blob: 6c56f99f503df48fb7914dc9ff04252e162431c6 [file] [log] [blame]
//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These tablegen backends emit Clang attribute processing code
//
//===----------------------------------------------------------------------===//
#include "TableGenBackends.h"
#include "ASTTableGen.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class FlattenedSpelling {
std::string V, N, NS;
bool K = false;
const Record &OriginalSpelling;
public:
FlattenedSpelling(const std::string &Variety, const std::string &Name,
const std::string &Namespace, bool KnownToGCC,
const Record &OriginalSpelling)
: V(Variety), N(Name), NS(Namespace), K(KnownToGCC),
OriginalSpelling(OriginalSpelling) {}
explicit FlattenedSpelling(const Record &Spelling)
: V(std::string(Spelling.getValueAsString("Variety"))),
N(std::string(Spelling.getValueAsString("Name"))),
OriginalSpelling(Spelling) {
assert(V != "GCC" && V != "Clang" &&
"Given a GCC spelling, which means this hasn't been flattened!");
if (V == "CXX11" || V == "C23" || V == "Pragma")
NS = std::string(Spelling.getValueAsString("Namespace"));
}
const std::string &variety() const { return V; }
const std::string &name() const { return N; }
const std::string &nameSpace() const { return NS; }
bool knownToGCC() const { return K; }
const Record &getSpellingRecord() const { return OriginalSpelling; }
};
} // end anonymous namespace
static std::vector<FlattenedSpelling>
GetFlattenedSpellings(const Record &Attr) {
std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
std::vector<FlattenedSpelling> Ret;
for (const auto &Spelling : Spellings) {
StringRef Variety = Spelling->getValueAsString("Variety");
StringRef Name = Spelling->getValueAsString("Name");
if (Variety == "GCC") {
Ret.emplace_back("GNU", std::string(Name), "", true, *Spelling);
Ret.emplace_back("CXX11", std::string(Name), "gnu", true, *Spelling);
if (Spelling->getValueAsBit("AllowInC"))
Ret.emplace_back("C23", std::string(Name), "gnu", true, *Spelling);
} else if (Variety == "Clang") {
Ret.emplace_back("GNU", std::string(Name), "", false, *Spelling);
Ret.emplace_back("CXX11", std::string(Name), "clang", false, *Spelling);
if (Spelling->getValueAsBit("AllowInC"))
Ret.emplace_back("C23", std::string(Name), "clang", false, *Spelling);
} else
Ret.push_back(FlattenedSpelling(*Spelling));
}
return Ret;
}
static std::string ReadPCHRecord(StringRef type) {
return StringSwitch<std::string>(type)
.EndsWith("Decl *", "Record.GetLocalDeclAs<" +
std::string(type.data(), 0, type.size() - 1) +
">(Record.readInt())")
.Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
.Case("Expr *", "Record.readExpr()")
.Case("IdentifierInfo *", "Record.readIdentifier()")
.Case("StringRef", "Record.readString()")
.Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
.Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
.Default("Record.readInt()");
}
// Get a type that is suitable for storing an object of the specified type.
static StringRef getStorageType(StringRef type) {
return StringSwitch<StringRef>(type)
.Case("StringRef", "std::string")
.Default(type);
}
// Assumes that the way to get the value is SA->getname()
static std::string WritePCHRecord(StringRef type, StringRef name) {
return "Record." +
StringSwitch<std::string>(type)
.EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
.Case("TypeSourceInfo *",
"AddTypeSourceInfo(" + std::string(name) + ");\n")
.Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
.Case("IdentifierInfo *",
"AddIdentifierRef(" + std::string(name) + ");\n")
.Case("StringRef", "AddString(" + std::string(name) + ");\n")
.Case("ParamIdx",
"push_back(" + std::string(name) + ".serialize());\n")
.Case("OMPTraitInfo *",
"writeOMPTraitInfo(" + std::string(name) + ");\n")
.Default("push_back(" + std::string(name) + ");\n");
}
// Normalize attribute name by removing leading and trailing
// underscores. For example, __foo, foo__, __foo__ would
// become foo.
static StringRef NormalizeAttrName(StringRef AttrName) {
AttrName.consume_front("__");
AttrName.consume_back("__");
return AttrName;
}
// Normalize the name by removing any and all leading and trailing underscores.
// This is different from NormalizeAttrName in that it also handles names like
// _pascal and __pascal.
static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
return Name.trim("_");
}
// Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
// removing "__" if it appears at the beginning and end of the attribute's name.
static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
if (AttrSpelling.starts_with("__") && AttrSpelling.ends_with("__")) {
AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
}
return AttrSpelling;
}
typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
ParsedAttrMap *Dupes = nullptr,
bool SemaOnly = true) {
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::set<std::string> Seen;
ParsedAttrMap R;
for (const auto *Attr : Attrs) {
if (!SemaOnly || Attr->getValueAsBit("SemaHandler")) {
std::string AN;
if (Attr->isSubClassOf("TargetSpecificAttr") &&
!Attr->isValueUnset("ParseKind")) {
AN = std::string(Attr->getValueAsString("ParseKind"));
// If this attribute has already been handled, it does not need to be
// handled again.
if (Seen.find(AN) != Seen.end()) {
if (Dupes)
Dupes->push_back(std::make_pair(AN, Attr));
continue;
}
Seen.insert(AN);
} else
AN = NormalizeAttrName(Attr->getName()).str();
R.push_back(std::make_pair(AN, Attr));
}
}
return R;
}
namespace {
class Argument {
std::string lowerName, upperName;
StringRef attrName;
bool isOpt;
bool Fake;
public:
Argument(StringRef Arg, StringRef Attr)
: lowerName(std::string(Arg)), upperName(lowerName), attrName(Attr),
isOpt(false), Fake(false) {
if (!lowerName.empty()) {
lowerName[0] = std::tolower(lowerName[0]);
upperName[0] = std::toupper(upperName[0]);
}
// Work around MinGW's macro definition of 'interface' to 'struct'. We
// have an attribute argument called 'Interface', so only the lower case
// name conflicts with the macro definition.
if (lowerName == "interface")
lowerName = "interface_";
}
Argument(const Record &Arg, StringRef Attr)
: Argument(Arg.getValueAsString("Name"), Attr) {}
virtual ~Argument() = default;
StringRef getLowerName() const { return lowerName; }
StringRef getUpperName() const { return upperName; }
StringRef getAttrName() const { return attrName; }
bool isOptional() const { return isOpt; }
void setOptional(bool set) { isOpt = set; }
bool isFake() const { return Fake; }
void setFake(bool fake) { Fake = fake; }
// These functions print the argument contents formatted in different ways.
virtual void writeAccessors(raw_ostream &OS) const = 0;
virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
virtual void writeCloneArgs(raw_ostream &OS) const = 0;
virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
virtual void writeCtorBody(raw_ostream &OS) const {}
virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
virtual void writeCtorParameters(raw_ostream &OS) const = 0;
virtual void writeDeclarations(raw_ostream &OS) const = 0;
virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
virtual void writePCHWrite(raw_ostream &OS) const = 0;
virtual std::string getIsOmitted() const { return "false"; }
virtual void writeValue(raw_ostream &OS) const = 0;
virtual void writeDump(raw_ostream &OS) const = 0;
virtual void writeDumpChildren(raw_ostream &OS) const {}
virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
virtual bool isEnumArg() const { return false; }
virtual bool isVariadicEnumArg() const { return false; }
virtual bool isVariadic() const { return false; }
virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
OS << getUpperName();
}
};
class SimpleArgument : public Argument {
std::string type;
public:
SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), type(std::move(T)) {}
std::string getType() const { return type; }
void writeAccessors(raw_ostream &OS) const override {
OS << " " << type << " get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "()";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << type << " " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << type << " " << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
std::string read = ReadPCHRecord(type);
OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " "
<< WritePCHRecord(type,
"SA->get" + std::string(getUpperName()) + "()");
}
std::string getIsOmitted() const override {
auto IsOneOf = [](StringRef subject, auto... list) {
return ((subject == list) || ...);
};
if (IsOneOf(type, "IdentifierInfo *", "Expr *"))
return "!get" + getUpperName().str() + "()";
if (IsOneOf(type, "TypeSourceInfo *"))
return "!get" + getUpperName().str() + "Loc()";
if (IsOneOf(type, "ParamIdx"))
return "!get" + getUpperName().str() + "().isValid()";
assert(IsOneOf(type, "unsigned", "int", "bool", "FunctionDecl *",
"VarDecl *"));
return "false";
}
void writeValue(raw_ostream &OS) const override {
if (type == "FunctionDecl *")
OS << "\" << get" << getUpperName()
<< "()->getNameInfo().getAsString() << \"";
else if (type == "IdentifierInfo *")
// Some non-optional (comma required) identifier arguments can be the
// empty string but are then recorded as a nullptr.
OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
<< "()->getName() : \"\") << \"";
else if (type == "VarDecl *")
OS << "\" << get" << getUpperName() << "()->getName() << \"";
else if (type == "TypeSourceInfo *")
OS << "\" << get" << getUpperName() << "().getAsString() << \"";
else if (type == "ParamIdx")
OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
else
OS << "\" << get" << getUpperName() << "() << \"";
}
void writeDump(raw_ostream &OS) const override {
if (StringRef(type).ends_with("Decl *")) {
OS << " OS << \" \";\n";
OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
} else if (type == "IdentifierInfo *") {
// Some non-optional (comma required) identifier arguments can be the
// empty string but are then recorded as a nullptr.
OS << " if (SA->get" << getUpperName() << "())\n"
<< " OS << \" \" << SA->get" << getUpperName()
<< "()->getName();\n";
} else if (type == "TypeSourceInfo *") {
if (isOptional())
OS << " if (SA->get" << getUpperName() << "Loc())";
OS << " OS << \" \" << SA->get" << getUpperName()
<< "().getAsString();\n";
} else if (type == "bool") {
OS << " if (SA->get" << getUpperName() << "()) OS << \" "
<< getUpperName() << "\";\n";
} else if (type == "int" || type == "unsigned") {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
} else if (type == "ParamIdx") {
if (isOptional())
OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
OS << " OS << \" \" << SA->get" << getUpperName()
<< "().getSourceIndex();\n";
} else if (type == "OMPTraitInfo *") {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
} else {
llvm_unreachable("Unknown SimpleArgument type!");
}
}
};
class DefaultSimpleArgument : public SimpleArgument {
int64_t Default;
public:
DefaultSimpleArgument(const Record &Arg, StringRef Attr,
std::string T, int64_t Default)
: SimpleArgument(Arg, Attr, T), Default(Default) {}
void writeAccessors(raw_ostream &OS) const override {
SimpleArgument::writeAccessors(OS);
OS << "\n\n static const " << getType() << " Default" << getUpperName()
<< " = ";
if (getType() == "bool")
OS << (Default != 0 ? "true" : "false");
else
OS << Default;
OS << ";";
}
};
class StringArgument : public Argument {
public:
StringArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
OS << " return llvm::StringRef(" << getLowerName() << ", "
<< getLowerName() << "Length);\n";
OS << " }\n";
OS << " unsigned get" << getUpperName() << "Length() const {\n";
OS << " return " << getLowerName() << "Length;\n";
OS << " }\n";
OS << " void set" << getUpperName()
<< "(ASTContext &C, llvm::StringRef S) {\n";
OS << " " << getLowerName() << "Length = S.size();\n";
OS << " this->" << getLowerName() << " = new (C, 1) char ["
<< getLowerName() << "Length];\n";
OS << " if (!S.empty())\n";
OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
<< getLowerName() << "Length);\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "get" << getUpperName() << "()";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " if (!" << getUpperName() << ".empty())\n";
OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
<< ".data(), " << getLowerName() << "Length);\n";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
<< getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
<< "Length])";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "llvm::StringRef " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "unsigned " << getLowerName() << "Length;\n";
OS << "char *" << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " std::string " << getLowerName()
<< "= Record.readString();\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
}
void writeValue(raw_ostream &OS) const override {
OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
}
void writeDump(raw_ostream &OS) const override {
OS << " OS << \" \\\"\" << SA->get" << getUpperName()
<< "() << \"\\\"\";\n";
}
};
class AlignedArgument : public Argument {
public:
AlignedArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " bool is" << getUpperName() << "Dependent() const;\n";
OS << " bool is" << getUpperName() << "ErrorDependent() const;\n";
OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
OS << " bool is" << getUpperName() << "Expr() const {\n";
OS << " return is" << getLowerName() << "Expr;\n";
OS << " }\n";
OS << " Expr *get" << getUpperName() << "Expr() const {\n";
OS << " assert(is" << getLowerName() << "Expr);\n";
OS << " return " << getLowerName() << "Expr;\n";
OS << " }\n";
OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
OS << " assert(!is" << getLowerName() << "Expr);\n";
OS << " return " << getLowerName() << "Type;\n";
OS << " }";
OS << " std::optional<unsigned> getCached" << getUpperName()
<< "Value() const {\n";
OS << " return " << getLowerName() << "Cache;\n";
OS << " }";
OS << " void setCached" << getUpperName()
<< "Value(unsigned AlignVal) {\n";
OS << " " << getLowerName() << "Cache = AlignVal;\n";
OS << " }";
}
void writeAccessorDefinitions(raw_ostream &OS) const override {
OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
<< "Dependent() const {\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " return " << getLowerName() << "Expr && (" << getLowerName()
<< "Expr->isValueDependent() || " << getLowerName()
<< "Expr->isTypeDependent());\n";
OS << " else\n";
OS << " return " << getLowerName()
<< "Type->getType()->isDependentType();\n";
OS << "}\n";
OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
<< "ErrorDependent() const {\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " return " << getLowerName() << "Expr && " << getLowerName()
<< "Expr->containsErrors();\n";
OS << " return " << getLowerName()
<< "Type->getType()->containsErrors();\n";
OS << "}\n";
}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
StringRef Name = getUpperName();
OS << " if (A->is" << Name << "Expr()) {\n"
<< " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
<< " return false;\n"
<< " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
<< " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
<< " return false;\n"
<< " }\n";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr, is" << getLowerName()
<< "Expr ? static_cast<void*>(" << getLowerName()
<< "Expr) : " << getLowerName()
<< "Type";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
// FIXME: move the definition in Sema::InstantiateAttrs to here.
// In the meantime, aligned attributes are cloned.
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
<< getUpperName() << ");\n";
OS << " else\n";
OS << " " << getLowerName()
<< "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
<< ");\n";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr(false)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
}
void writeImplicitCtorArgs(raw_ostream &OS) const override {
OS << "Is" << getUpperName() << "Expr, " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "bool is" << getLowerName() << "Expr;\n";
OS << "union {\n";
OS << "Expr *" << getLowerName() << "Expr;\n";
OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
OS << "};\n";
OS << "std::optional<unsigned> " << getLowerName() << "Cache;\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
OS << " void *" << getLowerName() << "Ptr;\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
OS << " else\n";
OS << " " << getLowerName()
<< "Ptr = Record.readTypeSourceInfo();\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
OS << " if (SA->is" << getUpperName() << "Expr())\n";
OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
OS << " else\n";
OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
<< "Type());\n";
}
std::string getIsOmitted() const override {
return "!((is" + getLowerName().str() + "Expr && " +
getLowerName().str() + "Expr) || (!is" + getLowerName().str() +
"Expr && " + getLowerName().str() + "Type))";
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
OS << " if (is" << getLowerName() << "Expr && " << getLowerName()
<< "Expr)";
OS << " " << getLowerName()
<< "Expr->printPretty(OS, nullptr, Policy);\n";
OS << " if (!is" << getLowerName() << "Expr && " << getLowerName()
<< "Type)";
OS << " " << getLowerName()
<< "Type->getType().print(OS, Policy);\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " if (!SA->is" << getUpperName() << "Expr())\n";
OS << " dumpType(SA->get" << getUpperName()
<< "Type()->getType());\n";
}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " if (SA->is" << getUpperName() << "Expr())\n";
OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
}
void writeHasChildren(raw_ostream &OS) const override {
OS << "SA->is" << getUpperName() << "Expr()";
}
};
class VariadicArgument : public Argument {
std::string Type, ArgName, ArgSizeName, RangeName;
protected:
// Assumed to receive a parameter: raw_ostream OS.
virtual void writeValueImpl(raw_ostream &OS) const {
OS << " OS << Val;\n";
}
// Assumed to receive a parameter: raw_ostream OS.
virtual void writeDumpImpl(raw_ostream &OS) const {
OS << " OS << \" \" << Val;\n";
}
public:
VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), Type(std::move(T)),
ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
RangeName(std::string(getLowerName())) {}
VariadicArgument(StringRef Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), Type(std::move(T)),
ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
RangeName(std::string(getLowerName())) {}
const std::string &getType() const { return Type; }
const std::string &getArgName() const { return ArgName; }
const std::string &getArgSizeName() const { return ArgSizeName; }
bool isVariadic() const override { return true; }
void writeAccessors(raw_ostream &OS) const override {
std::string IteratorType = getLowerName().str() + "_iterator";
std::string BeginFn = getLowerName().str() + "_begin()";
std::string EndFn = getLowerName().str() + "_end()";
OS << " typedef " << Type << "* " << IteratorType << ";\n";
OS << " " << IteratorType << " " << BeginFn << " const {"
<< " return " << ArgName << "; }\n";
OS << " " << IteratorType << " " << EndFn << " const {"
<< " return " << ArgName << " + " << ArgSizeName << "; }\n";
OS << " unsigned " << getLowerName() << "_size() const {"
<< " return " << ArgSizeName << "; }\n";
OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
<< "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
<< "); }\n";
}
void writeSetter(raw_ostream &OS) const {
OS << " void set" << getUpperName() << "(ASTContext &Ctx, ";
writeCtorParameters(OS);
OS << ") {\n";
OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n";
OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "["
<< ArgSizeName << "];\n";
OS << " ";
writeCtorBody(OS);
OS << " }\n";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << ArgName << ", " << ArgSizeName;
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
// This isn't elegant, but we have to go through public methods...
OS << "A->" << getLowerName() << "_begin(), "
<< "A->" << getLowerName() << "_size()";
}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
// FIXME: Traverse the elements.
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
<< ArgSizeName << ", " << ArgName << ");\n";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << ArgSizeName << "(" << getUpperName() << "Size), "
<< ArgName << "(new (Ctx, 16) " << getType() << "["
<< ArgSizeName << "])";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << getType() << " *" << getUpperName() << ", unsigned "
<< getUpperName() << "Size";
}
void writeImplicitCtorArgs(raw_ostream &OS) const override {
OS << getUpperName() << ", " << getUpperName() << "Size";
}
void writeDeclarations(raw_ostream &OS) const override {
OS << " unsigned " << ArgSizeName << ";\n";
OS << " " << getType() << " *" << ArgName << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
OS << " SmallVector<" << getType() << ", 4> "
<< getLowerName() << ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
// If we can't store the values in the current type (if it's something
// like StringRef), store them in a different type and convert the
// container afterwards.
std::string StorageType = std::string(getStorageType(getType()));
std::string StorageName = std::string(getLowerName());
if (StorageType != getType()) {
StorageName += "Storage";
OS << " SmallVector<" << StorageType << ", 4> "
<< StorageName << ";\n";
OS << " " << StorageName << ".reserve(" << getLowerName()
<< "Size);\n";
}
OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
std::string read = ReadPCHRecord(Type);
OS << " " << StorageName << ".push_back(" << read << ");\n";
if (StorageType != getType()) {
OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
OS << " " << getLowerName() << ".push_back("
<< StorageName << "[i]);\n";
}
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName() << ".data(), " << getLowerName() << "Size";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (auto &Val : SA->" << RangeName << "())\n";
OS << " " << WritePCHRecord(Type, "Val");
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
OS << " for (const auto &Val : " << RangeName << "()) {\n"
<< " DelimitAttributeArgument(OS, IsFirstArgument);\n";
writeValueImpl(OS);
OS << " }\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " for (const auto &Val : SA->" << RangeName << "())\n";
writeDumpImpl(OS);
}
};
class VariadicOMPInteropInfoArgument : public VariadicArgument {
public:
VariadicOMPInteropInfoArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "OMPInteropInfo") {}
void writeDump(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I) {\n";
OS << " if (I->IsTarget && I->IsTargetSync)\n";
OS << " OS << \" Target_TargetSync\";\n";
OS << " else if (I->IsTarget)\n";
OS << " OS << \" Target\";\n";
OS << " else\n";
OS << " OS << \" TargetSync\";\n";
OS << " }\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
OS << " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
OS << " for (unsigned I = 0, E = " << getLowerName() << "Size; ";
OS << "I != E; ++I) {\n";
OS << " bool IsTarget = Record.readBool();\n";
OS << " bool IsTargetSync = Record.readBool();\n";
OS << " " << getLowerName()
<< ".emplace_back(IsTarget, IsTargetSync);\n";
OS << " }\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I) {\n";
OS << " Record.writeBool(I->IsTarget);\n";
OS << " Record.writeBool(I->IsTargetSync);\n";
OS << " }\n";
}
};
class VariadicParamIdxArgument : public VariadicArgument {
public:
VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "ParamIdx") {}
public:
void writeValueImpl(raw_ostream &OS) const override {
OS << " OS << Val.getSourceIndex();\n";
}
void writeDumpImpl(raw_ostream &OS) const override {
OS << " OS << \" \" << Val.getSourceIndex();\n";
}
};
struct VariadicParamOrParamIdxArgument : public VariadicArgument {
VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "int") {}
};
// Unique the enums, but maintain the original declaration ordering.
std::vector<StringRef>
uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
std::vector<StringRef> uniques;
SmallDenseSet<StringRef, 8> unique_set;
for (const auto &i : enums) {
if (unique_set.insert(i).second)
uniques.push_back(i);
}
return uniques;
}
class EnumArgument : public Argument {
std::string fullType;
StringRef shortType;
std::vector<StringRef> values, enums, uniques;
bool isExternal;
public:
EnumArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr), values(Arg.getValueAsListOfStrings("Values")),
enums(Arg.getValueAsListOfStrings("Enums")),
uniques(uniqueEnumsInOrder(enums)),
isExternal(Arg.getValueAsBit("IsExternalType")) {
StringRef Type = Arg.getValueAsString("Type");
shortType = isExternal ? Type.rsplit("::").second : Type;
// If shortType didn't contain :: at all rsplit will give us an empty
// string.
if (shortType.empty())
shortType = Type;
fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
// FIXME: Emit a proper error
assert(!uniques.empty());
}
bool isEnumArg() const override { return true; }
void writeAccessors(raw_ostream &OS) const override {
OS << " " << fullType << " get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << fullType << "(0))";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << fullType << " " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
if (!isExternal) {
auto i = uniques.cbegin(), e = uniques.cend();
// The last one needs to not have a comma.
--e;
OS << "public:\n";
OS << " enum " << shortType << " {\n";
for (; i != e; ++i)
OS << " " << *i << ",\n";
OS << " " << *e << "\n";
OS << " };\n";
}
OS << "private:\n";
OS << " " << fullType << " " << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " " << fullType << " " << getLowerName() << "(static_cast<"
<< fullType << ">(Record.readInt()));\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << "Record.push_back(static_cast<uint64_t>(SA->get" << getUpperName()
<< "()));\n";
}
void writeValue(raw_ostream &OS) const override {
// FIXME: this isn't 100% correct -- some enum arguments require printing
// as a string literal, while others require printing as an identifier.
// Tablegen currently does not distinguish between the two forms.
OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << shortType
<< "ToStr(get" << getUpperName() << "()) << \"\\\"";
}
void writeDump(raw_ostream &OS) const override {
OS << " switch(SA->get" << getUpperName() << "()) {\n";
for (const auto &I : uniques) {
OS << " case " << fullType << "::" << I << ":\n";
OS << " OS << \" " << I << "\";\n";
OS << " break;\n";
}
if (isExternal) {
OS << " default:\n";
OS << " llvm_unreachable(\"Invalid attribute value\");\n";
}
OS << " }\n";
}
void writeConversion(raw_ostream &OS, bool Header) const {
if (Header) {
OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
<< fullType << " &Out);\n";
OS << " static const char *Convert" << shortType << "ToStr("
<< fullType << " Val);\n";
return;
}
OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
<< "(StringRef Val, " << fullType << " &Out) {\n";
OS << " std::optional<" << fullType << "> "
<< "R = llvm::StringSwitch<std::optional<" << fullType << ">>(Val)\n";
for (size_t I = 0; I < enums.size(); ++I) {
OS << " .Case(\"" << values[I] << "\", ";
OS << fullType << "::" << enums[I] << ")\n";
}
OS << " .Default(std::optional<" << fullType << ">());\n";
OS << " if (R) {\n";
OS << " Out = *R;\n return true;\n }\n";
OS << " return false;\n";
OS << "}\n\n";
// Mapping from enumeration values back to enumeration strings isn't
// trivial because some enumeration values have multiple named
// enumerators, such as type_visibility(internal) and
// type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
<< "ToStr(" << fullType << " Val) {\n"
<< " switch(Val) {\n";
SmallDenseSet<StringRef, 8> Uniques;
for (size_t I = 0; I < enums.size(); ++I) {
if (Uniques.insert(enums[I]).second)
OS << " case " << fullType << "::" << enums[I] << ": return \""
<< values[I] << "\";\n";
}
if (isExternal) {
OS << " default: llvm_unreachable(\"Invalid attribute value\");\n";
}
OS << " }\n"
<< " llvm_unreachable(\"No enumerator with that value\");\n"
<< "}\n";
}
};
class VariadicEnumArgument: public VariadicArgument {
std::string fullType;
StringRef shortType;
std::vector<StringRef> values, enums, uniques;
bool isExternal;
protected:
void writeValueImpl(raw_ostream &OS) const override {
// FIXME: this isn't 100% correct -- some enum arguments require printing
// as a string literal, while others require printing as an identifier.
// Tablegen currently does not distinguish between the two forms.
OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert"
<< shortType << "ToStr(Val)"
<< "<< \"\\\"\";\n";
}
public:
VariadicEnumArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr,
std::string(Arg.getValueAsString("Type"))),
values(Arg.getValueAsListOfStrings("Values")),
enums(Arg.getValueAsListOfStrings("Enums")),
uniques(uniqueEnumsInOrder(enums)),
isExternal(Arg.getValueAsBit("IsExternalType")) {
StringRef Type = Arg.getValueAsString("Type");
shortType = isExternal ? Type.rsplit("::").second : Type;
// If shortType didn't contain :: at all rsplit will give us an empty
// string.
if (shortType.empty())
shortType = Type;
fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
// FIXME: Emit a proper error
assert(!uniques.empty());
}
bool isVariadicEnumArg() const override { return true; }
void writeDeclarations(raw_ostream &OS) const override {
if (!isExternal) {
auto i = uniques.cbegin(), e = uniques.cend();
// The last one needs to not have a comma.
--e;
OS << "public:\n";
OS << " enum " << shortType << " {\n";
for (; i != e; ++i)
OS << " " << *i << ",\n";
OS << " " << *e << "\n";
OS << " };\n";
}
OS << "private:\n";
VariadicArgument::writeDeclarations(OS);
}
void writeDump(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I) {\n";
OS << " switch(*I) {\n";
for (const auto &UI : uniques) {
OS << " case " << fullType << "::" << UI << ":\n";
OS << " OS << \" " << UI << "\";\n";
OS << " break;\n";
}
OS << " }\n";
OS << " }\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
OS << " SmallVector<" << fullType << ", 4> " << getLowerName()
<< ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
OS << " " << getLowerName() << ".push_back("
<< "static_cast<" << fullType << ">(Record.readInt()));\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
<< getLowerName() << "_end(); i != e; ++i)\n";
OS << " " << WritePCHRecord(fullType, "(*i)");
}
void writeConversion(raw_ostream &OS, bool Header) const {
if (Header) {
OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
<< fullType << " &Out);\n";
OS << " static const char *Convert" << shortType << "ToStr("
<< fullType << " Val);\n";
return;
}
OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
<< "(StringRef Val, ";
OS << fullType << " &Out) {\n";
OS << " std::optional<" << fullType
<< "> R = llvm::StringSwitch<std::optional<";
OS << fullType << ">>(Val)\n";
for (size_t I = 0; I < enums.size(); ++I) {
OS << " .Case(\"" << values[I] << "\", ";
OS << fullType << "::" << enums[I] << ")\n";
}
OS << " .Default(std::optional<" << fullType << ">());\n";
OS << " if (R) {\n";
OS << " Out = *R;\n return true;\n }\n";
OS << " return false;\n";
OS << "}\n\n";
OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
<< "ToStr(" << fullType << " Val) {\n"
<< " switch(Val) {\n";
SmallDenseSet<StringRef, 8> Uniques;
for (size_t I = 0; I < enums.size(); ++I) {
if (Uniques.insert(enums[I]).second)
OS << " case " << fullType << "::" << enums[I] << ": return \""
<< values[I] << "\";\n";
}
OS << " }\n"
<< " llvm_unreachable(\"No enumerator with that value\");\n"
<< "}\n";
}
};
class VersionArgument : public Argument {
public:
VersionArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " VersionTuple get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }\n";
OS << " void set" << getUpperName()
<< "(ASTContext &C, VersionTuple V) {\n";
OS << " " << getLowerName() << " = V;\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "get" << getUpperName() << "()";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "()";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "VersionTuple " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "VersionTuple " << getLowerName() << ";\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " VersionTuple " << getLowerName()
<< "= Record.readVersionTuple();\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
}
void writeValue(raw_ostream &OS) const override {
OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
}
};
class ExprArgument : public SimpleArgument {
public:
ExprArgument(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "Expr *")
{}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " if (!"
<< "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
OS << " return false;\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName();
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
OS << " {\n";
OS << " EnterExpressionEvaluationContext "
<< "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
OS << " ExprResult " << "Result = S.SubstExpr("
<< "A->get" << getUpperName() << "(), TemplateArgs);\n";
OS << " if (Result.isInvalid())\n";
OS << " return nullptr;\n";
OS << " tempInst" << getUpperName() << " = Result.get();\n";
OS << " }\n";
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
OS << " get" << getUpperName()
<< "()->printPretty(OS, nullptr, Policy);\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " Visit(SA->get" << getUpperName() << "());\n";
}
void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
};
class VariadicExprArgument : public VariadicArgument {
public:
VariadicExprArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "Expr *")
{}
VariadicExprArgument(StringRef ArgName, StringRef Attr)
: VariadicArgument(ArgName, Attr, "Expr *") {}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " {\n";
OS << " " << getType() << " *I = A->" << getLowerName()
<< "_begin();\n";
OS << " " << getType() << " *E = A->" << getLowerName()
<< "_end();\n";
OS << " for (; I != E; ++I) {\n";
OS << " if (!getDerived().TraverseStmt(*I))\n";
OS << " return false;\n";
OS << " }\n";
OS << " }\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName() << ", "
<< "A->" << getLowerName() << "_size()";
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " auto *tempInst" << getUpperName()
<< " = new (C, 16) " << getType()
<< "[A->" << getLowerName() << "_size()];\n";
OS << " {\n";
OS << " EnterExpressionEvaluationContext "
<< "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
OS << " " << getType() << " *TI = tempInst" << getUpperName()
<< ";\n";
OS << " " << getType() << " *I = A->" << getLowerName()
<< "_begin();\n";
OS << " " << getType() << " *E = A->" << getLowerName()
<< "_end();\n";
OS << " for (; I != E; ++I, ++TI) {\n";
OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
OS << " if (Result.isInvalid())\n";
OS << " return nullptr;\n";
OS << " *TI = Result.get();\n";
OS << " }\n";
OS << " }\n";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I)\n";
OS << " Visit(*I);\n";
}
void writeHasChildren(raw_ostream &OS) const override {
OS << "SA->" << getLowerName() << "_begin() != "
<< "SA->" << getLowerName() << "_end()";
}
};
class VariadicIdentifierArgument : public VariadicArgument {
public:
VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "IdentifierInfo *")
{}
};
class VariadicStringArgument : public VariadicArgument {
public:
VariadicStringArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "StringRef")
{}
void writeCtorBody(raw_ostream &OS) const override {
OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
" ++I) {\n"
" StringRef Ref = " << getUpperName() << "[I];\n"
" if (!Ref.empty()) {\n"
" char *Mem = new (Ctx, 1) char[Ref.size()];\n"
" std::memcpy(Mem, Ref.data(), Ref.size());\n"
" " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
" }\n"
" }\n";
}
void writeValueImpl(raw_ostream &OS) const override {
OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
}
};
class TypeArgument : public SimpleArgument {
public:
TypeArgument(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "TypeSourceInfo *")
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " QualType get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << "->getType();\n";
OS << " }";
OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
OS << " return false;\n";
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " " << getType() << " tempInst" << getUpperName() << " =\n";
OS << " S.SubstType(A->get" << getUpperName() << "Loc(), "
<< "TemplateArgs, A->getLoc(), A->getAttrName());\n";
OS << " if (!tempInst" << getUpperName() << ")\n";
OS << " return nullptr;\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " "
<< WritePCHRecord(getType(),
"SA->get" + std::string(getUpperName()) + "Loc()");
}
};
class WrappedAttr : public SimpleArgument {
public:
WrappedAttr(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "Attr *") {}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " Attr *" << getLowerName() << " = Record.readAttr();";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " AddAttr(SA->get" << getUpperName() << "());";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " Visit(SA->get" << getUpperName() << "());\n";
}
void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
};
} // end anonymous namespace
static std::unique_ptr<Argument>
createArgument(const Record &Arg, StringRef Attr,
const Record *Search = nullptr) {
if (!Search)
Search = &Arg;
std::unique_ptr<Argument> Ptr;
llvm::StringRef ArgName = Search->getName();
if (ArgName == "AlignedArgument")
Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
else if (ArgName == "EnumArgument")
Ptr = std::make_unique<EnumArgument>(Arg, Attr);
else if (ArgName == "ExprArgument")
Ptr = std::make_unique<ExprArgument>(Arg, Attr);
else if (ArgName == "DeclArgument")
Ptr = std::make_unique<SimpleArgument>(
Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
else if (ArgName == "IdentifierArgument")
Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
else if (ArgName == "DefaultBoolArgument")
Ptr = std::make_unique<DefaultSimpleArgument>(
Arg, Attr, "bool", Arg.getValueAsBit("Default"));
else if (ArgName == "BoolArgument")
Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
else if (ArgName == "DefaultIntArgument")
Ptr = std::make_unique<DefaultSimpleArgument>(
Arg, Attr, "int", Arg.getValueAsInt("Default"));
else if (ArgName == "IntArgument")
Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
else if (ArgName == "StringArgument")
Ptr = std::make_unique<StringArgument>(Arg, Attr);
else if (ArgName == "TypeArgument")
Ptr = std::make_unique<TypeArgument>(Arg, Attr);
else if (ArgName == "UnsignedArgument")
Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
else if (ArgName == "VariadicUnsignedArgument")
Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
else if (ArgName == "VariadicStringArgument")
Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
else if (ArgName == "VariadicEnumArgument")
Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
else if (ArgName == "VariadicExprArgument")
Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
else if (ArgName == "VariadicParamIdxArgument")
Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
else if (ArgName == "VariadicParamOrParamIdxArgument")
Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
else if (ArgName == "ParamIdxArgument")
Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
else if (ArgName == "VariadicIdentifierArgument")
Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
else if (ArgName == "VersionArgument")
Ptr = std::make_unique<VersionArgument>(Arg, Attr);
else if (ArgName == "WrappedAttr")
Ptr = std::make_unique<WrappedAttr>(Arg, Attr);
else if (ArgName == "OMPTraitInfoArgument")
Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
else if (ArgName == "VariadicOMPInteropInfoArgument")
Ptr = std::make_unique<VariadicOMPInteropInfoArgument>(Arg, Attr);
if (!Ptr) {
// Search in reverse order so that the most-derived type is handled first.
ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
for (const auto &Base : llvm::reverse(Bases)) {
if ((Ptr = createArgument(Arg, Attr, Base.first)))
break;
}
}
if (Ptr && Arg.getValueAsBit("Optional"))
Ptr->setOptional(true);
if (Ptr && Arg.getValueAsBit("Fake"))
Ptr->setFake(true);
return Ptr;
}
static void writeAvailabilityValue(raw_ostream &OS) {
OS << "\" << getPlatform()->getName();\n"
<< " if (getStrict()) OS << \", strict\";\n"
<< " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
<< " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
<< " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
<< " if (getUnavailable()) OS << \", unavailable\";\n"
<< " OS << \"";
}
static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
OS << "\\\"\" << getMessage() << \"\\\"\";\n";
// Only GNU deprecated has an optional fixit argument at the second position.
if (Variety == "GNU")
OS << " if (!getReplacement().empty()) OS << \", \\\"\""
" << getReplacement() << \"\\\"\";\n";
OS << " OS << \"";
}
static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
if (Spellings.empty()) {
OS << " return \"(No spelling)\";\n}\n\n";
return;
}
OS << " switch (getAttributeSpellingListIndex()) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute spelling!\");\n"
" return \"(No spelling)\";\n";
for (unsigned I = 0; I < Spellings.size(); ++I)
OS << " case " << I << ":\n"
" return \"" << Spellings[I].name() << "\";\n";
// End of the switch statement.
OS << " }\n";
// End of the getSpelling function.
OS << "}\n\n";
}
static void
writePrettyPrintFunction(const Record &R,
const std::vector<std::unique_ptr<Argument>> &Args,
raw_ostream &OS) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << "void " << R.getName() << "Attr::printPretty("
<< "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
if (Spellings.empty()) {
OS << "}\n\n";
return;
}
OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
<< " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
<< " switch (getAttributeSpellingListIndex()) {\n"
<< " default:\n"
<< " llvm_unreachable(\"Unknown attribute spelling!\");\n"
<< " break;\n";
for (unsigned I = 0; I < Spellings.size(); ++ I) {
llvm::SmallString<16> Prefix;
llvm::SmallString<8> Suffix;
// The actual spelling of the name and namespace (if applicable)
// of an attribute without considering prefix and suffix.
llvm::SmallString<64> Spelling;
std::string Name = Spellings[I].name();
std::string Variety = Spellings[I].variety();
if (Variety == "GNU") {
Prefix = "__attribute__((";
Suffix = "))";
} else if (Variety == "CXX11" || Variety == "C23") {
Prefix = "[[";
Suffix = "]]";
std::string Namespace = Spellings[I].nameSpace();
if (!Namespace.empty()) {
Spelling += Namespace;
Spelling += "::";
}
} else if (Variety == "Declspec") {
Prefix = "__declspec(";
Suffix = ")";
} else if (Variety == "Microsoft") {
Prefix = "[";
Suffix = "]";
} else if (Variety == "Keyword") {
Prefix = " ";
Suffix = "";
} else if (Variety == "Pragma") {
Prefix = "#pragma ";
Suffix = "\n";
std::string Namespace = Spellings[I].nameSpace();
if (!Namespace.empty()) {
Spelling += Namespace;
Spelling += " ";
}
} else if (Variety == "HLSLSemantic") {
Prefix = ":";
Suffix = "";
} else {
llvm_unreachable("Unknown attribute syntax variety!");
}
Spelling += Name;
OS << " case " << I << " : {\n"
<< " OS << \"" << Prefix << Spelling << "\";\n";
if (Variety == "Pragma") {
OS << " printPrettyPragma(OS, Policy);\n";
OS << " OS << \"\\n\";";
OS << " break;\n";
OS << " }\n";
continue;
}
if (Spelling == "availability") {
OS << " OS << \"(";
writeAvailabilityValue(OS);
OS << ")\";\n";
} else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
OS << " OS << \"(";
writeDeprecatedAttrValue(OS, Variety);
OS << ")\";\n";
} else {
// To avoid printing parentheses around an empty argument list or
// printing spurious commas at the end of an argument list, we need to
// determine where the last provided non-fake argument is.
bool FoundNonOptArg = false;
for (const auto &arg : llvm::reverse(Args)) {
if (arg->isFake())
continue;
if (FoundNonOptArg)
continue;
// FIXME: arg->getIsOmitted() == "false" means we haven't implemented
// any way to detect whether the argument was omitted.
if (!arg->isOptional() || arg->getIsOmitted() == "false") {
FoundNonOptArg = true;
continue;
}
OS << " if (" << arg->getIsOmitted() << ")\n"
<< " ++TrailingOmittedArgs;\n";
}
unsigned ArgIndex = 0;
for (const auto &arg : Args) {
if (arg->isFake())
continue;
std::string IsOmitted = arg->getIsOmitted();
if (arg->isOptional() && IsOmitted != "false")
OS << " if (!(" << IsOmitted << ")) {\n";
// Variadic arguments print their own leading comma.
if (!arg->isVariadic())
OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
OS << " OS << \"";
arg->writeValue(OS);
OS << "\";\n";
if (arg->isOptional() && IsOmitted != "false")
OS << " }\n";
++ArgIndex;
}
if (ArgIndex != 0)
OS << " if (!IsFirstArgument)\n"
<< " OS << \")\";\n";
}
OS << " OS << \"" << Suffix << "\";\n"
<< " break;\n"
<< " }\n";
}
// End of the switch statement.
OS << "}\n";
// End of the print function.
OS << "}\n\n";
}
/// Return the index of a spelling in a spelling list.
static unsigned
getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
const FlattenedSpelling &Spelling) {
assert(!SpellingList.empty() && "Spelling list is empty!");
for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
const FlattenedSpelling &S = SpellingList[Index];
if (S.variety() != Spelling.variety())
continue;
if (S.nameSpace() != Spelling.nameSpace())
continue;
if (S.name() != Spelling.name())
continue;
return Index;
}
llvm_unreachable("Unknown spelling!");
}
static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
if (Accessors.empty())
return;
const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
assert(!SpellingList.empty() &&
"Attribute with empty spelling list can't have accessors!");
for (const auto *Accessor : Accessors) {
const StringRef Name = Accessor->getValueAsString("Name");
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
OS << " bool " << Name
<< "() const { return getAttributeSpellingListIndex() == ";
for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
OS << getSpellingListIndex(SpellingList, Spellings[Index]);
if (Index != Spellings.size() - 1)
OS << " ||\n getAttributeSpellingListIndex() == ";
else
OS << "; }\n";
}
}
}
static bool
SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
assert(!Spellings.empty() && "An empty list of spellings was provided");
std::string FirstName =
std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
for (const auto &Spelling : llvm::drop_begin(Spellings)) {
std::string Name =
std::string(NormalizeNameForSpellingComparison(Spelling.name()));
if (Name != FirstName)
return false;
}
return true;
}
typedef std::map<unsigned, std::string> SemanticSpellingMap;
static std::string
CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
SemanticSpellingMap &Map) {
// The enumerants are automatically generated based on the variety,
// namespace (if present) and name for each attribute spelling. However,
// care is taken to avoid trampling on the reserved namespace due to
// underscores.
std::string Ret(" enum Spelling {\n");
std::set<std::string> Uniques;
unsigned Idx = 0;
// If we have a need to have this many spellings we likely need to add an
// extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
// value of SpellingNotCalculated there and here.
assert(Spellings.size() < 15 &&
"Too many spellings, would step on SpellingNotCalculated in "
"AttributeCommonInfo");
for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
const FlattenedSpelling &S = *I;
const std::string &Variety = S.variety();
const std::string &Spelling = S.name();
const std::string &Namespace = S.nameSpace();
std::string EnumName;
EnumName += (Variety + "_");
if (!Namespace.empty())
EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
"_");
EnumName += NormalizeNameForSpellingComparison(Spelling);
// Even if the name is not unique, this spelling index corresponds to a
// particular enumerant name that we've calculated.
Map[Idx] = EnumName;
// Since we have been stripping underscores to avoid trampling on the
// reserved namespace, we may have inadvertently created duplicate
// enumerant names. These duplicates are not considered part of the
// semantic spelling, and can be elided.
if (Uniques.find(EnumName) != Uniques.end())
continue;
Uniques.insert(EnumName);
if (I != Spellings.begin())
Ret += ",\n";
// Duplicate spellings are not considered part of the semantic spelling
// enumeration, but the spelling index and semantic spelling values are
// meant to be equivalent, so we must specify a concrete value for each
// enumerator.
Ret += " " + EnumName + " = " + llvm::utostr(Idx);
}
Ret += ",\n SpellingNotCalculated = 15\n";
Ret += "\n };\n\n";
return Ret;
}
void WriteSemanticSpellingSwitch(const std::string &VarName,
const SemanticSpellingMap &Map,
raw_ostream &OS) {
OS << " switch (" << VarName << ") {\n default: "
<< "llvm_unreachable(\"Unknown spelling list index\");\n";
for (const auto &I : Map)
OS << " case " << I.first << ": return " << I.second << ";\n";
OS << " }\n";
}
// Emits the LateParsed property for attributes.
static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
bool LateParsed = Attr->getValueAsBit("LateParsed");
if (LateParsed) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
// FIXME: Handle non-GNU attributes
for (const auto &I : Spellings) {
if (I.variety() != "GNU")
continue;
OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
}
}
}
OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
}
static bool hasGNUorCXX11Spelling(const Record &Attribute) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
for (const auto &I : Spellings) {
if (I.variety() == "GNU" || I.variety() == "CXX11")
return true;
}
return false;
}
namespace {
struct AttributeSubjectMatchRule {
const Record *MetaSubject;
const Record *Constraint;
AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
: MetaSubject(MetaSubject), Constraint(Constraint) {
assert(MetaSubject && "Missing subject");
}
bool isSubRule() const { return Constraint != nullptr; }
std::vector<Record *> getSubjects() const {
return (Constraint ? Constraint : MetaSubject)
->getValueAsListOfDefs("Subjects");
}
std::vector<Record *> getLangOpts() const {
if (Constraint) {
// Lookup the options in the sub-rule first, in case the sub-rule
// overrides the rules options.
std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
if (!Opts.empty())
return Opts;
}
return MetaSubject->getValueAsListOfDefs("LangOpts");
}
// Abstract rules are used only for sub-rules
bool isAbstractRule() const { return getSubjects().empty(); }
StringRef getName() const {
return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
}
bool isNegatedSubRule() const {
assert(isSubRule() && "Not a sub-rule");
return Constraint->getValueAsBit("Negated");
}
std::string getSpelling() const {
std::string Result = std::string(MetaSubject->getValueAsString("Name"));
if (isSubRule()) {
Result += '(';
if (isNegatedSubRule())
Result += "unless(";
Result += getName();
if (isNegatedSubRule())
Result += ')';
Result += ')';
}
return Result;
}
std::string getEnumValueName() const {
SmallString<128> Result;
Result += "SubjectMatchRule_";
Result += MetaSubject->getValueAsString("Name");
if (isSubRule()) {
Result += "_";
if (isNegatedSubRule())
Result += "not_";
Result += Constraint->getValueAsString("Name");
}
if (isAbstractRule())
Result += "_abstract";
return std::string(Result);
}
std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
static const char *EnumName;
};
const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
struct PragmaClangAttributeSupport {
std::vector<AttributeSubjectMatchRule> Rules;
class RuleOrAggregateRuleSet {
std::vector<AttributeSubjectMatchRule> Rules;
bool IsRule;
RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
bool IsRule)
: Rules(Rules), IsRule(IsRule) {}
public:
bool isRule() const { return IsRule; }
const AttributeSubjectMatchRule &getRule() const {
assert(IsRule && "not a rule!");
return Rules[0];
}
ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
return Rules;
}
static RuleOrAggregateRuleSet
getRule(const AttributeSubjectMatchRule &Rule) {
return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
}
static RuleOrAggregateRuleSet
getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
}
};
llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
PragmaClangAttributeSupport(RecordKeeper &Records);
bool isAttributedSupported(const Record &Attribute);
void emitMatchRuleList(raw_ostream &OS);
void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
void generateParsingHelpers(raw_ostream &OS);
};
} // end anonymous namespace
static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
// FIXME: #pragma clang attribute does not currently support statement
// attributes, so test whether the subject is one that appertains to a
// declaration node. However, it may be reasonable for support for statement
// attributes to be added.
if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
Subject.getName() == "DeclBase")
return true;
if (Subject.isSubClassOf("SubsetSubject"))
return isSupportedPragmaClangAttributeSubject(
*Subject.getValueAsDef("Base"));
return false;
}
static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
if (!CurrentBase)
return false;
if (CurrentBase == Base)
return true;
return doesDeclDeriveFrom(CurrentBase, Base);
}
PragmaClangAttributeSupport::PragmaClangAttributeSupport(
RecordKeeper &Records) {
std::vector<Record *> MetaSubjects =
Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
const Record *MetaSubject,
const Record *Constraint) {
Rules.emplace_back(MetaSubject, Constraint);
std::vector<Record *> ApplicableSubjects =
SubjectContainer->getValueAsListOfDefs("Subjects");
for (const auto *Subject : ApplicableSubjects) {
bool Inserted =
SubjectsToRules
.try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
AttributeSubjectMatchRule(MetaSubject,
Constraint)))
.second;
if (!Inserted) {
PrintFatalError("Attribute subject match rules should not represent"
"same attribute subjects.");
}
}
};
for (const auto *MetaSubject : MetaSubjects) {
MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
std::vector<Record *> Constraints =
MetaSubject->getValueAsListOfDefs("Constraints");
for (const auto *Constraint : Constraints)
MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
}
std::vector<Record *> Aggregates =
Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
std::vector<Record *> DeclNodes =
Records.getAllDerivedDefinitions(DeclNodeClassName);
for (const auto *Aggregate : Aggregates) {
Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
// Gather sub-classes of the aggregate subject that act as attribute
// subject rules.
std::vector<AttributeSubjectMatchRule> Rules;
for (const auto *D : DeclNodes) {
if (doesDeclDeriveFrom(D, SubjectDecl)) {
auto It = SubjectsToRules.find(D);
if (It == SubjectsToRules.end())
continue;
if (!It->second.isRule() || It->second.getRule().isSubRule())
continue; // Assume that the rule will be included as well.
Rules.push_back(It->second.getRule());
}
}
bool Inserted =
SubjectsToRules
.try_emplace(SubjectDecl,
RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
.second;
if (!Inserted) {
PrintFatalError("Attribute subject match rules should not represent"
"same attribute subjects.");
}
}
}
static PragmaClangAttributeSupport &
getPragmaAttributeSupport(RecordKeeper &Records) {
static PragmaClangAttributeSupport Instance(Records);
return Instance;
}
void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
"IsNegated) "
<< "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
OS << "#endif\n";
for (const auto &Rule : Rules) {
OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
<< Rule.isAbstractRule();
if (Rule.isSubRule())
OS << ", "
<< AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
<< ", " << Rule.isNegatedSubRule();
OS << ")\n";
}
OS << "#undef ATTR_MATCH_SUB_RULE\n";
}
bool PragmaClangAttributeSupport::isAttributedSupported(
const Record &Attribute) {
// If the attribute explicitly specified whether to support #pragma clang
// attribute, use that setting.
bool Unset;
bool SpecifiedResult =
Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
if (!Unset)
return SpecifiedResult;
// Opt-out rules:
// An attribute requires delayed parsing (LateParsed is on)
if (Attribute.getValueAsBit("LateParsed"))
return false;
// An attribute has no GNU/CXX11 spelling
if (!hasGNUorCXX11Spelling(Attribute))
return false;
// An attribute subject list has a subject that isn't covered by one of the
// subject match rules or has no subjects at all.
if (Attribute.isValueUnset("Subjects"))
return false;
const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
bool HasAtLeastOneValidSubject = false;
for (const auto *Subject : Subjects) {
if (!isSupportedPragmaClangAttributeSubject(*Subject))
continue;
if (!SubjectsToRules.contains(Subject))
return false;
HasAtLeastOneValidSubject = true;
}
return HasAtLeastOneValidSubject;
}
static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
std::string Test;
for (auto *E : LangOpts) {
if (!Test.empty())
Test += " || ";
const StringRef Code = E->getValueAsString("CustomCode");
if (!Code.empty()) {
Test += "(";
Test += Code;
Test += ")";
if (!E->getValueAsString("Name").empty()) {
PrintWarning(
E->getLoc(),
"non-empty 'Name' field ignored because 'CustomCode' was supplied");
}
} else {
Test += "LangOpts.";
Test += E->getValueAsString("Name");
}
}
if (Test.empty())
return "true";
return Test;
}
void
PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
raw_ostream &OS) {
if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
return;
// Generate a function that constructs a set of matching rules that describe
// to which declarations the attribute should apply to.
OS << "void getPragmaAttributeMatchRules("
<< "llvm::SmallVectorImpl<std::pair<"
<< AttributeSubjectMatchRule::EnumName
<< ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
const Record *SubjectObj = Attr.getValueAsDef("Subjects");
std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
for (const auto *Subject : Subjects) {
if (!isSupportedPragmaClangAttributeSubject(*Subject))
continue;
auto It = SubjectsToRules.find(Subject);
assert(It != SubjectsToRules.end() &&
"This attribute is unsupported by #pragma clang attribute");
for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
// The rule might be language specific, so only subtract it from the given
// rules if the specific language options are specified.
std::vector<Record *> LangOpts = Rule.getLangOpts();
OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
<< ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
<< "));\n";
}
}
OS << "}\n\n";
}
void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
// Generate routines that check the names of sub-rules.
OS << "std::optional<attr::SubjectMatchRule> "
"defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
OS << " return std::nullopt;\n";
OS << "}\n\n";
llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
SubMatchRules;
for (const auto &Rule : Rules) {
if (!Rule.isSubRule())
continue;
SubMatchRules[Rule.MetaSubject].push_back(Rule);
}
for (const auto &SubMatchRule : SubMatchRules) {
OS << "std::optional<attr::SubjectMatchRule> "
"isAttributeSubjectMatchSubRuleFor_"
<< SubMatchRule.first->getValueAsString("Name")
<< "(StringRef Name, bool IsUnless) {\n";
OS << " if (IsUnless)\n";
OS << " return "
"llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
for (const auto &Rule : SubMatchRule.second) {
if (Rule.isNegatedSubRule())
OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
<< ").\n";
}
OS << " Default(std::nullopt);\n";
OS << " return "
"llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
for (const auto &Rule : SubMatchRule.second) {
if (!Rule.isNegatedSubRule())
OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
<< ").\n";
}
OS << " Default(std::nullopt);\n";
OS << "}\n\n";
}
// Generate the function that checks for the top-level rules.
OS << "std::pair<std::optional<attr::SubjectMatchRule>, "
"std::optional<attr::SubjectMatchRule> (*)(StringRef, "
"bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
OS << " return "
"llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, "
"std::optional<attr::SubjectMatchRule> (*) (StringRef, "
"bool)>>(Name).\n";
for (const auto &Rule : Rules) {
if (Rule.isSubRule())
continue;
std::string SubRuleFunction;
if (SubMatchRules.count(Rule.MetaSubject))
SubRuleFunction =
("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
else
SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
<< Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
}
OS << " Default(std::make_pair(std::nullopt, "
"defaultIsAttributeSubjectMatchSubRuleFor));\n";
OS << "}\n\n";
// Generate the function that checks for the submatch rules.
OS << "const char *validAttributeSubjectMatchSubRules("
<< AttributeSubjectMatchRule::EnumName << " Rule) {\n";
OS << " switch (Rule) {\n";
for (const auto &SubMatchRule : SubMatchRules) {
OS << " case "
<< AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
<< ":\n";
OS << " return \"'";
bool IsFirst = true;
for (const auto &Rule : SubMatchRule.second) {
if (!IsFirst)
OS << ", '";
IsFirst = false;
if (Rule.isNegatedSubRule())
OS << "unless(";
OS << Rule.getName();
if (Rule.isNegatedSubRule())
OS << ')';
OS << "'";
}
OS << "\";\n";
}
OS << " default: return nullptr;\n";
OS << " }\n";
OS << "}\n\n";
}
template <typename Fn>
static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
SmallDenseSet<StringRef, 8> Seen;
for (const FlattenedSpelling &S : Spellings) {
if (Seen.insert(S.name()).second)
F(S);
}
}
static bool isTypeArgument(const Record *Arg) {
return !Arg->getSuperClasses().empty() &&
Arg->getSuperClasses().back().first->getName() == "TypeArgument";
}
/// Emits the first-argument-is-type property for attributes.
static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
// Determine whether the first argument is a type.
std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
if (Args.empty())
continue;
if (!isTypeArgument(Args[0]))
continue;
// All these spellings take a single type argument.
forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
});
}
OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
}
/// Emits the parse-arguments-in-unevaluated-context property for
/// attributes.
static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &Attr = *I.second;
if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
continue;
// All these spellings take are parsed unevaluated.
forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
});
}
OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
}
static bool isIdentifierArgument(const Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
.Case("IdentifierArgument", true)
.Case("EnumArgument", true)
.Case("VariadicEnumArgument", true)
.Default(false);
}
static bool isVariadicIdentifierArgument(const Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(
Arg->getSuperClasses().back().first->getName())
.Case("VariadicIdentifierArgument", true)
.Case("VariadicParamOrParamIdxArgument", true)
.Default(false);
}
static bool isVariadicExprArgument(const Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(
Arg->getSuperClasses().back().first->getName())
.Case("VariadicExprArgument", true)
.Default(false);
}
static bool isStringLiteralArgument(const Record *Arg) {
if (Arg->getSuperClasses().empty())
return false;
StringRef ArgKind = Arg->getSuperClasses().back().first->getName();
if (ArgKind == "EnumArgument")
return Arg->getValueAsBit("IsString");
return ArgKind == "StringArgument";
}
static bool isVariadicStringLiteralArgument(const Record *Arg) {
if (Arg->getSuperClasses().empty())
return false;
StringRef ArgKind = Arg->getSuperClasses().back().first->getName();
if (ArgKind == "VariadicEnumArgument")
return Arg->getValueAsBit("IsString");
return ArgKind == "VariadicStringArgument";
}
static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *A : Attrs) {
// Determine whether the first argument is a variadic identifier.
std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
continue;
// All these spellings take an identifier argument.
forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", "
<< "true"
<< ")\n";
});
}
OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
}
static bool GenerateTargetSpecificAttrChecks(const Record *R,
std::vector<StringRef> &Arches,
std::string &Test,
std::string *FnName);
// Emits the list of arguments that should be parsed as unevaluated string
// literals for each attribute.
static void emitClangAttrUnevaluatedStringLiteralList(RecordKeeper &Records,
raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_STRING_LITERAL_ARG_LIST)\n";
auto MakeMask = [](ArrayRef<Record *> Args) {
uint32_t Bits = 0;
assert(Args.size() <= 32 && "unsupported number of arguments in attribute");
for (uint32_t N = 0; N < Args.size(); ++N) {
Bits |= (isStringLiteralArgument(Args[N]) << N);
// If we have a variadic string argument, set all the remaining bits to 1
if (isVariadicStringLiteralArgument(Args[N])) {
Bits |= maskTrailingZeros<decltype(Bits)>(N);
break;
}
}
return Bits;
};
auto AddMaskWithTargetCheck = [](const Record *Attr, uint32_t Mask,
std::string &MaskStr) {
const Record *T = Attr->getValueAsDef("Target");
std::vector<StringRef> Arches = T->getValueAsListOfStrings("Arches");
std::string Test;
GenerateTargetSpecificAttrChecks(T, Arches, Test, nullptr);
MaskStr.append(Test + " ? " + std::to_string(Mask) + " : ");
};
ParsedAttrMap Dupes;
ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes, /*SemaOnly=*/false);
for (const auto &[AttrName, Attr] : Attrs) {
std::string MaskStr;
if (Attr->isSubClassOf("TargetSpecificAttr") &&
!Attr->isValueUnset("ParseKind")) {
if (uint32_t Mask = MakeMask(Attr->getValueAsListOfDefs("Args")))
AddMaskWithTargetCheck(Attr, Mask, MaskStr);
StringRef ParseKind = Attr->getValueAsString("ParseKind");
for (const auto &[DupeParseKind, DupAttr] : Dupes) {
if (DupeParseKind != ParseKind)
continue;
if (uint32_t Mask = MakeMask(DupAttr->getValueAsListOfDefs("Args")))
AddMaskWithTargetCheck(DupAttr, Mask, MaskStr);
}
if (!MaskStr.empty())
MaskStr.append("0");
} else {
if (uint32_t Mask = MakeMask(Attr->getValueAsListOfDefs("Args")))
MaskStr = std::to_string(Mask);
}
if (MaskStr.empty())
continue;
// All these spellings have at least one string literal has argument.
forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << MaskStr << ")\n";
});
}
OS << "#endif // CLANG_ATTR_STRING_LITERAL_ARG_LIST\n\n";
}
// Emits the first-argument-is-identifier property for attributes.
static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
// Determine whether the first argument is an identifier.
std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
if (Args.empty() || !isIdentifierArgument(Args[0]))
continue;
// All these spellings take an identifier argument.
forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
});
}
OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
}
static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(
Arg->getSuperClasses().back().first->getName())
.Case("VariadicParamOrParamIdxArgument", true)
.Default(false);
}
static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *A : Attrs) {
// Determine whether the first argument is a variadic identifier.
std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
continue;
// All these spellings take an identifier argument.
forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", "
<< "true"
<< ")\n";
});
}
OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
}
static void emitClangAttrAcceptsExprPack(RecordKeeper &Records,
raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &Attr = *I.second;
if (!Attr.getValueAsBit("AcceptsExprPack"))
continue;
forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", true)\n";
});
}
OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
}
static bool isRegularKeywordAttribute(const FlattenedSpelling &S) {
return (S.variety() == "Keyword" &&
!S.getSpellingRecord().getValueAsBit("HasOwnParseRules"));
}
static void emitFormInitializer(raw_ostream &OS,
const FlattenedSpelling &Spelling,
StringRef SpellingIndex) {
bool IsAlignas =
(Spelling.variety() == "Keyword" && Spelling.name() == "alignas");
OS << "{AttributeCommonInfo::AS_" << Spelling.variety() << ", "
<< SpellingIndex << ", " << (IsAlignas ? "true" : "false")
<< " /*IsAlignas*/, "
<< (isRegularKeywordAttribute(Spelling) ? "true" : "false")
<< " /*IsRegularKeywordAttribute*/}";
}
static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
bool Header) {
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
ParsedAttrMap AttrMap = getParsedAttrList(Records);
// Helper to print the starting character of an attribute argument. If there
// hasn't been an argument yet, it prints an opening parenthese; otherwise it
// prints a comma.
OS << "static inline void DelimitAttributeArgument("
<< "raw_ostream& OS, bool& IsFirst) {\n"
<< " if (IsFirst) {\n"
<< " IsFirst = false;\n"
<< " OS << \"(\";\n"
<< " } else\n"
<< " OS << \", \";\n"
<< "}\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
// FIXME: Currently, documentation is generated as-needed due to the fact
// that there is no way to allow a generated project "reach into" the docs
// directory (for instance, it may be an out-of-tree build). However, we want
// to ensure that every attribute has a Documentation field, and produce an
// error if it has been neglected. Otherwise, the on-demand generation which
// happens server-side will fail. This code is ensuring that functionality,
// even though this Emitter doesn't technically need the documentation.
// When attribute documentation can be generated as part of the build
// itself, this code can be removed.
(void)R.getValueAsListOfDefs("Documentation");
if (!R.getValueAsBit("ASTNode"))
continue;
ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
std::string SuperName;
bool Inheritable = false;
for (const auto &Super : llvm::reverse(Supers)) {
const Record *R = Super.first;
if (R->getName() != "TargetSpecificAttr" &&
R->getName() != "DeclOrTypeAttr" && SuperName.empty())
SuperName = std::string(R->getName());
if (R->getName() == "InheritableAttr")
Inheritable = true;
}
if (Header)
OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
else
OS << "\n// " << R.getName() << "Attr implementation\n\n";
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
Args.reserve(ArgRecords.size());
bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack");
if (AttrAcceptsExprPack) {
for (size_t I = 0; I < ArgRecords.size(); ++I) {
const Record *ArgR = ArgRecords[I];
if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) ||
isTypeArgument(ArgR))
PrintFatalError(Attr->getLoc(),
"Attributes accepting packs cannot also "
"have identifier or type arguments.");
// When trying to determine if value-dependent expressions can populate
// the attribute without prior instantiation, the decision is made based
// on the assumption that only the last argument is ever variadic.
if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR))
PrintFatalError(Attr->getLoc(),
"Attributes accepting packs can only have the last "
"argument be variadic.");
}
}
bool HasOptArg = false;
bool HasFakeArg = false;
for (const auto *ArgRecord : ArgRecords) {
Args.emplace_back(createArgument(*ArgRecord, R.getName()));
if (Header) {
Args.back()->writeDeclarations(OS);
OS << "\n\n";
}
// For these purposes, fake takes priority over optional.
if (Args.back()->isFake()) {
HasFakeArg = true;
} else if (Args.back()->isOptional()) {
HasOptArg = true;
}
}
std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr;
if (AttrAcceptsExprPack) {
DelayedArgs =
std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
if (Header) {
DelayedArgs->writeDeclarations(OS);
OS << "\n\n";
}
}
if (Header)
OS << "public:\n";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
// If there are zero or one spellings, all spelling-related functionality
// can be elided. If all of the spellings share the same name, the spelling
// functionality can also be elided.
bool ElideSpelling = (Spellings.size() <= 1) ||
SpellingNamesAreCommon(Spellings);
// This maps spelling index values to semantic Spelling enumerants.
SemanticSpellingMap SemanticToSyntacticMap;
std::string SpellingEnum;
if (Spellings.size() > 1)
SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
if (Header)
OS << SpellingEnum;
const auto &ParsedAttrSpellingItr = llvm::find_if(
AttrMap, [R](const std::pair<std::string, const Record *> &P) {
return &R == P.second;
});
// Emit CreateImplicit factory methods.
auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) {
if (Header)
OS << " static ";
OS << R.getName() << "Attr *";
if (!Header)
OS << R.getName() << "Attr::";
OS << "Create";
if (Implicit)
OS << "Implicit";
if (DelayedArgsOnly)
OS << "WithDelayedArgs";
OS << "(";
OS << "ASTContext &Ctx";
if (!DelayedArgsOnly) {
for (auto const &ai : Args) {
if (ai->isFake() && !emitFake)
continue;
OS << ", ";
ai->writeCtorParameters(OS);
}
} else {
OS << ", ";
DelayedArgs->writeCtorParameters(OS);
}
OS << ", const AttributeCommonInfo &CommonInfo";
OS << ")";
if (Header) {
OS << ";\n";
return;
}
OS << " {\n";
OS << " auto *A = new (Ctx) " << R.getName();
OS << "Attr(Ctx, CommonInfo";
if (!DelayedArgsOnly) {
for (auto const &ai : Args) {
if (ai->isFake() && !emitFake)
continue;
OS << ", ";
ai->writeImplicitCtorArgs(OS);
}
}
OS << ");\n";
if (Implicit) {
OS << " A->setImplicit(true);\n";
}
if (Implicit || ElideSpelling) {
OS << " if (!A->isAttributeSpellingListCalculated() && "
"!A->getAttrName())\n";
OS << " A->setAttributeSpellingListIndex(0);\n";
}
if (DelayedArgsOnly) {
OS << " A->setDelayedArgs(Ctx, ";
DelayedArgs->writeImplicitCtorArgs(OS);
OS << ");\n";
}
OS << " return A;\n}\n\n";
};
auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly,
bool emitFake) {
if (Header)
OS << " static ";
OS << R.getName() << "Attr *";
if (!Header)
OS << R.getName() << "Attr::";
OS << "Create";
if (Implicit)
OS << "Implicit";
if (DelayedArgsOnly)
OS << "WithDelayedArgs";
OS << "(";
OS << "ASTContext &Ctx";
if (!DelayedArgsOnly) {
for (auto const &ai : Args) {
if (ai->isFake() && !emitFake)
continue;
OS << ", ";
ai->writeCtorParameters(OS);
}
} else {
OS << ", ";
DelayedArgs->writeCtorParameters(OS);
}
OS << ", SourceRange Range";
if (Header)
OS << " = {}";
if (Spellings.size() > 1) {
OS << ", Spelling S";
if (Header)
OS << " = " << SemanticToSyntacticMap[0];
}
OS << ")";
if (Header) {
OS << ";\n";
return;
}
OS << " {\n";
OS << " AttributeCommonInfo I(Range, ";
if (ParsedAttrSpellingItr != std::end(AttrMap))
OS << "AT_" << ParsedAttrSpellingItr->first;
else
OS << "NoSemaHandlerAttribute";
if (Spellings.size() == 0) {
OS << ", AttributeCommonInfo::Form::Implicit()";
} else if (Spellings.size() == 1) {
OS << ", ";
emitFormInitializer(OS, Spellings[0], "0");
} else {
OS << ", [&]() {\n";
OS << " switch (S) {\n";
std::set<std::string> Uniques;
unsigned Idx = 0;
for (auto I = Spellings.begin(), E = Spellings.end(); I != E;
++I, ++Idx) {
const FlattenedSpelling &S = *I;
const auto &Name = SemanticToSyntacticMap[Idx];
if (Uniques.insert(Name).second) {
OS << " case " << Name << ":\n";
OS << " return AttributeCommonInfo::Form";
emitFormInitializer(OS, S, Name);
OS << ";\n";
}
}
OS << " default:\n";
OS << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
<< " return AttributeCommonInfo::Form";
emitFormInitializer(OS, Spellings[0], "0");
OS << ";\n"
<< " }\n"
<< " }()";
}
OS << ");\n";
OS << " return Create";
if (Implicit)
OS << "Implicit";
if (DelayedArgsOnly)
OS << "WithDelayedArgs";
OS << "(Ctx";
if (!DelayedArgsOnly) {
for (auto const &ai : Args) {
if (ai->isFake() && !emitFake)
continue;
OS << ", ";
ai->writeImplicitCtorArgs(OS);
}
} else {
OS << ", ";
DelayedArgs->writeImplicitCtorArgs(OS);
}
OS << ", I);\n";
OS << "}\n\n";
};
auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) {
emitCreate(true, DelayedArgsOnly, emitFake);
emitCreate(false, DelayedArgsOnly, emitFake);
emitCreateNoCI(true, DelayedArgsOnly, emitFake);
emitCreateNoCI(false, DelayedArgsOnly, emitFake);
};
if (Header)
OS << " // Factory methods\n";
// Emit a CreateImplicit that takes all the arguments.
emitCreates(false, true);
// Emit a CreateImplicit that takes all the non-fake arguments.
if (HasFakeArg)
emitCreates(false, false);
// Emit a CreateWithDelayedArgs that takes only the dependent argument
// expressions.
if (DelayedArgs)
emitCreates(true, false);
// Emit constructors.
auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) {
auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
if (emitNoArgs)
return false;
if (arg->isFake())
return emitFake;
if (arg->isOptional())
return emitOpt;
return true;
};
if (Header)
OS << " ";
else
OS << R.getName() << "Attr::";
OS << R.getName()
<< "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
OS << '\n';
for (auto const &ai : Args) {
if (!shouldEmitArg(ai))
continue;
OS << " , ";
ai->writeCtorParameters(OS);
OS << "\n";
}
OS << " )";
if (Header) {
OS << ";\n";
return;
}
OS << "\n : " << SuperName << "(Ctx, CommonInfo, ";
OS << "attr::" << R.getName() << ", "
<< (R.getValueAsBit("LateParsed") ? "true" : "false");
if (Inheritable) {
OS << ", "
<< (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
: "false");
}
OS << ")\n";
for (auto const &ai : Args) {
OS << " , ";
if (!shouldEmitArg(ai)) {
ai->writeCtorDefaultInitializers(OS);
} else {
ai->writeCtorInitializers(OS);
}
OS << "\n";
}
if (DelayedArgs) {
OS << " , ";
DelayedArgs->writeCtorDefaultInitializers(OS);
OS << "\n";
}
OS << " {\n";
for (auto const &ai : Args) {
if (!shouldEmitArg(ai))
continue;
ai->writeCtorBody(OS);
}
OS << "}\n\n";
};
if (Header)
OS << "\n // Constructors\n";
// Emit a constructor that includes all the arguments.
// This is necessary for cloning.
emitCtor(true, true, false);
// Emit a constructor that takes all the non-fake arguments.
if (HasFakeArg)
emitCtor(true, false, false);
// Emit a constructor that takes all the non-fake, non-optional arguments.
if (HasOptArg)
emitCtor(false, false, false);
// Emit constructors that takes no arguments if none already exists.
// This is used for delaying arguments.
bool HasRequiredArgs =
llvm::count_if(Args, [=](const std::unique_ptr<Argument> &arg) {
return !arg->isFake() && !arg->isOptional();
});
if (DelayedArgs && HasRequiredArgs)
emitCtor(false, false, true);
if (Header) {
OS << '\n';
OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
OS << " void printPretty(raw_ostream &OS,\n"
<< " const PrintingPolicy &Policy) const;\n";
OS << " const char *getSpelling() const;\n";
}
if (!ElideSpelling) {
assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
if (Header)
OS << " Spelling getSemanticSpelling() const;\n";
else {
OS << R.getName() << "Attr::Spelling " << R.getName()
<< "Attr::getSemanticSpelling() const {\n";
WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
SemanticToSyntacticMap, OS);
OS << "}\n";
}
}
if (Header)
writeAttrAccessorDefinition(R, OS);
for (auto const &ai : Args) {
if (Header) {
ai->writeAccessors(OS);
} else {
ai->writeAccessorDefinitions(OS);
}
OS << "\n\n";
// Don't write conversion routines for fake arguments.
if (ai->isFake()) continue;
if (ai->isEnumArg())
static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
Header);
else if (ai->isVariadicEnumArg())
static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
OS, Header);
}
if (Header) {
if (DelayedArgs) {
DelayedArgs->writeAccessors(OS);
DelayedArgs->writeSetter(OS);
}
OS << R.getValueAsString("AdditionalMembers");
OS << "\n\n";
OS << " static bool classof(const Attr *A) { return A->getKind() == "
<< "attr::" << R.getName() << "; }\n";
OS << "};\n\n";
} else {
if (DelayedArgs)
DelayedArgs->writeAccessorDefinitions(OS);
OS << R.getName() << "Attr *" << R.getName()
<< "Attr::clone(ASTContext &C) const {\n";
OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this";
for (auto const &ai : Args) {
OS << ", ";
ai->writeCloneArgs(OS);
}
OS << ");\n";
OS << " A->Inherited = Inherited;\n";
OS << " A->IsPackExpansion = IsPackExpansion;\n";
OS << " A->setImplicit(Implicit);\n";
if (DelayedArgs) {
OS << " A->setDelayedArgs(C, ";
DelayedArgs->writeCloneArgs(OS);
OS << ");\n";
}
OS << " return A;\n}\n\n";
writePrettyPrintFunction(R, Args, OS);
writeGetSpellingFunction(R, OS);
}
}
}
// Emits the class definitions for attributes.
void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute classes' definitions", OS, Records);
OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
emitAttributes(Records, OS, true);
OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
}
// Emits the class method definitions for attributes.
void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute classes' member function definitions", OS,
Records);
emitAttributes(Records, OS, false);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
// Instead of relying on virtual dispatch we just create a huge dispatch
// switch. This is both smaller and faster than virtual functions.
auto EmitFunc = [&](const char *Method) {
OS << " switch (getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ":\n";
OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
<< ";\n";
}
OS << " }\n";
OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
OS << "}\n\n";
};
OS << "const char *Attr::getSpelling() const {\n";
EmitFunc("getSpelling()");
OS << "Attr *Attr::clone(ASTContext &C) const {\n";
EmitFunc("clone(C)");
OS << "void Attr::printPretty(raw_ostream &OS, "
"const PrintingPolicy &Policy) const {\n";
EmitFunc("printPretty(OS, Policy)");
}
static void emitAttrList(raw_ostream &OS, StringRef Class,
const std::vector<Record*> &AttrList) {
for (auto Cur : AttrList) {
OS << Class << "(" << Cur->getName() << ")\n";
}
}
// Determines if an attribute has a Pragma spelling.
static bool AttrHasPragmaSpelling(const Record *R) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
return llvm::any_of(Spellings, [](const FlattenedSpelling &S) {
return S.variety() == "Pragma";
});
}
namespace {
struct AttrClassDescriptor {
const char * const MacroName;
const char * const TableGenName;
};
} // end anonymous namespace
static const AttrClassDescriptor AttrClassDescriptors[] = {
{ "ATTR", "Attr" },
{ "TYPE_ATTR", "TypeAttr" },
{ "STMT_ATTR", "StmtAttr" },
{ "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
{ "INHERITABLE_ATTR", "InheritableAttr" },
{ "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
{ "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
{ "PARAMETER_ABI_ATTR", "ParameterABIAttr" },
{ "HLSL_ANNOTATION_ATTR", "HLSLAnnotationAttr"}
};
static void emitDefaultDefine(raw_ostream &OS, StringRef name,
const char *superName) {
OS << "#ifndef " << name << "\n";
OS << "#define " << name << "(NAME) ";
if (superName) OS << superName << "(NAME)";
OS << "\n#endif\n\n";
}
namespace {
/// A class of attributes.
struct AttrClass {
const AttrClassDescriptor &Descriptor;
Record *TheRecord;
AttrClass *SuperClass = nullptr;
std::vector<AttrClass*> SubClasses;
std::vector<Record*> Attrs;
AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
: Descriptor(Descriptor), TheRecord(R) {}
void emitDefaultDefines(raw_ostream &OS) const {
// Default the macro unless this is a root class (i.e. Attr).
if (SuperClass) {
emitDefaultDefine(OS, Descriptor.MacroName,
SuperClass->Descriptor.MacroName);
}
}
void emitUndefs(raw_ostream &OS) const {
OS << "#undef " << Descriptor.MacroName << "\n";
}
void emitAttrList(raw_ostream &OS) const {
for (auto SubClass : SubClasses) {
SubClass->emitAttrList(OS);
}
::emitAttrList(OS, Descriptor.MacroName, Attrs);
}
void classifyAttrOnRoot(Record *Attr) {
bool result = classifyAttr(Attr);
assert(result && "failed to classify on root"); (void) result;
}
void emitAttrRange(raw_ostream &OS) const {
OS << "ATTR_RANGE(" << Descriptor.TableGenName
<< ", " << getFirstAttr()->getName()
<< ", " << getLastAttr()->getName() << ")\n";
}
private:
bool classifyAttr(Record *Attr) {
// Check all the subclasses.
for (auto SubClass : SubClasses) {
if (SubClass->classifyAttr(Attr))
return true;
}
// It's not more specific than this class, but it might still belong here.
if (Attr->isSubClassOf(TheRecord)) {
Attrs.push_back(Attr);
return true;
}
return false;
}
Record *getFirstAttr() const {
if (!SubClasses.empty())
return SubClasses.front()->getFirstAttr();
return Attrs.front();
}
Record *getLastAttr() const {
if (!Attrs.empty())
return Attrs.back();
return SubClasses.back()->getLastAttr();
}
};
/// The entire hierarchy of attribute classes.
class AttrClassHierarchy {
std::vector<std::unique_ptr<AttrClass>> Classes;
public:
AttrClassHierarchy(RecordKeeper &Records) {
// Find records for all the classes.
for (auto &Descriptor : AttrClassDescriptors) {
Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
Classes.emplace_back(Class);
}
// Link up the hierarchy.
for (auto &Class : Classes) {
if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
Class->SuperClass = SuperClass;
SuperClass->SubClasses.push_back(Class.get());
}
}
#ifndef NDEBUG
for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
"only the first class should be a root class!");
}
#endif
}
void emitDefaultDefines(raw_ostream &OS) const {
for (auto &Class : Classes) {
Class->emitDefaultDefines(OS);
}
}
void emitUndefs(raw_ostream &OS) const {
for (auto &Class : Classes) {
Class->emitUndefs(OS);
}
}
void emitAttrLists(raw_ostream &OS) const {
// Just start from the root class.
Classes[0]->emitAttrList(OS);
}
void emitAttrRanges(raw_ostream &OS) const {
for (auto &Class : Classes)
Class->emitAttrRange(OS);
}
void classifyAttr(Record *Attr) {
// Add the attribute to the root class.
Classes[0]->classifyAttrOnRoot(Attr);
}
private:
AttrClass *findClassByRecord(Record *R) const {
for (auto &Class : Classes) {
if (Class->TheRecord == R)
return Class.get();
}
return nullptr;
}
AttrClass *findSuperClass(Record *R) const {
// TableGen flattens the superclass list, so we just need to walk it
// in reverse.
auto SuperClasses = R->getSuperClasses();
for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
if (SuperClass) return SuperClass;
}
return nullptr;
}
};
} // end anonymous namespace
namespace clang {
// Emits the enumeration list for attributes.
void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
Records);
AttrClassHierarchy Hierarchy(Records);
// Add defaulting macro definitions.
Hierarchy.emitDefaultDefines(OS);
emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<Record *> PragmaAttrs;
for (auto *Attr : Attrs) {
if (!Attr->getValueAsBit("ASTNode"))
continue;
// Add the attribute to the ad-hoc groups.
if (AttrHasPragmaSpelling(Attr))
PragmaAttrs.push_back(Attr);
// Place it in the hierarchy.
Hierarchy.classifyAttr(Attr);
}
// Emit the main attribute list.
Hierarchy.emitAttrLists(OS);
// Emit the ad hoc groups.
emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
// Emit the attribute ranges.
OS << "#ifdef ATTR_RANGE\n";
Hierarchy.emitAttrRanges(OS);
OS << "#undef ATTR_RANGE\n";
OS << "#endif\n";
Hierarchy.emitUndefs(OS);
OS << "#undef PRAGMA_SPELLING_ATTR\n";
}
// Emits the enumeration list for attributes.
void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader(
"List of all attribute subject matching rules that Clang recognizes", OS,
Records);
PragmaClangAttributeSupport &PragmaAttributeSupport =
getPragmaAttributeSupport(Records);
emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
PragmaAttributeSupport.emitMatchRuleList(OS);
OS << "#undef ATTR_MATCH_RULE\n";
}
// Emits the code to read an attribute from a precompiled header.
void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute deserialization code", OS, Records);
Record *InhClass = Records.getClass("InheritableAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
ArgRecords;
std::vector<std::unique_ptr<Argument>> Args;
std::unique_ptr<VariadicExprArgument> DelayedArgs;
OS << " switch (Kind) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
if (R.isSubClassOf(InhClass))
OS << " bool isInherited = Record.readInt();\n";
OS << " bool isImplicit = Record.readInt();\n";
OS << " bool isPackExpansion = Record.readInt();\n";
DelayedArgs = nullptr;
if (Attr->getValueAsBit("AcceptsExprPack")) {
DelayedArgs =
std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
DelayedArgs->writePCHReadDecls(OS);
}
ArgRecords = R.getValueAsListOfDefs("Args");
Args.clear();
for (const auto *Arg : ArgRecords) {
Args.emplace_back(createArgument(*Arg, R.getName()));
Args.back()->writePCHReadDecls(OS);
}
OS << " New = new (Context) " << R.getName() << "Attr(Context, Info";
for (auto const &ri : Args) {
OS << ", ";
ri->writePCHReadArgs(OS);
}
OS << ");\n";
if (R.isSubClassOf(InhClass))
OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
OS << " New->setImplicit(isImplicit);\n";
OS << " New->setPackExpansion(isPackExpansion);\n";
if (DelayedArgs) {
OS << " cast<" << R.getName()
<< "Attr>(New)->setDelayedArgs(Context, ";
DelayedArgs->writePCHReadArgs(OS);
OS << ");\n";
}
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
}
// Emits the code to write an attribute to a precompiled header.
void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute serialization code", OS, Records);
Record *InhClass = Records.getClass("InheritableAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
OS << " switch (A->getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
Args = R.getValueAsListOfDefs("Args");
if (R.isSubClassOf(InhClass) || !Args.empty())
OS << " const auto *SA = cast<" << R.getName()
<< "Attr>(A);\n";
if (R.isSubClassOf(InhClass))
OS << " Record.push_back(SA->isInherited());\n";
OS << " Record.push_back(A->isImplicit());\n";
OS << " Record.push_back(A->isPackExpansion());\n";
if (Attr->getValueAsBit("AcceptsExprPack"))
VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS);
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writePCHWrite(OS);
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
}
} // namespace clang
// Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
// parameter with only a single check type, if applicable.
static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
std::string *FnName,
StringRef ListName,
StringRef CheckAgainst,
StringRef Scope) {
if (!R->isValueUnset(ListName)) {
Test += " && (";
std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
StringRef Part = *I;
Test += CheckAgainst;
Test += " == ";
Test += Scope;
Test += Part;
if (I + 1 != E)
Test += " || ";
if (FnName)
*FnName += Part;
}
Test += ")";
return true;
}
return false;
}
// Generate a conditional expression to check if the current target satisfies
// the conditions for a TargetSpecificAttr record, and append the code for
// those checks to the Test string. If the FnName string pointer is non-null,
// append a unique suffix to distinguish this set of target checks from other
// TargetSpecificAttr records.
static bool GenerateTargetSpecificAttrChecks(const Record *R,
std::vector<StringRef> &Arches,
std::string &Test,
std::string *FnName) {
bool AnyTargetChecks = false;
// It is assumed that there will be an llvm::Triple object
// named "T" and a TargetInfo object named "Target" within
// scope that can be used to determine whether the attribute exists in
// a given target.
Test += "true";
// If one or more architectures is specified, check those. Arches are handled
// differently because GenerateTargetRequirements needs to combine the list
// with ParseKind.
if (!Arches.empty()) {
AnyTargetChecks = true;
Test += " && (";
for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
StringRef Part = *I;
Test += "T.getArch() == llvm::Triple::";
Test += Part;
if (I + 1 != E)
Test += " || ";
if (FnName)
*FnName += Part;
}
Test += ")";
}
// If the attribute is specific to particular OSes, check those.
AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
// If one or more object formats is specified, check those.
AnyTargetChecks |=
GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
"T.getObjectFormat()", "llvm::Triple::");
// If custom code is specified, emit it.
StringRef Code = R->getValueAsString("CustomCode");
if (!Code.empty()) {
AnyTargetChecks = true;
Test += " && (";
Test += Code;
Test += ")";
}
return AnyTargetChecks;
}
static void GenerateHasAttrSpellingStringSwitch(
const std::vector<std::pair<const Record *, FlattenedSpelling>> &Attrs,
raw_ostream &OS, const std::string &Variety,
const std::string &Scope = "") {
for (const auto &[Attr, Spelling] : Attrs) {
// C++11-style attributes have specific version information associated with
// them. If the attribute has no scope, the version information must not
// have the default value (1), as that's incorrect. Instead, the unscoped
// attribute version information should be taken from the SD-6 standing
// document, which can be found at:
// https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
//
// C23-style attributes have the same kind of version information
// associated with them. The unscoped attribute version information should
// be taken from the specification of the attribute in the C Standard.
//
// Clang-specific attributes have the same kind of version information
// associated with them. This version is typically the default value (1).
// These version values are clang-specific and should typically be
// incremented once the attribute changes its syntax and/or semantics in a
// a way that is impactful to the end user.
int Version = 1;
assert(Spelling.variety() == Variety);
std::string Name = "";
if (Spelling.nameSpace().empty() || Scope == Spelling.nameSpace()) {
Name = Spelling.name();
Version = static_cast<int>(
Spelling.getSpellingRecord().getValueAsInt("Version"));
// Verify that explicitly specified CXX11 and C23 spellings (i.e.
// not inferred from Clang/GCC spellings) have a version that's
// different from the default (1).
bool RequiresValidVersion =
(Variety == "CXX11" || Variety == "C23") &&
Spelling.getSpellingRecord().getValueAsString("Variety") == Variety;
if (RequiresValidVersion && Scope.empty() && Version == 1)
PrintError(Spelling.getSpellingRecord().getLoc(),
"Standard attributes must have "
"valid version information.");
}
std::string Test;
if (Attr->isSubClassOf("TargetSpecificAttr")) {
const Record *R = Attr->getValueAsDef("Target");
std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
} else if (!Attr->getValueAsListOfDefs("TargetSpecificSpellings").empty()) {
// Add target checks if this spelling is target-specific.
const std::vector<Record *> TargetSpellings =
Attr->getValueAsListOfDefs("TargetSpecificSpellings");
for (const auto &TargetSpelling : TargetSpellings) {
// Find spelling that matches current scope and name.
for (const auto &Spelling : GetFlattenedSpellings(*TargetSpelling)) {
if (Scope == Spelling.nameSpace() && Name == Spelling.name()) {
const Record *Target = TargetSpelling->getValueAsDef("Target");
std::vector<StringRef> Arches =
Target->getValueAsListOfStrings("Arches");
GenerateTargetSpecificAttrChecks(Target, Arches, Test,
/*FnName=*/nullptr);
break;
}
}
}
}
std::string TestStr = !Test.empty()
? Test + " ? " + llvm::itostr(Version) + " : 0"
: llvm::itostr(Version);
if (Scope.empty() || Scope == Spelling.nameSpace())
OS << " .Case(\"" << Spelling.name() << "\", " << TestStr << ")\n";
}
OS << " .Default(0);\n";
}
namespace clang {
// Emits list of regular keyword attributes with info about their arguments.
void EmitClangRegularKeywordAttributeInfo(RecordKeeper &Records,
raw_ostream &OS) {
emitSourceFileHeader(
"A list of regular keyword attributes generated from the attribute"
" definitions",
OS);
// Assume for now that the same token is not used in multiple regular
// keyword attributes.
for (auto *R : Records.getAllDerivedDefinitions("Attr"))
for (const auto &S : GetFlattenedSpellings(*R)) {
if (!isRegularKeywordAttribute(S))
continue;
std::vector<Record *> Args = R->getValueAsListOfDefs("Args");
bool HasArgs = llvm::any_of(
Args, [](const Record *Arg) { return !Arg->getValueAsBit("Fake"); });
OS << "KEYWORD_ATTRIBUTE("
<< S.getSpellingRecord().getValueAsString("Name") << ", "
<< (HasArgs ? "true" : "false") << ", )\n";
}
OS << "#undef KEYWORD_ATTRIBUTE\n";
}
// Emits the list of spellings for attributes.
void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Code to implement the __has_attribute logic", OS,
Records);
// Separate all of the attributes out into four group: generic, C++11, GNU,
// and declspecs. Then generate a big switch statement for each of them.
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<std::pair<const Record *, FlattenedSpelling>> Declspec, Microsoft,
GNU, Pragma, HLSLSemantic;
std::map<std::string,
std::vector<std::pair<const Record *, FlattenedSpelling>>>
CXX, C23;
// Walk over the list of all attributes, and split them out based on the
// spelling variety.
for (auto *R : Attrs) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
for (const auto &SI : Spellings) {
const std::string &Variety = SI.variety();
if (Variety == "GNU")
GNU.emplace_back(R, SI);
else if (Variety == "Declspec")
Declspec.emplace_back(R, SI);
else if (Variety == "Microsoft")
Microsoft.emplace_back(R, SI);
else if (Variety == "CXX11")
CXX[SI.nameSpace()].emplace_back(R, SI);
else if (Variety == "C23")
C23[SI.nameSpace()].emplace_back(R, SI);
else if (Variety == "Pragma")
Pragma.emplace_back(R, SI);
else if (Variety == "HLSLSemantic")
HLSLSemantic.emplace_back(R, SI);
}
}
OS << "const llvm::Triple &T = Target.getTriple();\n";
OS << "switch (Syntax) {\n";
OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
OS << "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(HLSLSemantic, OS, "HLSLSemantic");
auto fn = [&OS](const char *Spelling,
const std::map<
std::string,
std::vector<std::pair<const Record *, FlattenedSpelling>>>
&List) {
OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n";
// C++11-style attributes are further split out based on the Scope.
for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
if (I != List.cbegin())
OS << " else ";
if (I->first.empty())
OS << "if (ScopeName == \"\") {\n";
else
OS << "if (ScopeName == \"" << I->first << "\") {\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
OS << "}";
}
OS << "\n} break;\n";
};
fn("CXX11", CXX);
fn("C23", C23);
OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
OS << " return 0;\n";
OS << "case AttributeCommonInfo::Syntax::AS_Implicit:\n";
OS << " llvm_unreachable (\"hasAttribute not supported for "
"AS_Implicit\");\n";
OS << " return 0;\n";
OS << "}\n";
}
void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Code to translate different attribute spellings into "
"internal identifiers",
OS, Records);
OS << " switch (getParsedKind()) {\n";
OS << " case IgnoredAttribute:\n";
OS << " case UnknownAttribute:\n";
OS << " case NoSemaHandlerAttribute:\n";
OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &R = *I.second;
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << " case AT_" << I.first << ": {\n";
for (unsigned I = 0; I < Spellings.size(); ++ I) {
OS << " if (Name == \"" << Spellings[I].name() << "\" && "
<< "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
<< " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
<< " return " << I << ";\n";
}
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
OS << " return 0;\n";
}
// Emits code used by RecursiveASTVisitor to visit attributes
void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS,
Records);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
// Write method declarations for Traverse* methods.
// We emit this here because we only generate methods for attributes that
// are declared as ASTNodes.
OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " bool Traverse"
<< R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
OS << " bool Visit"
<< R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
<< " return true; \n"
<< " }\n";
}
OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
// Write individual Traverse* methods for each attribute class.
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << "template <typename Derived>\n"
<< "bool VISITORCLASS<Derived>::Traverse"
<< R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
<< " if (!getDerived().VisitAttr(A))\n"
<< " return false;\n"
<< " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
<< " return false;\n";
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
for (const auto *Arg : ArgRecords)
createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
if (Attr->getValueAsBit("AcceptsExprPack"))
VariadicExprArgument("DelayedArgs", R.getName())
.writeASTVisitorTraversal(OS);
OS << " return true;\n";
OS << "}\n\n";
}
// Write generic Traverse routine
OS << "template <typename Derived>\n"
<< "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
<< " if (!A)\n"
<< " return true;\n"
<< "\n"
<< " switch (A->getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ":\n"
<< " return getDerived().Traverse" << R.getName() << "Attr("
<< "cast<" << R.getName() << "Attr>(A));\n";
}
OS << " }\n"; // end switch
OS << " llvm_unreachable(\"bad attribute kind\");\n";
OS << "}\n"; // end function
OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
}
void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
raw_ostream &OS,
bool AppliesToDecl) {
OS << " switch (At->getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
bool ShouldClone = R.getValueAsBit("Clone") &&
(!AppliesToDecl ||
R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
if (!ShouldClone) {
OS << " return nullptr;\n";
OS << " }\n";
continue;
}
OS << " const auto *A = cast<"
<< R.getName() << "Attr>(At);\n";
bool TDependent = R.getValueAsBit("TemplateDependent");
if (!TDependent) {
OS << " return A->clone(C);\n";
OS << " }\n";
continue;
}
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
Args.reserve(ArgRecords.size());
for (const auto *ArgRecord : ArgRecords)
Args.emplace_back(createArgument(*ArgRecord, R.getName()));
for (auto const &ai : Args)
ai->writeTemplateInstantiation(OS);
OS << " return new (C) " << R.getName() << "Attr(C, *A";
for (auto const &ai : Args) {
OS << ", ";
ai->writeTemplateInstantiationArgs(OS);
}
OS << ");\n"
<< " }\n";
}
OS << " } // end switch\n"
<< " llvm_unreachable(\"Unknown attribute!\");\n"
<< " return nullptr;\n";
}
// Emits code to instantiate dependent attributes on templates.
void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Template instantiation code for attributes", OS,
Records);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
OS << "namespace clang {\n"
<< "namespace sema {\n\n"
<< "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
<< "Sema &S,\n"
<< " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
OS << "}\n\n"
<< "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
<< " ASTContext &C, Sema &S,\n"
<< " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
OS << "}\n\n"
<< "} // end namespace sema\n"
<< "} // end namespace clang\n";
}
// Emits the list of parsed attributes.
void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
Records);
OS << "#ifndef PARSED_ATTR\n";
OS << "#define PARSED_ATTR(NAME) NAME\n";
OS << "#endif\n\n";
ParsedAttrMap Names = getParsedAttrList(Records);
for (const auto &I : Names) {
OS << "PARSED_ATTR(" << I.first << ")\n";
}
}
static bool isArgVariadic(const Record &R, StringRef AttrName) {
return createArgument(R, AttrName)->isVariadic();
}
static void emitArgInfo(const Record &R, raw_ostream &OS) {
// This function will count the number of arguments specified for the
// attribute and emit the number of required arguments followed by the
// number of optional arguments.
std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0;
bool HasVariadic = false;
for (const auto *Arg : Args) {
// If the arg is fake, it's the user's job to supply it: general parsing
// logic shouldn't need to know anything about it.
if (Arg->getValueAsBit("Fake"))
continue;
Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
++ArgMemberCount;
if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
HasVariadic = true;
}
// If there is a variadic argument, we will set the optional argument count
// to its largest value. Since it's currently a 4-bit number, we set it to 15.
OS << " /*NumArgs=*/" << ArgCount << ",\n";
OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n";
OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n";
}
static std::string GetDiagnosticSpelling(const Record &R) {
std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
if (!Ret.empty())
return Ret;
// If we couldn't find the DiagSpelling in this object, we can check to see
// if the object is one that has a base, and if it is, loop up to the Base
// member recursively.
if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
return GetDiagnosticSpelling(*Base);
return "";
}
static std::string CalculateDiagnostic(const Record &S) {
// If the SubjectList object has a custom diagnostic associated with it,
// return that directly.
const StringRef CustomDiag = S.getValueAsString("CustomDiag");
if (!CustomDiag.empty())
return ("\"" + Twine(CustomDiag) + "\"").str();
std::vector<std::string> DiagList;
std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
for (const auto *Subject : Subjects) {
const Record &R = *Subject;
// Get the diagnostic text from the Decl or Stmt node given.
std::string V = GetDiagnosticSpelling(R);
if (V.empty()) {
PrintError(R.getLoc(),
"Could not determine diagnostic spelling for the node: " +
R.getName() + "; please add one to DeclNodes.td");
} else {
// The node may contain a list of elements itself, so split the elements
// by a comma, and trim any whitespace.
SmallVector<StringRef, 2> Frags;
llvm::SplitString(V, Frags, ",");
for (auto Str : Frags) {
DiagList.push_back(std::string(Str.trim()));
}
}
}
if (DiagList.empty()) {
PrintFatalError(S.getLoc(),
"Could not deduce diagnostic argument for Attr subjects");
return "";
}
// FIXME: this is not particularly good for localization purposes and ideally
// should be part of the diagnostics engine itself with some sort of list
// specifier.
// A single member of the list can be returned directly.
if (DiagList.size() == 1)
return '"' + DiagList.front() + '"';
if (DiagList.size() == 2)
return '"' + DiagList[0] + " and " + DiagList[1] + '"';
// If there are more than two in the list, we serialize the first N - 1
// elements with a comma. This leaves the string in the state: foo, bar,
// baz (but misses quux). We can then add ", and " for the last element
// manually.
std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
}
static std::string GetSubjectWithSuffix(const Record *R) {
const std::string &B = std::string(R->getName());
if (B == "DeclBase")
return "Decl";
return B + "Decl";
}
static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
return "is" + Subject.getName().str();
}
static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
std::string FnName = functionNameForCustomAppertainsTo(Subject);
// If this code has already been generated, we don't need to do anything.
static std::set<std::string> CustomSubjectSet;
auto I = CustomSubjectSet.find(FnName);
if (I != CustomSubjectSet.end())
return;
// This only works with non-root Decls.
Record *Base = Subject.getValueAsDef(BaseFieldName);
// Not currently support custom subjects within custom subjects.
if (Base->isSubClassOf("SubsetSubject")) {
PrintFatalError(Subject.getLoc(),
"SubsetSubjects within SubsetSubjects is not supported");
return;
}
OS << "static bool " << FnName << "(const Decl *D) {\n";
OS << " if (const auto *S = dyn_cast<";
OS << GetSubjectWithSuffix(Base);
OS << ">(D))\n";
OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
OS << " return false;\n";
OS << "}\n\n";
CustomSubjectSet.insert(FnName);
}
static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
// If the attribute does not contain a Subjects definition, then use the
// default appertainsTo logic.
if (Attr.isValueUnset("Subjects"))
return;
const Record *SubjectObj = Attr.getValueAsDef("Subjects");
std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
// If the list of subjects is empty, it is assumed that the attribute
// appertains to everything.
if (Subjects.empty())
return;
bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
// Split the subjects into declaration subjects and statement subjects.
// FIXME: subset subjects are added to the declaration list until there are
// enough statement attributes with custom subject needs to warrant
// the implementation effort.
std::vector<Record *> DeclSubjects, StmtSubjects;
llvm::copy_if(
Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
});
llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
[](const Record *R) { return R->isSubClassOf("StmtNode"); });
// We should have sorted all of the subjects into two lists.
// FIXME: this assertion will be wrong if we ever add type attribute subjects.
assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
if (DeclSubjects.empty()) {
// If there are no decl subjects but there are stmt subjects, diagnose
// trying to apply a statement attribute to a declaration.
if (!StmtSubjects.empty()) {
OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
OS << "const Decl *D) const override {\n";
OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
OS << " << AL << AL.isRegularKeywordAttribute() << "
"D->getLocation();\n";
OS << " return false;\n";
OS << "}\n\n";
}
} else {
// Otherwise, generate an appertainsTo check specific to this attribute
// which checks all of the given subjects against the Decl passed in.
OS << "bool diagAppertainsToDecl(Sema &S, ";
OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
OS << " if (";
for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
// If the subject has custom code associated with it, use the generated
// function for it. The function cannot be inlined into this check (yet)
// because it requires the subject to be of a specific type, and were that
// information inlined here, it would not support an attribute with
// multiple custom subjects.
if ((*I)->isSubClassOf("SubsetSubject"))
OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
else
OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
if (I + 1 != E)
OS << " && ";
}
OS << ") {\n";
OS << " S.Diag(Attr.getLoc(), diag::";
OS << (Warn ? "warn_attribute_wrong_decl_type_str"
: "err_attribute_wrong_decl_type_str");
OS << ")\n";
OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
OS << CalculateDiagnostic(*SubjectObj) << ";\n";
OS << " return false;\n";
OS << " }\n";
OS << " return true;\n";
OS << "}\n\n";
}
if (StmtSubjects.empty()) {
// If there are no stmt subjects but there are decl subjects, diagnose
// trying to apply a declaration attribute to a statement.
if (!DeclSubjects.empty()) {
OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
OS << "const Stmt *St) const override {\n";
OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
OS << " << AL << AL.isRegularKeywordAttribute() << "
"St->getBeginLoc();\n";
OS << " return false;\n";
OS << "}\n\n";
}
} else {
// Now, do the same for statements.
OS << "bool diagAppertainsToStmt(Sema &S, ";
OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
OS << " if (";
for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
OS << "!isa<" << (*I)->getName() << ">(St)";
if (I + 1 != E)
OS << " && ";
}
OS << ") {\n";
OS << " S.Diag(Attr.getLoc(), diag::";
OS << (Warn ? "warn_attribute_wrong_decl_type_str"
: "err_attribute_wrong_decl_type_str");
OS << ")\n";
OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
OS << CalculateDiagnostic(*SubjectObj) << ";\n";
OS << " return false;\n";
OS << " }\n";
OS << " return true;\n";
OS << "}\n\n";
}
}
// Generates the mutual exclusion checks. The checks for parsed attributes are
// written into OS and the checks for merging declaration attributes are
// written into MergeOS.
static void GenerateMutualExclusionsChecks(const Record &Attr,
const RecordKeeper &Records,
raw_ostream &OS,
raw_ostream &MergeDeclOS,
raw_ostream &MergeStmtOS) {
// Find all of the definitions that inherit from MutualExclusions and include
// the given attribute in the list of exclusions to generate the
// diagMutualExclusion() check.
std::vector<Record *> ExclusionsList =
Records.getAllDerivedDefinitions("MutualExclusions");
// We don't do any of this magic for type attributes yet.
if (Attr.isSubClassOf("TypeAttr"))
return;
// This means the attribute is either a statement attribute, a decl
// attribute, or both; find out which.
bool CurAttrIsStmtAttr =
Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
bool CurAttrIsDeclAttr =
!CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
std::vector<std::string> DeclAttrs, StmtAttrs;
for (const Record *Exclusion : ExclusionsList) {
std::vector<Record *> MutuallyExclusiveAttrs =
Exclusion->getValueAsListOfDefs("Exclusions");
auto IsCurAttr = [Attr](const Record *R) {
return R->getName() == Attr.getName();
};
if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
// This list of exclusions includes the attribute we're looking for, so
// add the exclusive attributes to the proper list for checking.
for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
if (IsCurAttr(AttrToExclude))
continue;
if (CurAttrIsStmtAttr)
StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
if (CurAttrIsDeclAttr)
DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
}
}
}
// If there are any decl or stmt attributes, silence -Woverloaded-virtual
// warnings for them both.
if (!DeclAttrs.empty() || !StmtAttrs.empty())
OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n";
// If we discovered any decl or stmt attributes to test for, generate the
// predicates for them now.
if (!DeclAttrs.empty()) {
// Generate the ParsedAttrInfo subclass logic for declarations.
OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
<< "const Decl *D) const override {\n";
for (const std::string &A : DeclAttrs) {
OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n";
OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
<< " << AL << A << (AL.isRegularKeywordAttribute() ||"
<< " A->isRegularKeywordAttribute());\n";
OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
OS << " \nreturn false;\n";
OS << " }\n";
}
OS << " return true;\n";
OS << " }\n\n";
// Also generate the declaration attribute merging logic if the current
// attribute is one that can be inheritted on a declaration. It is assumed
// this code will be executed in the context of a function with parameters:
// Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
// true on success).
if (Attr.isSubClassOf("InheritableAttr")) {
MergeDeclOS << " if (const auto *Second = dyn_cast<"
<< (Attr.getName() + "Attr").str() << ">(A)) {\n";
for (const std::string &A : DeclAttrs) {
MergeDeclOS << " if (const auto *First = D->getAttr<" << A
<< ">()) {\n";
MergeDeclOS << " S.Diag(First->getLocation(), "
<< "diag::err_attributes_are_not_compatible) << First << "
<< "Second << (First->isRegularKeywordAttribute() || "
<< "Second->isRegularKeywordAttribute());\n";
MergeDeclOS << " S.Diag(Second->getLocation(), "
<< "diag::note_conflicting_attribute);\n";
MergeDeclOS << " return false;\n";
MergeDeclOS << " }\n";
}
MergeDeclOS << " return true;\n";
MergeDeclOS << " }\n";
}
}
// Statement attributes are a bit different from declarations. With
// declarations, each attribute is added to the declaration as it is
// processed, and so you can look on the Decl * itself to see if there is a
// conflicting attribute. Statement attributes are processed as a group
// because AttributedStmt needs to tail-allocate all of the attribute nodes
// at once. This means we cannot check whether the statement already contains
// an attribute to check for the conflict. Instead, we need to check whether
// the given list of semantic attributes contain any conflicts. It is assumed
// this code will be executed in the context of a function with parameters:
// Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
// loop which loops over the container C with a loop variable named A to
// represent the current attribute to check for conflicts.
//
// FIXME: it would be nice not to walk over the list of potential attributes
// to apply to the statement more than once, but statements typically don't
// have long lists of attributes on them, so re-walking the list should not
// be an expensive operation.
if (!StmtAttrs.empty()) {
MergeStmtOS << " if (const auto *Second = dyn_cast<"
<< (Attr.getName() + "Attr").str() << ">(A)) {\n";
MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) "
<< "{ return isa<";
interleave(
StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
[&] { MergeStmtOS << ", "; });
MergeStmtOS << ">(Check); });\n";
MergeStmtOS << " if (Iter != C.end()) {\n";
MergeStmtOS << " S.Diag((*Iter)->getLocation(), "
<< "diag::err_attributes_are_not_compatible) << *Iter << "
<< "Second << ((*Iter)->isRegularKeywordAttribute() || "
<< "Second->isRegularKeywordAttribute());\n";
MergeStmtOS << " S.Diag(Second->getLocation(), "
<< "diag::note_conflicting_attribute);\n";
MergeStmtOS << " return false;\n";
MergeStmtOS << " }\n";
MergeStmtOS << " }\n";
}
}
static void
emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
raw_ostream &OS) {
OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
<< AttributeSubjectMatchRule::EnumName << " rule) {\n";
OS << " switch (rule) {\n";
for (const auto &Rule : PragmaAttributeSupport.Rules) {
if (Rule.isAbstractRule()) {
OS << " case " << Rule.getEnumValue() << ":\n";
OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
OS << " return false;\n";
continue;
}
std::vector<Record *> Subjects = Rule.getSubjects();
assert(!Subjects.empty() && "Missing subjects");
OS << " case " << Rule.getEnumValue() << ":\n";
OS << " return ";
for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
// If the subject has custom code associated with it, use the function
// that was generated for GenerateAppertainsTo to check if the declaration
// is valid.
if ((*I)->isSubClassOf("SubsetSubject"))
OS << functionNameForCustomAppertainsTo(**I) << "(D)";
else
OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
if (I + 1 != E)
OS << " || ";
}
OS << ";\n";
}
OS << " }\n";
OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
OS << "}\n\n";
}
static void GenerateLangOptRequirements(const Record &R,
raw_ostream &OS) {
// If the attribute has an empty or unset list of language requirements,
// use the default handler.
std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
if (LangOpts.empty())
return;
OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
OS << " return " << GenerateTestExpression(LangOpts) << ";\n";
OS << "}\n\n";
}
static void GenerateTargetRequirements(const Record &Attr,
const ParsedAttrMap &Dupes,
raw_ostream &OS) {
// If the attribute is not a target specific attribute, use the default
// target handler.
if (!Attr.isSubClassOf("TargetSpecificAttr"))
return;
// Get the list of architectures to be tested for.
const Record *R = Attr.getValueAsDef("Target");
std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
// If there are other attributes which share the same parsed attribute kind,
// such as target-specific attributes with a shared spelling, collapse the
// duplicate architectures. This is required because a shared target-specific
// attribute has only one ParsedAttr::Kind enumeration value, but it
// applies to multiple target architectures. In order for the attribute to be
// considered valid, all of its architectures need to be included.
if (!Attr.isValueUnset("ParseKind")) {
const StringRef APK = Attr.getValueAsString("ParseKind");
for (const auto &I : Dupes) {
if (I.first == APK) {
std::vector<StringRef> DA =
I.second->getValueAsDef("Target")->getValueAsListOfStrings(
"Arches");
Arches.insert(Arches.end(), DA.begin(), DA.end());
}
}
}
std::string FnName = "isTarget";
std::string Test;
bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
if (UsesT)
OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
OS << " return " << Test << ";\n";
OS << "}\n\n";
}
static void
GenerateSpellingTargetRequirements(const Record &Attr,
const std::vector<Record *> &TargetSpellings,
raw_ostream &OS) {
// If there are no target specific spellings, use the default target handler.
if (TargetSpellings.empty())
return;
std::string Test;
bool UsesT = false;
const std::vector<FlattenedSpelling> SpellingList =
GetFlattenedSpellings(Attr);
for (unsigned TargetIndex = 0; TargetIndex < TargetSpellings.size();
++TargetIndex) {
const auto &TargetSpelling = TargetSpellings[TargetIndex];
std::vector<FlattenedSpelling> Spellings =
GetFlattenedSpellings(*TargetSpelling);
Test += "((SpellingListIndex == ";
for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
Test +=
llvm::itostr(getSpellingListIndex(SpellingList, Spellings[Index]));
if (Index != Spellings.size() - 1)
Test += " ||\n SpellingListIndex == ";
else
Test += ") && ";
}
const Record *Target = TargetSpelling->getValueAsDef("Target");
std::vector<StringRef> Arches = Target->getValueAsListOfStrings("Arches");
std::string FnName = "isTargetSpelling";
UsesT |= GenerateTargetSpecificAttrChecks(Target, Arches, Test, &FnName);
Test += ")";
if (TargetIndex != TargetSpellings.size() - 1)
Test += " || ";
}
OS << "bool spellingExistsInTarget(const TargetInfo &Target,\n";
OS << " const unsigned SpellingListIndex) const "
"override {\n";
if (UsesT)
OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
OS << " return " << Test << ";\n", OS << "}\n\n";
}
static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
raw_ostream &OS) {
// If the attribute does not have a semantic form, we can bail out early.
if (!Attr.getValueAsBit("ASTNode"))
return;
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
// If there are zero or one spellings, or all of the spellings share the same
// name, we can also bail out early.
if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
return;
// Generate the enumeration we will use for the mapping.
SemanticSpellingMap SemanticToSyntacticMap;
std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
std::string Name = Attr.getName().str() + "AttrSpellingMap";
OS << "unsigned spellingIndexToSemanticSpelling(";
OS << "const ParsedAttr &Attr) const override {\n";
OS << Enum;
OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
OS << "}\n\n";
}
static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
// Only generate if Attr can be handled simply.
if (!Attr.getValueAsBit("SimpleHandler"))
return;
// Generate a function which just converts from ParsedAttr to the Attr type.
OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
OS << "const ParsedAttr &Attr) const override {\n";
OS << " D->addAttr(::new (S.Context) " << Attr.getName();
OS << "Attr(S.Context, Attr));\n";
OS << " return AttributeApplied;\n";
OS << "}\n\n";
}
static bool isParamExpr(const Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(
Arg->getSuperClasses().back().first->getName())
.Case("ExprArgument", true)
.Case("VariadicExprArgument", true)
.Default(false);
}
void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) {
OS << "bool isParamExpr(size_t N) const override {\n";
OS << " return ";
auto Args = Attr.getValueAsListOfDefs("Args");
for (size_t I = 0; I < Args.size(); ++I)
if (isParamExpr(Args[I]))
OS << "(N == " << I << ") || ";
OS << "false;\n";
OS << "}\n\n";
}
void GenerateHandleAttrWithDelayedArgs(RecordKeeper &Records, raw_ostream &OS) {
OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
OS << "const ParsedAttr &Attr) {\n";
OS << " SmallVector<Expr *, 4> ArgExprs;\n";
OS << " ArgExprs.reserve(Attr.getNumArgs());\n";
OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
OS << " assert(!Attr.isArgIdent(I));\n";
OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
OS << " }\n";
OS << " clang::Attr *CreatedAttr = nullptr;\n";
OS << " switch (Attr.getKind()) {\n";
OS << " default:\n";
OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &R = *I.second;
if (!R.getValueAsBit("AcceptsExprPack"))
continue;
OS << " case ParsedAttr::AT_" << I.first << ": {\n";
OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs";
OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
OS << " D->addAttr(CreatedAttr);\n";
OS << "}\n\n";
}
static bool IsKnownToGCC(const Record &Attr) {
// Look at the spellings for this subject; if there are any spellings which
// claim to be known to GCC, the attribute is known to GCC.
return llvm::any_of(
GetFlattenedSpellings(Attr),
[](const FlattenedSpelling &S) { return S.knownToGCC(); });
}
/// Emits the parsed attribute helpers
void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Parsed attribute helpers", OS, Records);
OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
<< "!defined(WANT_STMT_MERGE_LOGIC)\n";
PragmaClangAttributeSupport &PragmaAttributeSupport =
getPragmaAttributeSupport(Records);
// Get the list of parsed attributes, and accept the optional list of
// duplicates due to the ParseKind.
ParsedAttrMap Dupes;
ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
// Generate all of the custom appertainsTo functions that the attributes
// will be using.
for (const auto &I : Attrs) {
const Record &Attr = *I.second;
if (Attr.isValueUnset("Subjects"))
continue;
const Record *SubjectObj = Attr.getValueAsDef("Subjects");
for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
if (Subject->isSubClassOf("SubsetSubject"))
GenerateCustomAppertainsTo(*Subject, OS);
}
// This stream is used to collect all of the declaration attribute merging
// logic for performing mutual exclusion checks. This gets emitted at the
// end of the file in a helper function of its own.
std::string DeclMergeChecks, StmtMergeChecks;
raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
// Generate a ParsedAttrInfo struct for each of the attributes.
for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
// TODO: If the attribute's kind appears in the list of duplicates, that is
// because it is a target-specific attribute that appears multiple times.
// It would be beneficial to test whether the duplicates are "similar
// enough" to each other to not cause problems. For instance, check that
// the spellings are identical, and custom parsing rules match, etc.
// We need to generate struct instances based off ParsedAttrInfo from
// ParsedAttr.cpp.
const std::string &AttrName = I->first;
const Record &Attr = *I->second;
auto Spellings = GetFlattenedSpellings(Attr);
if (!Spellings.empty()) {
OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
<< "Spellings[] = {\n";
for (const auto &S : Spellings) {
const std::string &RawSpelling = S.name();
std::string Spelling;
if (!S.nameSpace().empty())
Spelling += S.nameSpace() + "::";
if (S.variety() == "GNU")
Spelling += NormalizeGNUAttrSpelling(RawSpelling);
else
Spelling += RawSpelling;
OS << " {AttributeCommonInfo::AS_" << S.variety();
OS << ", \"" << Spelling << "\"},\n";
}
OS << "};\n";
}
std::vector<std::string> ArgNames;
for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) {
bool UnusedUnset;
if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
continue;
ArgNames.push_back(Arg->getValueAsString("Name").str());
for (const auto &Class : Arg->getSuperClasses()) {
if (Class.first->getName().starts_with("Variadic")) {
ArgNames.back().append("...");
break;
}
}
}
if (!ArgNames.empty()) {
OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
for (const auto &N : ArgNames)
OS << '"' << N << "\",";
OS << "};\n";
}
OS << "struct ParsedAttrInfo" << I->first
<< " final : public ParsedAttrInfo {\n";
OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n";
OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n";
emitArgInfo(Attr, OS);
OS << " /*HasCustomParsing=*/";
OS << Attr.getValueAsBit("HasCustomParsing") << ",\n";
OS << " /*AcceptsExprPack=*/";
OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n";
OS << " /*IsTargetSpecific=*/";
OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n";
OS << " /*IsType=*/";
OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr"))
<< ",\n";
OS << " /*IsStmt=*/";
OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
<< ",\n";
OS << " /*IsKnownToGCC=*/";
OS << IsKnownToGCC(Attr) << ",\n";
OS << " /*IsSupportedByPragmaAttribute=*/";
OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n";
if (!Spellings.empty())
OS << " /*Spellings=*/" << I->first << "Spellings,\n";
else
OS << " /*Spellings=*/{},\n";
if (!ArgNames.empty())
OS << " /*ArgNames=*/" << I->first << "ArgNames";
else
OS << " /*ArgNames=*/{}";
OS << ") {}\n";
GenerateAppertainsTo(Attr, OS);
GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
GenerateLangOptRequirements(Attr, OS);
GenerateTargetRequirements(Attr, Dupes, OS);
GenerateSpellingTargetRequirements(
Attr, Attr.getValueAsListOfDefs("TargetSpecificSpellings"), OS);
GenerateSpellingIndexToSemanticSpelling(Attr, OS);
PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
GenerateHandleDeclAttribute(Attr, OS);
GenerateIsParamExpr(Attr, OS);
OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
OS << "};\n";
OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
<< "::Instance;\n";
}
OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
}
OS << "};\n\n";
// Generate function for handling attributes with delayed arguments
GenerateHandleAttrWithDelayedArgs(Records, OS);
// Generate the attribute match rules.
emitAttributeMatchRules(PragmaAttributeSupport, OS);
OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
// Write out the declaration merging check logic.
OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
<< "const Attr *A) {\n";
OS << MergeDeclOS.str();
OS << " return true;\n";
OS << "}\n\n";
OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
// Write out the statement merging check logic.
OS << "static bool DiagnoseMutualExclusions(Sema &S, "
<< "const SmallVectorImpl<const Attr *> &C) {\n";
OS << " for (const Attr *A : C) {\n";
OS << MergeStmtOS.str();
OS << " }\n";
OS << " return true;\n";
OS << "}\n\n";
OS << "#endif\n";
}
// Emits the kind list of parsed attributes
void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute name matcher", OS, Records);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
Keywords, Pragma, C23, HLSLSemantic;
std::set<std::string> Seen;
for (const auto *A : Attrs) {
const Record &Attr = *A;
bool SemaHandler = Attr.getValueAsBit("SemaHandler");
bool Ignored = Attr.getValueAsBit("Ignored");
if (SemaHandler || Ignored) {
// Attribute spellings can be shared between target-specific attributes,
// and can be shared between syntaxes for the same attribute. For
// instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
// specific attribute, or MSP430-specific attribute. Additionally, an
// attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
// for the same semantic attribute. Ultimately, we need to map each of
// these to a single AttributeCommonInfo::Kind value, but the
// StringMatcher class cannot handle duplicate match strings. So we
// generate a list of string to match based on the syntax, and emit
// multiple string matchers depending on the syntax used.
std::string AttrName;
if (Attr.isSubClassOf("TargetSpecificAttr") &&
!Attr.isValueUnset("ParseKind")) {
AttrName = std::string(Attr.getValueAsString("ParseKind"));
if (!Seen.insert(AttrName).second)
continue;
} else
AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
for (const auto &S : Spellings) {
const std::string &RawSpelling = S.name();
std::vector<StringMatcher::StringPair> *Matches = nullptr;
std::string Spelling;
const std::string &Variety = S.variety();
if (Variety == "CXX11") {
Matches = &CXX11;
if (!S.nameSpace().empty())
Spelling += S.nameSpace() + "::";
} else if (Variety == "C23") {
Matches = &C23;
if (!S.nameSpace().empty())
Spelling += S.nameSpace() + "::";
} else if (Variety == "GNU")
Matches = &GNU;
else if (Variety == "Declspec")
Matches = &Declspec;
else if (Variety == "Microsoft")
Matches = &Microsoft;
else if (Variety == "Keyword")
Matches = &Keywords;
else if (Variety == "Pragma")
Matches = &Pragma;
else if (Variety == "HLSLSemantic")
Matches = &HLSLSemantic;
assert(Matches && "Unsupported spelling variety found");
if (Variety == "GNU")
Spelling += NormalizeGNUAttrSpelling(RawSpelling);
else
Spelling += RawSpelling;
if (SemaHandler)
Matches->push_back(StringMatcher::StringPair(
Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
else
Matches->push_back(StringMatcher::StringPair(
Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
}
}
}
OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
OS << "AttributeCommonInfo::Syntax Syntax) {\n";
OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
StringMatcher("Name", GNU, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
StringMatcher("Name", Declspec, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
StringMatcher("Name", Microsoft, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
StringMatcher("Name", CXX11, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_C23 == Syntax) {\n";
StringMatcher("Name", C23, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
StringMatcher("Name", Keywords, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
StringMatcher("Name", Pragma, OS).Emit();
OS << " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n";
StringMatcher("Name", HLSLSemantic, OS).Emit();
OS << " }\n";
OS << " return AttributeCommonInfo::UnknownAttribute;\n"
<< "}\n";
}
// Emits the code to dump an attribute.
void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute text node dumper", OS, Records);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
// If the attribute has a semantically-meaningful name (which is determined
// by whether there is a Spelling enumeration for it), then write out the
// spelling used for the attribute.
std::string FunctionContent;
llvm::raw_string_ostream SS(FunctionContent);
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
SS << " OS << \" \" << A->getSpelling();\n";
Args = R.getValueAsListOfDefs("Args");
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writeDump(SS);
if (Attr->getValueAsBit("AcceptsExprPack"))
VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS);
if (SS.tell()) {
OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
<< "Attr *A) {\n";
if (!Args.empty())
OS << " const auto *SA = cast<" << R.getName()
<< "Attr>(A); (void)SA;\n";
OS << SS.str();
OS << " }\n";
}
}
}
void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute text node traverser", OS, Records);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
std::string FunctionContent;
llvm::raw_string_ostream SS(FunctionContent);
Args = R.getValueAsListOfDefs("Args");
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writeDumpChildren(SS);
if (Attr->getValueAsBit("AcceptsExprPack"))
VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS);
if (SS.tell()) {
OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
<< "Attr *A) {\n";
if (!Args.empty())
OS << " const auto *SA = cast<" << R.getName()
<< "Attr>(A); (void)SA;\n";
OS << SS.str();
OS << " }\n";
}
}
}
void EmitClangAttrParserStringSwitches(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS, Records);
emitClangAttrArgContextList(Records, OS);
emitClangAttrIdentifierArgList(Records, OS);
emitClangAttrUnevaluatedStringLiteralList(Records, OS);
emitClangAttrVariadicIdentifierArgList(Records, OS);
emitClangAttrThisIsaIdentifierArgList(Records, OS);
emitClangAttrAcceptsExprPack(Records, OS);
emitClangAttrTypeArgList(Records, OS);
emitClangAttrLateParsedList(Records, OS);
}
void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
raw_ostream &OS) {
getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
}
void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Clang attribute documentation", OS, Records);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *A : Attrs) {
if (!A->getValueAsBit("ASTNode"))
continue;
std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation");
assert(!Docs.empty());
// Only look at the first documentation if there are several.
// (Currently there's only one such attr, revisit if this becomes common).
StringRef Text =
Docs.front()->getValueAsOptionalString("Content").value_or("");
OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
<< "R\"reST(" << Text.trim() << ")reST\";\n";
}
}
enum class SpellingKind : size_t {
GNU,
CXX11,
C23,
Declspec,
Microsoft,
Keyword,
Pragma,
HLSLSemantic,
NumSpellingKinds
};
static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds;
class SpellingList {
std::vector<std::string> Spellings[NumSpellingKinds];
public:
ArrayRef<std::string> operator[](SpellingKind K) const {
return Spellings[(size_t)K];
}
void add(const Record &Attr, FlattenedSpelling Spelling) {
SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
.Case("GNU", SpellingKind::GNU)
.Case("CXX11", SpellingKind::CXX11)
.Case("C23", SpellingKind::C23)
.Case("Declspec", SpellingKind::Declspec)
.Case("Microsoft", SpellingKind::Microsoft)
.Case("Keyword", SpellingKind::Keyword)
.Case("Pragma", SpellingKind::Pragma)
.Case("HLSLSemantic", SpellingKind::HLSLSemantic);
std::string Name;
if (!Spelling.nameSpace().empty()) {
switch (Kind) {
case SpellingKind::CXX11:
case SpellingKind::C23:
Name = Spelling.nameSpace() + "::";
break;
case SpellingKind::Pragma:
Name = Spelling.nameSpace() + " ";
break;
default:
PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
}
}
Name += Spelling.name();
Spellings[(size_t)Kind].push_back(Name);
}
};
class DocumentationData {
public:
const Record *Documentation;
const Record *Attribute;
std::string Heading;
SpellingList SupportedSpellings;
DocumentationData(const Record &Documentation, const Record &Attribute,
std::pair<std::string, SpellingList> HeadingAndSpellings)
: Documentation(&Documentation), Attribute(&Attribute),
Heading(std::move(HeadingAndSpellings.first)),
SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
};
static void WriteCategoryHeader(const Record *DocCategory,
raw_ostream &OS) {
const StringRef Name = DocCategory->getValueAsString("Name");
OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
// If there is content, print that as well.
const StringRef ContentStr = DocCategory->getValueAsString("Content");
// Trim leading and trailing newlines and spaces.
OS << ContentStr.trim();
OS << "\n\n";
}
static std::pair<std::string, SpellingList>
GetAttributeHeadingAndSpellings(const Record &Documentation,
const Record &Attribute,
StringRef Cat) {
// FIXME: there is no way to have a per-spelling category for the attribute
// documentation. This may not be a limiting factor since the spellings
// should generally be consistently applied across the category.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
if (Spellings.empty())
PrintFatalError(Attribute.getLoc(),
"Attribute has no supported spellings; cannot be "
"documented");
// Determine the heading to be used for this attribute.
std::string Heading = std::string(Documentation.getValueAsString("Heading"));
if (Heading.empty()) {
// If there's only one spelling, we can simply use that.
if (Spellings.size() == 1)
Heading = Spellings.begin()->name();
else {
std::set<std::string> Uniques;
for (auto I = Spellings.begin(), E = Spellings.end();
I != E; ++I) {
std::string Spelling =
std::string(NormalizeNameForSpellingComparison(I->name()));
Uniques.insert(Spelling);
}
// If the semantic map has only one spelling, that is sufficient for our
// needs.
if (Uniques.size() == 1)
Heading = *Uniques.begin();
// If it's in the undocumented category, just construct a header by
// concatenating all the spellings. Might not be great, but better than
// nothing.
else if (Cat == "Undocumented")
Heading = llvm::join(Uniques.begin(), Uniques.end(), ", ");
}
}
// If the heading is still empty, it is an error.
if (Heading.empty())
PrintFatalError(Attribute.getLoc(),
"This attribute requires a heading to be specified");
SpellingList SupportedSpellings;
for (const auto &I : Spellings)
SupportedSpellings.add(Attribute, I);
return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
}
static void WriteDocumentation(RecordKeeper &Records,
const DocumentationData &Doc, raw_ostream &OS) {
OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
// List what spelling syntaxes the attribute supports.
// Note: "#pragma clang attribute" is handled outside the spelling kinds loop
// so it must be last.
OS << ".. csv-table:: Supported Syntaxes\n";
OS << " :header: \"GNU\", \"C++11\", \"C23\", \"``__declspec``\",";
OS << " \"Keyword\", \"``#pragma``\", \"HLSL Semantic\", \"``#pragma clang ";
OS << "attribute``\"\n\n \"";
for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
SpellingKind K = (SpellingKind)Kind;
// TODO: List Microsoft (IDL-style attribute) spellings once we fully
// support them.
if (K == SpellingKind::Microsoft)
continue;
bool PrintedAny = false;
for (StringRef Spelling : Doc.SupportedSpellings[K]) {
if (PrintedAny)
OS << " |br| ";
OS << "``" << Spelling << "``";
PrintedAny = true;
}
OS << "\",\"";
}
if (getPragmaAttributeSupport(Records).isAttributedSupported(
*Doc.Attribute))
OS << "Yes";
OS << "\"\n\n";
// If the attribute is deprecated, print a message about it, and possibly
// provide a replacement attribute.
if (!Doc.Documentation->isValueUnset("Deprecated")) {
OS << "This attribute has been deprecated, and may be removed in a future "
<< "version of Clang.";
const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
const StringRef Replacement = Deprecated.getValueAsString("Replacement");
if (!Replacement.empty())
OS << " This attribute has been superseded by ``" << Replacement
<< "``.";
OS << "\n\n";
}
const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
// Trim leading and trailing newlines and spaces.
OS << ContentStr.trim();
OS << "\n\n\n";
}
void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
// Get the documentation introduction paragraph.
const Record *Documentation = Records.getDef("GlobalDocumentation");
if (!Documentation) {
PrintFatalError("The Documentation top-level definition is missing, "
"no documentation will be generated.");
return;
}
OS << Documentation->getValueAsString("Intro") << "\n";
// Gather the Documentation lists from each of the attributes, based on the
// category provided.
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
struct CategoryLess {
bool operator()(const Record *L, const Record *R) const {
return L->getValueAsString("Name") < R->getValueAsString("Name");
}
};
std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
SplitDocs;
for (const auto *A : Attrs) {
const Record &Attr = *A;
std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
for (const auto *D : Docs) {
const Record &Doc = *D;
const Record *Category = Doc.getValueAsDef("Category");
// If the category is "InternalOnly", then there cannot be any other
// documentation categories (otherwise, the attribute would be
// emitted into the docs).
const StringRef Cat = Category->getValueAsString("Name");
bool InternalOnly = Cat == "InternalOnly";
if (InternalOnly && Docs.size() > 1)
PrintFatalError(Doc.getLoc(),
"Attribute is \"InternalOnly\", but has multiple "
"documentation categories");
if (!InternalOnly)
SplitDocs[Category].push_back(DocumentationData(
Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat)));
}
}
// Having split the attributes out based on what documentation goes where,
// we can begin to generate sections of documentation.
for (auto &I : SplitDocs) {
WriteCategoryHeader(I.first, OS);
llvm::sort(I.second,
[](const DocumentationData &D1, const DocumentationData &D2) {
return D1.Heading < D2.Heading;
});
// Walk over each of the attributes in the category and write out their
// documentation.
for (const auto &Doc : I.second)
WriteDocumentation(Records, Doc, OS);
}
}
void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
raw_ostream &OS) {
PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
ParsedAttrMap Attrs = getParsedAttrList(Records);
OS << "#pragma clang attribute supports the following attributes:\n";
for (const auto &I : Attrs) {
if (!Support.isAttributedSupported(*I.second))
continue;
OS << I.first;
if (I.second->isValueUnset("Subjects")) {
OS << " ()\n";
continue;
}
const Record *SubjectObj = I.second->getValueAsDef("Subjects");
std::vector<Record *> Subjects =
SubjectObj->getValueAsListOfDefs("Subjects");
OS << " (";
bool PrintComma = false;
for (const auto &Subject : llvm::enumerate(Subjects)) {
if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
continue;
if (PrintComma)
OS << ", ";
PrintComma = true;
PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
Support.SubjectsToRules.find(Subject.value())->getSecond();
if (RuleSet.isRule()) {
OS << RuleSet.getRule().getEnumValueName();
continue;
}
OS << "(";
for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
if (Rule.index())
OS << ", ";
OS << Rule.value().getEnumValueName();
}
OS << ")";
}
OS << ")\n";
}
OS << "End of supported attributes.\n";
}
} // end namespace clang