_qdiv(long double a, long double b); |
| |
| |
| // ARM specific functions |
| |
| // There is no C interface to the switch* functions. These helper functions |
| // are only needed by Thumb1 code for efficient switch table generation. |
| switch16 |
| switch32 |
| switch8 |
| switchu8 |
| |
| // This function generates a custom trampoline function with the specific |
| // realFunc and localsPtr values. |
| void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, |
| const void* realFunc, void* localsPtr); |
| |
| // There is no C interface to the *_vfp_d8_d15_regs functions. There are |
| // called in the prolog and epilog of Thumb1 functions. When the C++ ABI use |
| // SJLJ for exceptions, each function with a catch clause or destructors needs |
| // to save and restore all registers in it prolog and epilog. But there is |
| // no way to access vector and high float registers from thumb1 code, so the |
| // compiler must add call outs to these helper functions in the prolog and |
| // epilog. |
| restore_vfp_d8_d15_regs |
| save_vfp_d8_d15_regs |
| |
| |
| // Note: long ago ARM processors did not have floating point hardware support. |
| // Floating point was done in software and floating point parameters were |
| // passed in integer registers. When hardware support was added for floating |
| // point, new *vfp functions were added to do the same operations but with |
| // floating point parameters in floating point registers. |
| |
| // Undocumented functions |
| |
| float __addsf3vfp(float a, float b); // Appears to return a + b |
| double __adddf3vfp(double a, double b); // Appears to return a + b |
| float __divsf3vfp(float a, float b); // Appears to return a / b |
| double __divdf3vfp(double a, double b); // Appears to return a / b |
| int __eqsf2vfp(float a, float b); // Appears to return one |
| // iff a == b and neither is NaN. |
| int __eqdf2vfp(double a, double b); // Appears to return one |
| // iff a == b and neither is NaN. |
| double __extendsfdf2vfp(float a); // Appears to convert from |
| // float to double. |
| int __fixdfsivfp(double a); // Appears to convert from |
| // double to int. |
| int __fixsfsivfp(float a); // Appears to convert from |
| // float to int. |
| unsigned int __fixunssfsivfp(float a); // Appears to convert from |
| // float to unsigned int. |
| unsigned int __fixunsdfsivfp(double a); // Appears to convert from |
| // double to unsigned int. |
| double __floatsidfvfp(int a); // Appears to convert from |
| // int to double. |
| float __floatsisfvfp(int a); // Appears to convert from |
| // int to float. |
| double __floatunssidfvfp(unsigned int a); // Appears to convert from |
| // unsigned int to double. |
| float __floatunssisfvfp(unsigned int a); // Appears to convert from |
| // unsigned int to float. |
| int __gedf2vfp(double a, double b); // Appears to return __gedf2 |
| // (a >= b) |
| int __gesf2vfp(float a, float b); // Appears to return __gesf2 |
| // (a >= b) |
| int __gtdf2vfp(double a, double b); // Appears to return __gtdf2 |
| // (a > b) |
| int __gtsf2vfp(float a, float b); // Appears to return __gtsf2 |
| // (a > b) |
| int __ledf2vfp(double a, double b); // Appears to return __ledf2 |
| // (a <= b) |
| int __lesf2vfp(float a, float b); // Appears to return __lesf2 |
| // (a <= b) |
| int __ltdf2vfp(double a, double b); // Appears to return __ltdf2 |
| // (a < b) |
| int __ltsf2vfp(float a, float b); // Appears to return __ltsf2 |
| // (a < b) |
| double __muldf3vfp(double a, double b); // Appears to return a * b |
| float __mulsf3vfp(float a, float b); // Appears to return a * b |
| int __nedf2vfp(double a, double b); // Appears to return __nedf2 |
| // (a != b) |
| double __negdf2vfp(double a); // Appears to return -a |
| float __negsf2vfp(float a); // Appears to return -a |
| float __negsf2vfp(float a); // Appears to return -a |
| double __subdf3vfp(double a, double b); // Appears to return a - b |
| float __subsf3vfp(float a, float b); // Appears to return a - b |
| float __truncdfsf2vfp(double a); // Appears to convert from |
| // double to float. |
| int __unorddf2vfp(double a, double b); // Appears to return __unorddf2 |
| int __unordsf2vfp(float a, float b); // Appears to return __unordsf2 |
| |
| |
| Preconditions are listed for each function at the definition when there are any. |
| Any preconditions reflect the specification at |
| http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc. |
| |
| Assumptions are listed in "int_lib.h", and in individual files. Where possible |
| assumptions are checked at compile time. |