| //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is shared between run-time libraries of sanitizers. |
| // |
| // It declares common functions and classes that are used in both runtimes. |
| // Implementation of some functions are provided in sanitizer_common, while |
| // others must be defined by run-time library itself. |
| //===----------------------------------------------------------------------===// |
| #ifndef SANITIZER_COMMON_H |
| #define SANITIZER_COMMON_H |
| |
| #include "sanitizer_flags.h" |
| #include "sanitizer_internal_defs.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_list.h" |
| #include "sanitizer_mutex.h" |
| |
| #if defined(_MSC_VER) && !defined(__clang__) |
| extern "C" void _ReadWriteBarrier(); |
| #pragma intrinsic(_ReadWriteBarrier) |
| #endif |
| |
| namespace __sanitizer { |
| |
| struct AddressInfo; |
| struct BufferedStackTrace; |
| struct SignalContext; |
| struct StackTrace; |
| |
| // Constants. |
| const uptr kWordSize = SANITIZER_WORDSIZE / 8; |
| const uptr kWordSizeInBits = 8 * kWordSize; |
| |
| const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; |
| |
| const uptr kMaxPathLength = 4096; |
| |
| const uptr kMaxThreadStackSize = 1 << 30; // 1Gb |
| |
| const uptr kErrorMessageBufferSize = 1 << 16; |
| |
| // Denotes fake PC values that come from JIT/JAVA/etc. |
| // For such PC values __tsan_symbolize_external_ex() will be called. |
| const u64 kExternalPCBit = 1ULL << 60; |
| |
| extern const char *SanitizerToolName; // Can be changed by the tool. |
| |
| extern atomic_uint32_t current_verbosity; |
| inline void SetVerbosity(int verbosity) { |
| atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); |
| } |
| inline int Verbosity() { |
| return atomic_load(¤t_verbosity, memory_order_relaxed); |
| } |
| |
| #if SANITIZER_ANDROID |
| inline uptr GetPageSize() { |
| // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array. |
| return 4096; |
| } |
| inline uptr GetPageSizeCached() { |
| return 4096; |
| } |
| #else |
| uptr GetPageSize(); |
| extern uptr PageSizeCached; |
| inline uptr GetPageSizeCached() { |
| if (!PageSizeCached) |
| PageSizeCached = GetPageSize(); |
| return PageSizeCached; |
| } |
| #endif |
| uptr GetMmapGranularity(); |
| uptr GetMaxVirtualAddress(); |
| uptr GetMaxUserVirtualAddress(); |
| // Threads |
| tid_t GetTid(); |
| int TgKill(pid_t pid, tid_t tid, int sig); |
| uptr GetThreadSelf(); |
| void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, |
| uptr *stack_bottom); |
| void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, |
| uptr *tls_addr, uptr *tls_size); |
| |
| // Memory management |
| void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); |
| inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { |
| return MmapOrDie(size, mem_type, /*raw_report*/ true); |
| } |
| void UnmapOrDie(void *addr, uptr size); |
| // Behaves just like MmapOrDie, but tolerates out of memory condition, in that |
| // case returns nullptr. |
| void *MmapOrDieOnFatalError(uptr size, const char *mem_type); |
| bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) |
| WARN_UNUSED_RESULT; |
| bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, |
| const char *name = nullptr) WARN_UNUSED_RESULT; |
| void *MmapNoReserveOrDie(uptr size, const char *mem_type); |
| void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); |
| // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in |
| // that case returns nullptr. |
| void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, |
| const char *name = nullptr); |
| void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); |
| void *MmapNoAccess(uptr size); |
| // Map aligned chunk of address space; size and alignment are powers of two. |
| // Dies on all but out of memory errors, in the latter case returns nullptr. |
| void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, |
| const char *mem_type); |
| // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an |
| // unaccessible memory. |
| bool MprotectNoAccess(uptr addr, uptr size); |
| bool MprotectReadOnly(uptr addr, uptr size); |
| |
| void MprotectMallocZones(void *addr, int prot); |
| |
| #if SANITIZER_WINDOWS |
| // Zero previously mmap'd memory. Currently used only on Windows. |
| bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT; |
| #endif |
| |
| #if SANITIZER_LINUX |
| // Unmap memory. Currently only used on Linux. |
| void UnmapFromTo(uptr from, uptr to); |
| #endif |
| |
| // Maps shadow_size_bytes of shadow memory and returns shadow address. It will |
| // be aligned to the mmap granularity * 2^shadow_scale, or to |
| // 2^min_shadow_base_alignment if that is larger. The returned address will |
| // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and |
| // shadow_size_bytes bytes on the right, which on linux is mapped no access. |
| // The high_mem_end may be updated if the original shadow size doesn't fit. |
| uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, |
| uptr min_shadow_base_alignment, uptr &high_mem_end); |
| |
| // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size). |
| // Reserves 2*S bytes of address space to the right of the returned address and |
| // ring_buffer_size bytes to the left. The returned address is aligned to 2*S. |
| // Also creates num_aliases regions of accessible memory starting at offset S |
| // from the returned address. Each region has size alias_size and is backed by |
| // the same physical memory. |
| uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, |
| uptr num_aliases, uptr ring_buffer_size); |
| |
| // Reserve memory range [beg, end]. If madvise_shadow is true then apply |
| // madvise (e.g. hugepages, core dumping) requested by options. |
| void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, |
| bool madvise_shadow = true); |
| |
| // Protect size bytes of memory starting at addr. Also try to protect |
| // several pages at the start of the address space as specified by |
| // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. |
| void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, |
| uptr zero_base_max_shadow_start); |
| |
| // Find an available address space. |
| uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, |
| uptr *largest_gap_found, uptr *max_occupied_addr); |
| |
| // Used to check if we can map shadow memory to a fixed location. |
| bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); |
| // Releases memory pages entirely within the [beg, end] address range. Noop if |
| // the provided range does not contain at least one entire page. |
| void ReleaseMemoryPagesToOS(uptr beg, uptr end); |
| void IncreaseTotalMmap(uptr size); |
| void DecreaseTotalMmap(uptr size); |
| uptr GetRSS(); |
| void SetShadowRegionHugePageMode(uptr addr, uptr length); |
| bool DontDumpShadowMemory(uptr addr, uptr length); |
| // Check if the built VMA size matches the runtime one. |
| void CheckVMASize(); |
| void RunMallocHooks(void *ptr, uptr size); |
| void RunFreeHooks(void *ptr); |
| |
| class ReservedAddressRange { |
| public: |
| uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); |
| uptr InitAligned(uptr size, uptr align, const char *name = nullptr); |
| uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); |
| uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); |
| void Unmap(uptr addr, uptr size); |
| void *base() const { return base_; } |
| uptr size() const { return size_; } |
| |
| private: |
| void* base_; |
| uptr size_; |
| const char* name_; |
| uptr os_handle_; |
| }; |
| |
| typedef void (*fill_profile_f)(uptr start, uptr rss, bool file, |
| /*out*/ uptr *stats); |
| |
| // Parse the contents of /proc/self/smaps and generate a memory profile. |
| // |cb| is a tool-specific callback that fills the |stats| array. |
| void GetMemoryProfile(fill_profile_f cb, uptr *stats); |
| void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps, |
| uptr smaps_len); |
| |
| // Simple low-level (mmap-based) allocator for internal use. Doesn't have |
| // constructor, so all instances of LowLevelAllocator should be |
| // linker initialized. |
| class LowLevelAllocator { |
| public: |
| // Requires an external lock. |
| void *Allocate(uptr size); |
| private: |
| char *allocated_end_; |
| char *allocated_current_; |
| }; |
| // Set the min alignment of LowLevelAllocator to at least alignment. |
| void SetLowLevelAllocateMinAlignment(uptr alignment); |
| typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); |
| // Allows to register tool-specific callbacks for LowLevelAllocator. |
| // Passing NULL removes the callback. |
| void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); |
| |
| // IO |
| void CatastrophicErrorWrite(const char *buffer, uptr length); |
| void RawWrite(const char *buffer); |
| bool ColorizeReports(); |
| void RemoveANSIEscapeSequencesFromString(char *buffer); |
| void Printf(const char *format, ...) FORMAT(1, 2); |
| void Report(const char *format, ...) FORMAT(1, 2); |
| void SetPrintfAndReportCallback(void (*callback)(const char *)); |
| #define VReport(level, ...) \ |
| do { \ |
| if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ |
| } while (0) |
| #define VPrintf(level, ...) \ |
| do { \ |
| if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ |
| } while (0) |
| |
| // Lock sanitizer error reporting and protects against nested errors. |
| class ScopedErrorReportLock { |
| public: |
| ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); } |
| ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); } |
| |
| static void Lock() SANITIZER_ACQUIRE(mutex_); |
| static void Unlock() SANITIZER_RELEASE(mutex_); |
| static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_); |
| |
| private: |
| static atomic_uintptr_t reporting_thread_; |
| static StaticSpinMutex mutex_; |
| }; |
| |
| extern uptr stoptheworld_tracer_pid; |
| extern uptr stoptheworld_tracer_ppid; |
| |
| bool IsAccessibleMemoryRange(uptr beg, uptr size); |
| |
| // Error report formatting. |
| const char *StripPathPrefix(const char *filepath, |
| const char *strip_file_prefix); |
| // Strip the directories from the module name. |
| const char *StripModuleName(const char *module); |
| |
| // OS |
| uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); |
| uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); |
| uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len); |
| uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); |
| const char *GetProcessName(); |
| void UpdateProcessName(); |
| void CacheBinaryName(); |
| void DisableCoreDumperIfNecessary(); |
| void DumpProcessMap(); |
| const char *GetEnv(const char *name); |
| bool SetEnv(const char *name, const char *value); |
| |
| u32 GetUid(); |
| void ReExec(); |
| void CheckASLR(); |
| void CheckMPROTECT(); |
| char **GetArgv(); |
| char **GetEnviron(); |
| void PrintCmdline(); |
| bool StackSizeIsUnlimited(); |
| void SetStackSizeLimitInBytes(uptr limit); |
| bool AddressSpaceIsUnlimited(); |
| void SetAddressSpaceUnlimited(); |
| void AdjustStackSize(void *attr); |
| void PlatformPrepareForSandboxing(void *args); |
| void SetSandboxingCallback(void (*f)()); |
| |
| void InitializeCoverage(bool enabled, const char *coverage_dir); |
| |
| void InitTlsSize(); |
| uptr GetTlsSize(); |
| |
| // Other |
| void WaitForDebugger(unsigned seconds, const char *label); |
| void SleepForSeconds(unsigned seconds); |
| void SleepForMillis(unsigned millis); |
| u64 NanoTime(); |
| u64 MonotonicNanoTime(); |
| int Atexit(void (*function)(void)); |
| bool TemplateMatch(const char *templ, const char *str); |
| |
| // Exit |
| void NORETURN Abort(); |
| void NORETURN Die(); |
| void NORETURN |
| CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); |
| void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, |
| const char *mmap_type, error_t err, |
| bool raw_report = false); |
| |
| // Returns true if the platform-specific error reported is an OOM error. |
| bool ErrorIsOOM(error_t err); |
| |
| // This reports an error in the form: |
| // |
| // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}` |
| // |
| // Downstream tools that read sanitizer output will know that errors starting |
| // in this format are specifically OOM errors. |
| #define ERROR_OOM(err_msg, ...) \ |
| Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__) |
| |
| // Specific tools may override behavior of "Die" function to do tool-specific |
| // job. |
| typedef void (*DieCallbackType)(void); |
| |
| // It's possible to add several callbacks that would be run when "Die" is |
| // called. The callbacks will be run in the opposite order. The tools are |
| // strongly recommended to setup all callbacks during initialization, when there |
| // is only a single thread. |
| bool AddDieCallback(DieCallbackType callback); |
| bool RemoveDieCallback(DieCallbackType callback); |
| |
| void SetUserDieCallback(DieCallbackType callback); |
| |
| void SetCheckUnwindCallback(void (*callback)()); |
| |
| // Functions related to signal handling. |
| typedef void (*SignalHandlerType)(int, void *, void *); |
| HandleSignalMode GetHandleSignalMode(int signum); |
| void InstallDeadlySignalHandlers(SignalHandlerType handler); |
| |
| // Signal reporting. |
| // Each sanitizer uses slightly different implementation of stack unwinding. |
| typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, |
| const void *callback_context, |
| BufferedStackTrace *stack); |
| // Print deadly signal report and die. |
| void HandleDeadlySignal(void *siginfo, void *context, u32 tid, |
| UnwindSignalStackCallbackType unwind, |
| const void *unwind_context); |
| |
| // Part of HandleDeadlySignal, exposed for asan. |
| void StartReportDeadlySignal(); |
| // Part of HandleDeadlySignal, exposed for asan. |
| void ReportDeadlySignal(const SignalContext &sig, u32 tid, |
| UnwindSignalStackCallbackType unwind, |
| const void *unwind_context); |
| |
| // Alternative signal stack (POSIX-only). |
| void SetAlternateSignalStack(); |
| void UnsetAlternateSignalStack(); |
| |
| // Construct a one-line string: |
| // SUMMARY: SanitizerToolName: error_message |
| // and pass it to __sanitizer_report_error_summary. |
| // If alt_tool_name is provided, it's used in place of SanitizerToolName. |
| void ReportErrorSummary(const char *error_message, |
| const char *alt_tool_name = nullptr); |
| // Same as above, but construct error_message as: |
| // error_type file:line[:column][ function] |
| void ReportErrorSummary(const char *error_type, const AddressInfo &info, |
| const char *alt_tool_name = nullptr); |
| // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. |
| void ReportErrorSummary(const char *error_type, const StackTrace *trace, |
| const char *alt_tool_name = nullptr); |
| |
| void ReportMmapWriteExec(int prot, int mflags); |
| |
| // Math |
| #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) |
| extern "C" { |
| unsigned char _BitScanForward(unsigned long *index, unsigned long mask); |
| unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); |
| #if defined(_WIN64) |
| unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); |
| unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); |
| #endif |
| } |
| #endif |
| |
| inline uptr MostSignificantSetBitIndex(uptr x) { |
| CHECK_NE(x, 0U); |
| unsigned long up; |
| #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
| # ifdef _WIN64 |
| up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); |
| # else |
| up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); |
| # endif |
| #elif defined(_WIN64) |
| _BitScanReverse64(&up, x); |
| #else |
| _BitScanReverse(&up, x); |
| #endif |
| return up; |
| } |
| |
| inline uptr LeastSignificantSetBitIndex(uptr x) { |
| CHECK_NE(x, 0U); |
| unsigned long up; |
| #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
| # ifdef _WIN64 |
| up = __builtin_ctzll(x); |
| # else |
| up = __builtin_ctzl(x); |
| # endif |
| #elif defined(_WIN64) |
| _BitScanForward64(&up, x); |
| #else |
| _BitScanForward(&up, x); |
| #endif |
| return up; |
| } |
| |
| inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } |
| |
| inline uptr RoundUpToPowerOfTwo(uptr size) { |
| CHECK(size); |
| if (IsPowerOfTwo(size)) return size; |
| |
| uptr up = MostSignificantSetBitIndex(size); |
| CHECK_LT(size, (1ULL << (up + 1))); |
| CHECK_GT(size, (1ULL << up)); |
| return 1ULL << (up + 1); |
| } |
| |
| inline constexpr uptr RoundUpTo(uptr size, uptr boundary) { |
| RAW_CHECK(IsPowerOfTwo(boundary)); |
| return (size + boundary - 1) & ~(boundary - 1); |
| } |
| |
| inline constexpr uptr RoundDownTo(uptr x, uptr boundary) { |
| return x & ~(boundary - 1); |
| } |
| |
| inline constexpr bool IsAligned(uptr a, uptr alignment) { |
| return (a & (alignment - 1)) == 0; |
| } |
| |
| inline uptr Log2(uptr x) { |
| CHECK(IsPowerOfTwo(x)); |
| return LeastSignificantSetBitIndex(x); |
| } |
| |
| // Don't use std::min, std::max or std::swap, to minimize dependency |
| // on libstdc++. |
| template <class T> |
| constexpr T Min(T a, T b) { |
| return a < b ? a : b; |
| } |
| template <class T> |
| constexpr T Max(T a, T b) { |
| return a > b ? a : b; |
| } |
| template <class T> |
| constexpr T Abs(T a) { |
| return a < 0 ? -a : a; |
| } |
| template<class T> void Swap(T& a, T& b) { |
| T tmp = a; |
| a = b; |
| b = tmp; |
| } |
| |
| // Char handling |
| inline bool IsSpace(int c) { |
| return (c == ' ') || (c == '\n') || (c == '\t') || |
| (c == '\f') || (c == '\r') || (c == '\v'); |
| } |
| inline bool IsDigit(int c) { |
| return (c >= '0') && (c <= '9'); |
| } |
| inline int ToLower(int c) { |
| return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; |
| } |
| |
| // A low-level vector based on mmap. May incur a significant memory overhead for |
| // small vectors. |
| // WARNING: The current implementation supports only POD types. |
| template<typename T> |
| class InternalMmapVectorNoCtor { |
| public: |
| using value_type = T; |
| void Initialize(uptr initial_capacity) { |
| capacity_bytes_ = 0; |
| size_ = 0; |
| data_ = 0; |
| reserve(initial_capacity); |
| } |
| void Destroy() { UnmapOrDie(data_, capacity_bytes_); } |
| T &operator[](uptr i) { |
| CHECK_LT(i, size_); |
| return data_[i]; |
| } |
| const T &operator[](uptr i) const { |
| CHECK_LT(i, size_); |
| return data_[i]; |
| } |
| void push_back(const T &element) { |
| CHECK_LE(size_, capacity()); |
| if (size_ == capacity()) { |
| uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); |
| Realloc(new_capacity); |
| } |
| internal_memcpy(&data_[size_++], &element, sizeof(T)); |
| } |
| T &back() { |
| CHECK_GT(size_, 0); |
| return data_[size_ - 1]; |
| } |
| void pop_back() { |
| CHECK_GT(size_, 0); |
| size_--; |
| } |
| uptr size() const { |
| return size_; |
| } |
| const T *data() const { |
| return data_; |
| } |
| T *data() { |
| return data_; |
| } |
| uptr capacity() const { return capacity_bytes_ / sizeof(T); } |
| void reserve(uptr new_size) { |
| // Never downsize internal buffer. |
| if (new_size > capacity()) |
| Realloc(new_size); |
| } |
| void resize(uptr new_size) { |
| if (new_size > size_) { |
| reserve(new_size); |
| internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); |
| } |
| size_ = new_size; |
| } |
| |
| void clear() { size_ = 0; } |
| bool empty() const { return size() == 0; } |
| |
| const T *begin() const { |
| return data(); |
| } |
| T *begin() { |
| return data(); |
| } |
| const T *end() const { |
| return data() + size(); |
| } |
| T *end() { |
| return data() + size(); |
| } |
| |
| void swap(InternalMmapVectorNoCtor &other) { |
| Swap(data_, other.data_); |
| Swap(capacity_bytes_, other.capacity_bytes_); |
| Swap(size_, other.size_); |
| } |
| |
| private: |
| void Realloc(uptr new_capacity) { |
| CHECK_GT(new_capacity, 0); |
| CHECK_LE(size_, new_capacity); |
| uptr new_capacity_bytes = |
| RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached()); |
| T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector"); |
| internal_memcpy(new_data, data_, size_ * sizeof(T)); |
| UnmapOrDie(data_, capacity_bytes_); |
| data_ = new_data; |
| capacity_bytes_ = new_capacity_bytes; |
| } |
| |
| T *data_; |
| uptr capacity_bytes_; |
| uptr size_; |
| }; |
| |
| template <typename T> |
| bool operator==(const InternalMmapVectorNoCtor<T> &lhs, |
| const InternalMmapVectorNoCtor<T> &rhs) { |
| if (lhs.size() != rhs.size()) return false; |
| return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; |
| } |
| |
| template <typename T> |
| bool operator!=(const InternalMmapVectorNoCtor<T> &lhs, |
| const InternalMmapVectorNoCtor<T> &rhs) { |
| return !(lhs == rhs); |
| } |
| |
| template<typename T> |
| class InternalMmapVector : public InternalMmapVectorNoCtor<T> { |
| public: |
| InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); } |
| explicit InternalMmapVector(uptr cnt) { |
| InternalMmapVectorNoCtor<T>::Initialize(cnt); |
| this->resize(cnt); |
| } |
| ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } |
| // Disallow copies and moves. |
| InternalMmapVector(const InternalMmapVector &) = delete; |
| InternalMmapVector &operator=(const InternalMmapVector &) = delete; |
| InternalMmapVector(InternalMmapVector &&) = delete; |
| InternalMmapVector &operator=(InternalMmapVector &&) = delete; |
| }; |
| |
| class InternalScopedString { |
| public: |
| InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; } |
| |
| uptr length() const { return buffer_.size() - 1; } |
| void clear() { |
| buffer_.resize(1); |
| buffer_[0] = '\0'; |
| } |
| void append(const char *format, ...) FORMAT(2, 3); |
| const char *data() const { return buffer_.data(); } |
| char *data() { return buffer_.data(); } |
| |
| private: |
| InternalMmapVector<char> buffer_; |
| }; |
| |
| template <class T> |
| struct CompareLess { |
| bool operator()(const T &a, const T &b) const { return a < b; } |
| }; |
| |
| // HeapSort for arrays and InternalMmapVector. |
| template <class T, class Compare = CompareLess<T>> |
| void Sort(T *v, uptr size, Compare comp = {}) { |
| if (size < 2) |
| return; |
| // Stage 1: insert elements to the heap. |
| for (uptr i = 1; i < size; i++) { |
| uptr j, p; |
| for (j = i; j > 0; j = p) { |
| p = (j - 1) / 2; |
| if (comp(v[p], v[j])) |
| Swap(v[j], v[p]); |
| else |
| break; |
| } |
| } |
| // Stage 2: swap largest element with the last one, |
| // and sink the new top. |
| for (uptr i = size - 1; i > 0; i--) { |
| Swap(v[0], v[i]); |
| uptr j, max_ind; |
| for (j = 0; j < i; j = max_ind) { |
| uptr left = 2 * j + 1; |
| uptr right = 2 * j + 2; |
| max_ind = j; |
| if (left < i && comp(v[max_ind], v[left])) |
| max_ind = left; |
| if (right < i && comp(v[max_ind], v[right])) |
| max_ind = right; |
| if (max_ind != j) |
| Swap(v[j], v[max_ind]); |
| else |
| break; |
| } |
| } |
| } |
| |
| // Works like std::lower_bound: finds the first element that is not less |
| // than the val. |
| template <class Container, class T, |
| class Compare = CompareLess<typename Container::value_type>> |
| uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) { |
| uptr first = 0; |
| uptr last = v.size(); |
| while (last > first) { |
| uptr mid = (first + last) / 2; |
| if (comp(v[mid], val)) |
| first = mid + 1; |
| else |
| last = mid; |
| } |
| return first; |
| } |
| |
| enum ModuleArch { |
| kModuleArchUnknown, |
| kModuleArchI386, |
| kModuleArchX86_64, |
| kModuleArchX86_64H, |
| kModuleArchARMV6, |
| kModuleArchARMV7, |
| kModuleArchARMV7S, |
| kModuleArchARMV7K, |
| kModuleArchARM64, |
| kModuleArchRISCV64, |
| kModuleArchHexagon |
| }; |
| |
| // Sorts and removes duplicates from the container. |
| template <class Container, |
| class Compare = CompareLess<typename Container::value_type>> |
| void SortAndDedup(Container &v, Compare comp = {}) { |
| Sort(v.data(), v.size(), comp); |
| uptr size = v.size(); |
| if (size < 2) |
| return; |
| uptr last = 0; |
| for (uptr i = 1; i < size; ++i) { |
| if (comp(v[last], v[i])) { |
| ++last; |
| if (last != i) |
| v[last] = v[i]; |
| } else { |
| CHECK(!comp(v[i], v[last])); |
| } |
| } |
| v.resize(last + 1); |
| } |
| |
| constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28); |
| |
| // Opens the file 'file_name" and reads up to 'max_len' bytes. |
| // The resulting buffer is mmaped and stored in '*buff'. |
| // Returns true if file was successfully opened and read. |
| bool ReadFileToVector(const char *file_name, |
| InternalMmapVectorNoCtor<char> *buff, |
| uptr max_len = kDefaultFileMaxSize, |
| error_t *errno_p = nullptr); |
| |
| // Opens the file 'file_name" and reads up to 'max_len' bytes. |
| // This function is less I/O efficient than ReadFileToVector as it may reread |
| // file multiple times to avoid mmap during read attempts. It's used to read |
| // procmap, so short reads with mmap in between can produce inconsistent result. |
| // The resulting buffer is mmaped and stored in '*buff'. |
| // The size of the mmaped region is stored in '*buff_size'. |
| // The total number of read bytes is stored in '*read_len'. |
| // Returns true if file was successfully opened and read. |
| bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, |
| uptr *read_len, uptr max_len = kDefaultFileMaxSize, |
| error_t *errno_p = nullptr); |
| |
| int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len, |
| uptr *pc_offset); |
| |
| // When adding a new architecture, don't forget to also update |
| // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. |
| inline const char *ModuleArchToString(ModuleArch arch) { |
| switch (arch) { |
| case kModuleArchUnknown: |
| return ""; |
| case kModuleArchI386: |
| return "i386"; |
| case kModuleArchX86_64: |
| return "x86_64"; |
| case kModuleArchX86_64H: |
| return "x86_64h"; |
| case kModuleArchARMV6: |
| return "armv6"; |
| case kModuleArchARMV7: |
| return "armv7"; |
| case kModuleArchARMV7S: |
| return "armv7s"; |
| case kModuleArchARMV7K: |
| return "armv7k"; |
| case kModuleArchARM64: |
| return "arm64"; |
| case kModuleArchRISCV64: |
| return "riscv64"; |
| case kModuleArchHexagon: |
| return "hexagon"; |
| } |
| CHECK(0 && "Invalid module arch"); |
| return ""; |
| } |
| |
| const uptr kModuleUUIDSize = 32; |
| const uptr kMaxSegName = 16; |
| |
| // Represents a binary loaded into virtual memory (e.g. this can be an |
| // executable or a shared object). |
| class LoadedModule { |
| public: |
| LoadedModule() |
| : full_name_(nullptr), |
| base_address_(0), |
| max_address_(0), |
| arch_(kModuleArchUnknown), |
| uuid_size_(0), |
| instrumented_(false) { |
| internal_memset(uuid_, 0, kModuleUUIDSize); |
| ranges_.clear(); |
| } |
| void set(const char *module_name, uptr base_address); |
| void set(const char *module_name, uptr base_address, ModuleArch arch, |
| u8 uuid[kModuleUUIDSize], bool instrumented); |
| void setUuid(const char *uuid, uptr size); |
| void clear(); |
| void addAddressRange(uptr beg, uptr end, bool executable, bool writable, |
| const char *name = nullptr); |
| bool containsAddress(uptr address) const; |
| |
| const char *full_name() const { return full_name_; } |
| uptr base_address() const { return base_address_; } |
| uptr max_address() const { return max_address_; } |
| ModuleArch arch() const { return arch_; } |
| const u8 *uuid() const { return uuid_; } |
| uptr uuid_size() const { return uuid_size_; } |
| bool instrumented() const { return instrumented_; } |
| |
| struct AddressRange { |
| AddressRange *next; |
| uptr beg; |
| uptr end; |
| bool executable; |
| bool writable; |
| char name[kMaxSegName]; |
| |
| AddressRange(uptr beg, uptr end, bool executable, bool writable, |
| const char *name) |
| : next(nullptr), |
| beg(beg), |
| end(end), |
| executable(executable), |
| writable(writable) { |
| internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name)); |
| } |
| }; |
| |
| const IntrusiveList<AddressRange> &ranges() const { return ranges_; } |
| |
| private: |
| char *full_name_; // Owned. |
| uptr base_address_; |
| uptr max_address_; |
| ModuleArch arch_; |
| uptr uuid_size_; |
| u8 uuid_[kModuleUUIDSize]; |
| bool instrumented_; |
| IntrusiveList<AddressRange> ranges_; |
| }; |
| |
| // List of LoadedModules. OS-dependent implementation is responsible for |
| // filling this information. |
| class ListOfModules { |
| public: |
| ListOfModules() : initialized(false) {} |
| ~ListOfModules() { clear(); } |
| void init(); |
| void fallbackInit(); // Uses fallback init if available, otherwise clears |
| const LoadedModule *begin() const { return modules_.begin(); } |
| LoadedModule *begin() { return modules_.begin(); } |
| const LoadedModule *end() const { return modules_.end(); } |
| LoadedModule *end() { return modules_.end(); } |
| uptr size() const { return modules_.size(); } |
| const LoadedModule &operator[](uptr i) const { |
| CHECK_LT(i, modules_.size()); |
| return modules_[i]; |
| } |
| |
| private: |
| void clear() { |
| for (auto &module : modules_) module.clear(); |
| modules_.clear(); |
| } |
| void clearOrInit() { |
| initialized ? clear() : modules_.Initialize(kInitialCapacity); |
| initialized = true; |
| } |
| |
| InternalMmapVectorNoCtor<LoadedModule> modules_; |
| // We rarely have more than 16K loaded modules. |
| static const uptr kInitialCapacity = 1 << 14; |
| bool initialized; |
| }; |
| |
| // Callback type for iterating over a set of memory ranges. |
| typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); |
| |
| enum AndroidApiLevel { |
| ANDROID_NOT_ANDROID = 0, |
| ANDROID_KITKAT = 19, |
| ANDROID_LOLLIPOP_MR1 = 22, |
| ANDROID_POST_LOLLIPOP = 23 |
| }; |
| |
| void WriteToSyslog(const char *buffer); |
| |
| #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) |
| #define SANITIZER_WIN_TRACE 1 |
| #else |
| #define SANITIZER_WIN_TRACE 0 |
| #endif |
| |
| #if SANITIZER_APPLE || SANITIZER_WIN_TRACE |
| void LogFullErrorReport(const char *buffer); |
| #else |
| inline void LogFullErrorReport(const char *buffer) {} |
| #endif |
| |
| #if SANITIZER_LINUX || SANITIZER_APPLE |
| void WriteOneLineToSyslog(const char *s); |
| void LogMessageOnPrintf(const char *str); |
| #else |
| inline void WriteOneLineToSyslog(const char *s) {} |
| inline void LogMessageOnPrintf(const char *str) {} |
| #endif |
| |
| #if SANITIZER_LINUX || SANITIZER_WIN_TRACE |
| // Initialize Android logging. Any writes before this are silently lost. |
| void AndroidLogInit(); |
| void SetAbortMessage(const char *); |
| #else |
| inline void AndroidLogInit() {} |
| // FIXME: MacOS implementation could use CRSetCrashLogMessage. |
| inline void SetAbortMessage(const char *) {} |
| #endif |
| |
| #if SANITIZER_ANDROID |
| void SanitizerInitializeUnwinder(); |
| AndroidApiLevel AndroidGetApiLevel(); |
| #else |
| inline void AndroidLogWrite(const char *buffer_unused) {} |
| inline void SanitizerInitializeUnwinder() {} |
| inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } |
| #endif |
| |
| inline uptr GetPthreadDestructorIterations() { |
| #if SANITIZER_ANDROID |
| return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; |
| #elif SANITIZER_POSIX |
| return 4; |
| #else |
| // Unused on Windows. |
| return 0; |
| #endif |
| } |
| |
| void *internal_start_thread(void *(*func)(void*), void *arg); |
| void internal_join_thread(void *th); |
| void MaybeStartBackgroudThread(); |
| |
| // Make the compiler think that something is going on there. |
| // Use this inside a loop that looks like memset/memcpy/etc to prevent the |
| // compiler from recognising it and turning it into an actual call to |
| // memset/memcpy/etc. |
| static inline void SanitizerBreakOptimization(void *arg) { |
| #if defined(_MSC_VER) && !defined(__clang__) |
| _ReadWriteBarrier(); |
| #else |
| __asm__ __volatile__("" : : "r" (arg) : "memory"); |
| #endif |
| } |
| |
| struct SignalContext { |
| void *siginfo; |
| void *context; |
| uptr addr; |
| uptr pc; |
| uptr sp; |
| uptr bp; |
| bool is_memory_access; |
| enum WriteFlag { Unknown, Read, Write } write_flag; |
| |
| // In some cases the kernel cannot provide the true faulting address; `addr` |
| // will be zero then. This field allows to distinguish between these cases |
| // and dereferences of null. |
| bool is_true_faulting_addr; |
| |
| // VS2013 doesn't implement unrestricted unions, so we need a trivial default |
| // constructor |
| SignalContext() = default; |
| |
| // Creates signal context in a platform-specific manner. |
| // SignalContext is going to keep pointers to siginfo and context without |
| // owning them. |
| SignalContext(void *siginfo, void *context) |
| : siginfo(siginfo), |
| context(context), |
| addr(GetAddress()), |
| is_memory_access(IsMemoryAccess()), |
| write_flag(GetWriteFlag()), |
| is_true_faulting_addr(IsTrueFaultingAddress()) { |
| InitPcSpBp(); |
| } |
| |
| static void DumpAllRegisters(void *context); |
| |
| // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. |
| int GetType() const; |
| |
| // String description of the signal. |
| const char *Describe() const; |
| |
| // Returns true if signal is stack overflow. |
| bool IsStackOverflow() const; |
| |
| private: |
| // Platform specific initialization. |
| void InitPcSpBp(); |
| uptr GetAddress() const; |
| WriteFlag GetWriteFlag() const; |
| bool IsMemoryAccess() const; |
| bool IsTrueFaultingAddress() const; |
| }; |
| |
| void InitializePlatformEarly(); |
| |
| template <typename Fn> |
| class RunOnDestruction { |
| public: |
| explicit RunOnDestruction(Fn fn) : fn_(fn) {} |
| ~RunOnDestruction() { fn_(); } |
| |
| private: |
| Fn fn_; |
| }; |
| |
| // A simple scope guard. Usage: |
| // auto cleanup = at_scope_exit([]{ do_cleanup; }); |
| template <typename Fn> |
| RunOnDestruction<Fn> at_scope_exit(Fn fn) { |
| return RunOnDestruction<Fn>(fn); |
| } |
| |
| // Linux on 64-bit s390 had a nasty bug that crashes the whole machine |
| // if a process uses virtual memory over 4TB (as many sanitizers like |
| // to do). This function will abort the process if running on a kernel |
| // that looks vulnerable. |
| #if SANITIZER_LINUX && SANITIZER_S390_64 |
| void AvoidCVE_2016_2143(); |
| #else |
| inline void AvoidCVE_2016_2143() {} |
| #endif |
| |
| struct StackDepotStats { |
| uptr n_uniq_ids; |
| uptr allocated; |
| }; |
| |
| // The default value for allocator_release_to_os_interval_ms common flag to |
| // indicate that sanitizer allocator should not attempt to release memory to OS. |
| const s32 kReleaseToOSIntervalNever = -1; |
| |
| void CheckNoDeepBind(const char *filename, int flag); |
| |
| // Returns the requested amount of random data (up to 256 bytes) that can then |
| // be used to seed a PRNG. Defaults to blocking like the underlying syscall. |
| bool GetRandom(void *buffer, uptr length, bool blocking = true); |
| |
| // Returns the number of logical processors on the system. |
| u32 GetNumberOfCPUs(); |
| extern u32 NumberOfCPUsCached; |
| inline u32 GetNumberOfCPUsCached() { |
| if (!NumberOfCPUsCached) |
| NumberOfCPUsCached = GetNumberOfCPUs(); |
| return NumberOfCPUsCached; |
| } |
| |
| template <typename T> |
| class ArrayRef { |
| public: |
| ArrayRef() {} |
| ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {} |
| |
| T *begin() { return begin_; } |
| T *end() { return end_; } |
| |
| private: |
| T *begin_ = nullptr; |
| T *end_ = nullptr; |
| }; |
| |
| } // namespace __sanitizer |
| |
| inline void *operator new(__sanitizer::operator_new_size_type size, |
| __sanitizer::LowLevelAllocator &alloc) { |
| return alloc.Allocate(size); |
| } |
| |
| #endif // SANITIZER_COMMON_H |