blob: 89054512d65ad6628c4637be0781b754d0868606 [file] [log] [blame]
//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//
#include "Yaml.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/YAMLTraits.h"
#include <limits>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#define DEBUG_TYPE "taint-checker"
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::ImmutableSet;
namespace {
class GenericTaintChecker;
/// Check for CWE-134: Uncontrolled Format String.
constexpr llvm::StringLiteral MsgUncontrolledFormatString =
"Untrusted data is used as a format string "
"(CWE-134: Uncontrolled Format String)";
/// Check for:
/// CERT/STR02-C. "Sanitize data passed to complex subsystems"
/// CWE-78, "Failure to Sanitize Data into an OS Command"
constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
"Untrusted data is passed to a system call "
"(CERT/STR02-C. Sanitize data passed to complex subsystems)";
/// Check if tainted data is used as a buffer size in strn.. functions,
/// and allocators.
constexpr llvm::StringLiteral MsgTaintedBufferSize =
"Untrusted data is used to specify the buffer size "
"(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
"for character data and the null terminator)";
/// Check if tainted data is used as a custom sink's parameter.
constexpr llvm::StringLiteral MsgCustomSink =
"Untrusted data is passed to a user-defined sink";
using ArgIdxTy = int;
using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>;
/// Denotes the return value.
constexpr ArgIdxTy ReturnValueIndex{-1};
static ArgIdxTy fromArgumentCount(unsigned Count) {
assert(Count <=
static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) &&
"ArgIdxTy is not large enough to represent the number of arguments.");
return Count;
}
/// Check if the region the expression evaluates to is the standard input,
/// and thus, is tainted.
/// FIXME: Move this to Taint.cpp.
bool isStdin(SVal Val, const ASTContext &ACtx) {
// FIXME: What if Val is NonParamVarRegion?
// The region should be symbolic, we do not know it's value.
const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
if (!SymReg)
return false;
// Get it's symbol and find the declaration region it's pointing to.
const auto *DeclReg =
dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion());
if (!DeclReg)
return false;
// This region corresponds to a declaration, find out if it's a global/extern
// variable named stdin with the proper type.
if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
D = D->getCanonicalDecl();
if (D->getName() == "stdin" && D->hasExternalStorage() && D->isExternC()) {
const QualType FILETy = ACtx.getFILEType().getCanonicalType();
const QualType Ty = D->getType().getCanonicalType();
if (Ty->isPointerType())
return Ty->getPointeeType() == FILETy;
}
}
return false;
}
SVal getPointeeOf(ProgramStateRef State, Loc LValue) {
const QualType ArgTy = LValue.getType(State->getStateManager().getContext());
if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType())
return State->getSVal(LValue);
// Do not dereference void pointers. Treat them as byte pointers instead.
// FIXME: we might want to consider more than just the first byte.
return State->getSVal(LValue, State->getStateManager().getContext().CharTy);
}
/// Given a pointer/reference argument, return the value it refers to.
std::optional<SVal> getPointeeOf(ProgramStateRef State, SVal Arg) {
if (auto LValue = Arg.getAs<Loc>())
return getPointeeOf(State, *LValue);
return std::nullopt;
}
/// Given a pointer, return the SVal of its pointee or if it is tainted,
/// otherwise return the pointer's SVal if tainted.
/// Also considers stdin as a taint source.
std::optional<SVal> getTaintedPointeeOrPointer(ProgramStateRef State,
SVal Arg) {
if (auto Pointee = getPointeeOf(State, Arg))
if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None;
return Pointee;
if (isTainted(State, Arg))
return Arg;
return std::nullopt;
}
bool isTaintedOrPointsToTainted(ProgramStateRef State, SVal ExprSVal) {
return getTaintedPointeeOrPointer(State, ExprSVal).has_value();
}
/// Helps in printing taint diagnostics.
/// Marks the incoming parameters of a function interesting (to be printed)
/// when the return value, or the outgoing parameters are tainted.
const NoteTag *taintOriginTrackerTag(CheckerContext &C,
std::vector<SymbolRef> TaintedSymbols,
std::vector<ArgIdxTy> TaintedArgs,
const LocationContext *CallLocation) {
return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols),
TaintedArgs = std::move(TaintedArgs), CallLocation](
PathSensitiveBugReport &BR) -> std::string {
SmallString<256> Msg;
// We give diagnostics only for taint related reports
if (!BR.isInteresting(CallLocation) ||
BR.getBugType().getCategory() != categories::TaintedData) {
return "";
}
if (TaintedSymbols.empty())
return "Taint originated here";
for (auto Sym : TaintedSymbols) {
BR.markInteresting(Sym);
}
LLVM_DEBUG(for (auto Arg
: TaintedArgs) {
llvm::dbgs() << "Taint Propagated from argument " << Arg + 1 << "\n";
});
return "";
});
}
/// Helps in printing taint diagnostics.
/// Marks the function interesting (to be printed)
/// when the return value, or the outgoing parameters are tainted.
const NoteTag *taintPropagationExplainerTag(
CheckerContext &C, std::vector<SymbolRef> TaintedSymbols,
std::vector<ArgIdxTy> TaintedArgs, const LocationContext *CallLocation) {
assert(TaintedSymbols.size() == TaintedArgs.size());
return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols),
TaintedArgs = std::move(TaintedArgs), CallLocation](
PathSensitiveBugReport &BR) -> std::string {
SmallString<256> Msg;
llvm::raw_svector_ostream Out(Msg);
// We give diagnostics only for taint related reports
if (TaintedSymbols.empty() ||
BR.getBugType().getCategory() != categories::TaintedData) {
return "";
}
int nofTaintedArgs = 0;
for (auto [Idx, Sym] : llvm::enumerate(TaintedSymbols)) {
if (BR.isInteresting(Sym)) {
BR.markInteresting(CallLocation);
if (TaintedArgs[Idx] != ReturnValueIndex) {
LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to argument "
<< TaintedArgs[Idx] + 1 << "\n");
if (nofTaintedArgs == 0)
Out << "Taint propagated to the ";
else
Out << ", ";
Out << TaintedArgs[Idx] + 1
<< llvm::getOrdinalSuffix(TaintedArgs[Idx] + 1) << " argument";
nofTaintedArgs++;
} else {
LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to return value.\n");
Out << "Taint propagated to the return value";
}
}
}
return std::string(Out.str());
});
}
/// ArgSet is used to describe arguments relevant for taint detection or
/// taint application. A discrete set of argument indexes and a variadic
/// argument list signified by a starting index are supported.
class ArgSet {
public:
ArgSet() = default;
ArgSet(ArgVecTy &&DiscreteArgs,
std::optional<ArgIdxTy> VariadicIndex = std::nullopt)
: DiscreteArgs(std::move(DiscreteArgs)),
VariadicIndex(std::move(VariadicIndex)) {}
bool contains(ArgIdxTy ArgIdx) const {
if (llvm::is_contained(DiscreteArgs, ArgIdx))
return true;
return VariadicIndex && ArgIdx >= *VariadicIndex;
}
bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; }
private:
ArgVecTy DiscreteArgs;
std::optional<ArgIdxTy> VariadicIndex;
};
/// A struct used to specify taint propagation rules for a function.
///
/// If any of the possible taint source arguments is tainted, all of the
/// destination arguments should also be tainted. If ReturnValueIndex is added
/// to the dst list, the return value will be tainted.
class GenericTaintRule {
/// Arguments which are taints sinks and should be checked, and a report
/// should be emitted if taint reaches these.
ArgSet SinkArgs;
/// Arguments which should be sanitized on function return.
ArgSet FilterArgs;
/// Arguments which can participate in taint propagation. If any of the
/// arguments in PropSrcArgs is tainted, all arguments in PropDstArgs should
/// be tainted.
ArgSet PropSrcArgs;
ArgSet PropDstArgs;
/// A message that explains why the call is sensitive to taint.
std::optional<StringRef> SinkMsg;
GenericTaintRule() = default;
GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst,
std::optional<StringRef> SinkMsg = std::nullopt)
: SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)),
PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)),
SinkMsg(SinkMsg) {}
public:
/// Make a rule that reports a warning if taint reaches any of \p FilterArgs
/// arguments.
static GenericTaintRule Sink(ArgSet &&SinkArgs,
std::optional<StringRef> Msg = std::nullopt) {
return {std::move(SinkArgs), {}, {}, {}, Msg};
}
/// Make a rule that sanitizes all FilterArgs arguments.
static GenericTaintRule Filter(ArgSet &&FilterArgs) {
return {{}, std::move(FilterArgs), {}, {}};
}
/// Make a rule that unconditionally taints all Args.
/// If Func is provided, it must also return true for taint to propagate.
static GenericTaintRule Source(ArgSet &&SourceArgs) {
return {{}, {}, {}, std::move(SourceArgs)};
}
/// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) {
return {{}, {}, std::move(SrcArgs), std::move(DstArgs)};
}
/// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
static GenericTaintRule
SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs, ArgSet &&DstArgs,
std::optional<StringRef> Msg = std::nullopt) {
return {
std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg};
}
/// Process a function which could either be a taint source, a taint sink, a
/// taint filter or a taint propagator.
void process(const GenericTaintChecker &Checker, const CallEvent &Call,
CheckerContext &C) const;
/// Handles the resolution of indexes of type ArgIdxTy to Expr*-s.
static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) {
return ArgIdx == ReturnValueIndex ? Call.getOriginExpr()
: Call.getArgExpr(ArgIdx);
};
/// Functions for custom taintedness propagation.
static bool UntrustedEnv(CheckerContext &C);
};
using RuleLookupTy = CallDescriptionMap<GenericTaintRule>;
/// Used to parse the configuration file.
struct TaintConfiguration {
using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>;
enum class VariadicType { None, Src, Dst };
struct Common {
std::string Name;
std::string Scope;
};
struct Sink : Common {
ArgVecTy SinkArgs;
};
struct Filter : Common {
ArgVecTy FilterArgs;
};
struct Propagation : Common {
ArgVecTy SrcArgs;
ArgVecTy DstArgs;
VariadicType VarType;
ArgIdxTy VarIndex;
};
std::vector<Propagation> Propagations;
std::vector<Filter> Filters;
std::vector<Sink> Sinks;
TaintConfiguration() = default;
TaintConfiguration(const TaintConfiguration &) = default;
TaintConfiguration(TaintConfiguration &&) = default;
TaintConfiguration &operator=(const TaintConfiguration &) = default;
TaintConfiguration &operator=(TaintConfiguration &&) = default;
};
struct GenericTaintRuleParser {
GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {}
/// Container type used to gather call identification objects grouped into
/// pairs with their corresponding taint rules. It is temporary as it is used
/// to finally initialize RuleLookupTy, which is considered to be immutable.
using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>;
RulesContTy parseConfiguration(const std::string &Option,
TaintConfiguration &&Config) const;
private:
using NamePartsTy = llvm::SmallVector<StringRef, 2>;
/// Validate part of the configuration, which contains a list of argument
/// indexes.
void validateArgVector(const std::string &Option, const ArgVecTy &Args) const;
template <typename Config> static NamePartsTy parseNameParts(const Config &C);
// Takes the config and creates a CallDescription for it and associates a Rule
// with that.
template <typename Config>
static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule,
RulesContTy &Rules);
void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P,
RulesContTy &Rules) const;
void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P,
RulesContTy &Rules) const;
void parseConfig(const std::string &Option,
TaintConfiguration::Propagation &&P,
RulesContTy &Rules) const;
CheckerManager &Mgr;
};
class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
/// Generate a report if the expression is tainted or points to tainted data.
bool generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const;
private:
const BugType BT{this, "Use of Untrusted Data", categories::TaintedData};
bool checkUncontrolledFormatString(const CallEvent &Call,
CheckerContext &C) const;
void taintUnsafeSocketProtocol(const CallEvent &Call,
CheckerContext &C) const;
/// Default taint rules are initalized with the help of a CheckerContext to
/// access the names of built-in functions like memcpy.
void initTaintRules(CheckerContext &C) const;
/// CallDescription currently cannot restrict matches to the global namespace
/// only, which is why multiple CallDescriptionMaps are used, as we want to
/// disambiguate global C functions from functions inside user-defined
/// namespaces.
// TODO: Remove separation to simplify matching logic once CallDescriptions
// are more expressive.
mutable std::optional<RuleLookupTy> StaticTaintRules;
mutable std::optional<RuleLookupTy> DynamicTaintRules;
};
} // end of anonymous namespace
/// YAML serialization mapping.
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation)
namespace llvm {
namespace yaml {
template <> struct MappingTraits<TaintConfiguration> {
static void mapping(IO &IO, TaintConfiguration &Config) {
IO.mapOptional("Propagations", Config.Propagations);
IO.mapOptional("Filters", Config.Filters);
IO.mapOptional("Sinks", Config.Sinks);
}
};
template <> struct MappingTraits<TaintConfiguration::Sink> {
static void mapping(IO &IO, TaintConfiguration::Sink &Sink) {
IO.mapRequired("Name", Sink.Name);
IO.mapOptional("Scope", Sink.Scope);
IO.mapRequired("Args", Sink.SinkArgs);
}
};
template <> struct MappingTraits<TaintConfiguration::Filter> {
static void mapping(IO &IO, TaintConfiguration::Filter &Filter) {
IO.mapRequired("Name", Filter.Name);
IO.mapOptional("Scope", Filter.Scope);
IO.mapRequired("Args", Filter.FilterArgs);
}
};
template <> struct MappingTraits<TaintConfiguration::Propagation> {
static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) {
IO.mapRequired("Name", Propagation.Name);
IO.mapOptional("Scope", Propagation.Scope);
IO.mapOptional("SrcArgs", Propagation.SrcArgs);
IO.mapOptional("DstArgs", Propagation.DstArgs);
IO.mapOptional("VariadicType", Propagation.VarType);
IO.mapOptional("VariadicIndex", Propagation.VarIndex);
}
};
template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> {
static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) {
IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None);
IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src);
IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst);
}
};
} // namespace yaml
} // namespace llvm
/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are signed integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *,
ImmutableSet<ArgIdxTy>)
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy)
void GenericTaintRuleParser::validateArgVector(const std::string &Option,
const ArgVecTy &Args) const {
for (ArgIdxTy Arg : Args) {
if (Arg < ReturnValueIndex) {
Mgr.reportInvalidCheckerOptionValue(
Mgr.getChecker<GenericTaintChecker>(), Option,
"an argument number for propagation rules greater or equal to -1");
}
}
}
template <typename Config>
GenericTaintRuleParser::NamePartsTy
GenericTaintRuleParser::parseNameParts(const Config &C) {
NamePartsTy NameParts;
if (!C.Scope.empty()) {
// If the Scope argument contains multiple "::" parts, those are considered
// namespace identifiers.
StringRef{C.Scope}.split(NameParts, "::", /*MaxSplit*/ -1,
/*KeepEmpty*/ false);
}
NameParts.emplace_back(C.Name);
return NameParts;
}
template <typename Config>
void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C,
GenericTaintRule &&Rule,
RulesContTy &Rules) {
NamePartsTy NameParts = parseNameParts(C);
Rules.emplace_back(CallDescription(NameParts), std::move(Rule));
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Sink &&S,
RulesContTy &Rules) const {
validateArgVector(Option, S.SinkArgs);
consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)),
Rules);
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Filter &&S,
RulesContTy &Rules) const {
validateArgVector(Option, S.FilterArgs);
consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)),
Rules);
}
void GenericTaintRuleParser::parseConfig(const std::string &Option,
TaintConfiguration::Propagation &&P,
RulesContTy &Rules) const {
validateArgVector(Option, P.SrcArgs);
validateArgVector(Option, P.DstArgs);
bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src;
bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst;
std::optional<ArgIdxTy> JustVarIndex = P.VarIndex;
ArgSet SrcDesc(std::move(P.SrcArgs),
IsSrcVariadic ? JustVarIndex : std::nullopt);
ArgSet DstDesc(std::move(P.DstArgs),
IsDstVariadic ? JustVarIndex : std::nullopt);
consumeRulesFromConfig(
P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules);
}
GenericTaintRuleParser::RulesContTy
GenericTaintRuleParser::parseConfiguration(const std::string &Option,
TaintConfiguration &&Config) const {
RulesContTy Rules;
for (auto &F : Config.Filters)
parseConfig(Option, std::move(F), Rules);
for (auto &S : Config.Sinks)
parseConfig(Option, std::move(S), Rules);
for (auto &P : Config.Propagations)
parseConfig(Option, std::move(P), Rules);
return Rules;
}
void GenericTaintChecker::initTaintRules(CheckerContext &C) const {
// Check for exact name match for functions without builtin substitutes.
// Use qualified name, because these are C functions without namespace.
if (StaticTaintRules || DynamicTaintRules)
return;
using RulesConstructionTy =
std::vector<std::pair<CallDescription, GenericTaintRule>>;
using TR = GenericTaintRule;
const Builtin::Context &BI = C.getASTContext().BuiltinInfo;
RulesConstructionTy GlobalCRules{
// Sources
{{{"fdopen"}}, TR::Source({{ReturnValueIndex}})},
{{{"fopen"}}, TR::Source({{ReturnValueIndex}})},
{{{"freopen"}}, TR::Source({{ReturnValueIndex}})},
{{{"getch"}}, TR::Source({{ReturnValueIndex}})},
{{{"getchar"}}, TR::Source({{ReturnValueIndex}})},
{{{"getchar_unlocked"}}, TR::Source({{ReturnValueIndex}})},
{{{"gets"}}, TR::Source({{0}, ReturnValueIndex})},
{{{"gets_s"}}, TR::Source({{0}, ReturnValueIndex})},
{{{"scanf"}}, TR::Source({{}, 1})},
{{{"scanf_s"}}, TR::Source({{}, {1}})},
{{{"wgetch"}}, TR::Source({{}, ReturnValueIndex})},
// Sometimes the line between taint sources and propagators is blurry.
// _IO_getc is choosen to be a source, but could also be a propagator.
// This way it is simpler, as modeling it as a propagator would require
// to model the possible sources of _IO_FILE * values, which the _IO_getc
// function takes as parameters.
{{{"_IO_getc"}}, TR::Source({{ReturnValueIndex}})},
{{{"getcwd"}}, TR::Source({{0, ReturnValueIndex}})},
{{{"getwd"}}, TR::Source({{0, ReturnValueIndex}})},
{{{"readlink"}}, TR::Source({{1, ReturnValueIndex}})},
{{{"readlinkat"}}, TR::Source({{2, ReturnValueIndex}})},
{{{"get_current_dir_name"}}, TR::Source({{ReturnValueIndex}})},
{{{"gethostname"}}, TR::Source({{0}})},
{{{"getnameinfo"}}, TR::Source({{2, 4}})},
{{{"getseuserbyname"}}, TR::Source({{1, 2}})},
{{{"getgroups"}}, TR::Source({{1, ReturnValueIndex}})},
{{{"getlogin"}}, TR::Source({{ReturnValueIndex}})},
{{{"getlogin_r"}}, TR::Source({{0}})},
// Props
{{{"accept"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"atoi"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"atol"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"atoll"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"fgetc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"fgetln"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"fgets"}}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
{{{"fgetws"}}, TR::Prop({{2}}, {{0, ReturnValueIndex}})},
{{{"fscanf"}}, TR::Prop({{0}}, {{}, 2})},
{{{"fscanf_s"}}, TR::Prop({{0}}, {{}, {2}})},
{{{"sscanf"}}, TR::Prop({{0}}, {{}, 2})},
{{{"getc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"getc_unlocked"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"getdelim"}}, TR::Prop({{3}}, {{0}})},
{{{"getline"}}, TR::Prop({{2}}, {{0}})},
{{{"getw"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"pread"}}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})},
{{{"read"}}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})},
{{{"strchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"strrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"tolower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"toupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"fread"}}, TR::Prop({{3}}, {{0, ReturnValueIndex}})},
{{{"recv"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"recvfrom"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"ttyname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"ttyname_r"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"basename"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"dirname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"fnmatch"}}, TR::Prop({{1}}, {{ReturnValueIndex}})},
{{{"memchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"memrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"rawmemchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"mbtowc"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{{"wctomb"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{{"wcwidth"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"memcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{{"memcpy"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{{"memmove"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
// If memmem was called with a tainted needle and the search was
// successful, that would mean that the value pointed by the return value
// has the same content as the needle. If we choose to go by the policy of
// content equivalence implies taintedness equivalence, that would mean
// haystack should be considered a propagation source argument.
{{{"memmem"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// The comment for memmem above also applies to strstr.
{{{"strstr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"strcasestr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"strchrnul"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"index"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"rindex"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// FIXME: In case of arrays, only the first element of the array gets
// tainted.
{{{"qsort"}}, TR::Prop({{0}}, {{0}})},
{{{"qsort_r"}}, TR::Prop({{0}}, {{0}})},
{{{"strcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{{"strcasecmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{{"strncmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
{{{"strncasecmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
{{{"strspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{{"strcspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
{{{"strpbrk"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"strndup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"strndupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// strlen, wcslen, strnlen and alike intentionally don't propagate taint.
// See the details here: https://github.com/llvm/llvm-project/pull/66086
{{{"strtol"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"strtoll"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"strtoul"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"strtoull"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
{{{"isalnum"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isalpha"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isascii"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isblank"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"iscntrl"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isgraph"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"islower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isprint"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"ispunct"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isspace"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{{"isxdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {BI.getName(Builtin::BIstrncat)}},
TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {BI.getName(Builtin::BIstrlcpy)}},
TR::Prop({{1, 2}}, {{0}})},
{{CDM::CLibraryMaybeHardened, {BI.getName(Builtin::BIstrlcat)}},
TR::Prop({{1, 2}}, {{0}})},
{{CDM::CLibraryMaybeHardened, {{"snprintf"}}},
TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {{"sprintf"}}},
TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {{"strcpy"}}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {{"stpcpy"}}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {{"strcat"}}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDM::CLibraryMaybeHardened, {{"wcsncat"}}},
TR::Prop({{1}}, {{0, ReturnValueIndex}})},
{{CDM::CLibrary, {{"strdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDM::CLibrary, {{"strdupa"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
{{CDM::CLibrary, {{"wcsdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
// Sinks
{{{"system"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{{"popen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{{"execl"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
{{{"execle"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
{{{"execlp"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
{{{"execv"}}, TR::Sink({{0, 1}}, MsgSanitizeSystemArgs)},
{{{"execve"}}, TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
{{{"fexecve"}}, TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
{{{"execvp"}}, TR::Sink({{0, 1}}, MsgSanitizeSystemArgs)},
{{{"execvpe"}}, TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
{{{"dlopen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
{{CDM::CLibrary, {{"malloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDM::CLibrary, {{"calloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDM::CLibrary, {{"alloca"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)},
{{CDM::CLibrary, {{"memccpy"}}}, TR::Sink({{3}}, MsgTaintedBufferSize)},
{{CDM::CLibrary, {{"realloc"}}}, TR::Sink({{1}}, MsgTaintedBufferSize)},
{{{{"setproctitle"}}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
{{{{"setproctitle_fast"}}},
TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
// SinkProps
{{CDM::CLibraryMaybeHardened, BI.getName(Builtin::BImemcpy)},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDM::CLibraryMaybeHardened, {BI.getName(Builtin::BImemmove)}},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDM::CLibraryMaybeHardened, {BI.getName(Builtin::BIstrncpy)}},
TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDM::CLibrary, {BI.getName(Builtin::BIstrndup)}},
TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}},
MsgTaintedBufferSize)},
{{CDM::CLibrary, {{"bcopy"}}},
TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}};
// `getenv` returns taint only in untrusted environments.
if (TR::UntrustedEnv(C)) {
// void setproctitle_init(int argc, char *argv[], char *envp[])
GlobalCRules.push_back(
{{{"setproctitle_init"}}, TR::Sink({{1, 2}}, MsgCustomSink)});
GlobalCRules.push_back({{{"getenv"}}, TR::Source({{ReturnValueIndex}})});
}
StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()),
std::make_move_iterator(GlobalCRules.end()));
// User-provided taint configuration.
CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager();
assert(Mgr);
GenericTaintRuleParser ConfigParser{*Mgr};
std::string Option{"Config"};
StringRef ConfigFile =
Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option);
std::optional<TaintConfiguration> Config =
getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile);
if (!Config) {
// We don't have external taint config, no parsing required.
DynamicTaintRules = RuleLookupTy{};
return;
}
GenericTaintRuleParser::RulesContTy Rules{
ConfigParser.parseConfiguration(Option, std::move(*Config))};
DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()),
std::make_move_iterator(Rules.end()));
}
void GenericTaintChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
initTaintRules(C);
// FIXME: this should be much simpler.
if (const auto *Rule =
Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr)
Rule->process(*this, Call, C);
else if (const auto *Rule = DynamicTaintRules->lookup(Call))
Rule->process(*this, Call, C);
// FIXME: These edge cases are to be eliminated from here eventually.
//
// Additional check that is not supported by CallDescription.
// TODO: Make CallDescription be able to match attributes such as printf-like
// arguments.
checkUncontrolledFormatString(Call, C);
// TODO: Modeling sockets should be done in a specific checker.
// Socket is a source, which taints the return value.
taintUnsafeSocketProtocol(Call, C);
}
void GenericTaintChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// Set the marked values as tainted. The return value only accessible from
// checkPostStmt.
ProgramStateRef State = C.getState();
const StackFrameContext *CurrentFrame = C.getStackFrame();
// Depending on what was tainted at pre-visit, we determined a set of
// arguments which should be tainted after the function returns. These are
// stored in the state as TaintArgsOnPostVisit set.
TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>();
const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame);
if (!TaintArgs)
return;
assert(!TaintArgs->isEmpty());
LLVM_DEBUG(for (ArgIdxTy I
: *TaintArgs) {
llvm::dbgs() << "PostCall<";
Call.dump(llvm::dbgs());
llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n';
});
const NoteTag *InjectionTag = nullptr;
std::vector<SymbolRef> TaintedSymbols;
std::vector<ArgIdxTy> TaintedIndexes;
for (ArgIdxTy ArgNum : *TaintArgs) {
// Special handling for the tainted return value.
if (ArgNum == ReturnValueIndex) {
State = addTaint(State, Call.getReturnValue());
std::vector<SymbolRef> TaintedSyms =
getTaintedSymbols(State, Call.getReturnValue());
if (!TaintedSyms.empty()) {
TaintedSymbols.push_back(TaintedSyms[0]);
TaintedIndexes.push_back(ArgNum);
}
continue;
}
// The arguments are pointer arguments. The data they are pointing at is
// tainted after the call.
if (auto V = getPointeeOf(State, Call.getArgSVal(ArgNum))) {
State = addTaint(State, *V);
std::vector<SymbolRef> TaintedSyms = getTaintedSymbols(State, *V);
if (!TaintedSyms.empty()) {
TaintedSymbols.push_back(TaintedSyms[0]);
TaintedIndexes.push_back(ArgNum);
}
}
}
// Create a NoteTag callback, which prints to the user where the taintedness
// was propagated to.
InjectionTag = taintPropagationExplainerTag(C, TaintedSymbols, TaintedIndexes,
Call.getCalleeStackFrame(0));
// Clear up the taint info from the state.
State = State->remove<TaintArgsOnPostVisit>(CurrentFrame);
C.addTransition(State, InjectionTag);
}
void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
printTaint(State, Out, NL, Sep);
}
void GenericTaintRule::process(const GenericTaintChecker &Checker,
const CallEvent &Call, CheckerContext &C) const {
ProgramStateRef State = C.getState();
const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
/// Iterate every call argument, and get their corresponding Expr and SVal.
const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) {
for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) {
const Expr *E = GetArgExpr(I, Call);
Fun(I, E, C.getSVal(E));
}
};
/// Check for taint sinks.
ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) {
// Add taintedness to stdin parameters
if (isStdin(C.getSVal(E), C.getASTContext())) {
State = addTaint(State, C.getSVal(E));
}
if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(State, C.getSVal(E)))
Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C);
});
/// Check for taint filters.
ForEachCallArg([this, &State](ArgIdxTy I, const Expr *E, SVal S) {
if (FilterArgs.contains(I)) {
State = removeTaint(State, S);
if (auto P = getPointeeOf(State, S))
State = removeTaint(State, *P);
}
});
/// Check for taint propagation sources.
/// A rule will make the destination variables tainted if PropSrcArgs
/// is empty (taints the destination
/// arguments unconditionally), or if any of its signified
/// args are tainted in context of the current CallEvent.
bool IsMatching = PropSrcArgs.isEmpty();
std::vector<SymbolRef> TaintedSymbols;
std::vector<ArgIdxTy> TaintedIndexes;
ForEachCallArg([this, &C, &IsMatching, &State, &TaintedSymbols,
&TaintedIndexes](ArgIdxTy I, const Expr *E, SVal) {
std::optional<SVal> TaintedSVal =
getTaintedPointeeOrPointer(State, C.getSVal(E));
IsMatching =
IsMatching || (PropSrcArgs.contains(I) && TaintedSVal.has_value());
// We track back tainted arguments except for stdin
if (TaintedSVal && !isStdin(*TaintedSVal, C.getASTContext())) {
std::vector<SymbolRef> TaintedArgSyms =
getTaintedSymbols(State, *TaintedSVal);
if (!TaintedArgSyms.empty()) {
llvm::append_range(TaintedSymbols, TaintedArgSyms);
TaintedIndexes.push_back(I);
}
}
});
// Early return for propagation rules which dont match.
// Matching propagations, Sinks and Filters will pass this point.
if (!IsMatching)
return;
const auto WouldEscape = [](SVal V, QualType Ty) -> bool {
if (!isa<Loc>(V))
return false;
const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified();
const bool IsNonConstPtr =
Ty->isPointerType() && !Ty->getPointeeType().isConstQualified();
return IsNonConstRef || IsNonConstPtr;
};
/// Propagate taint where it is necessary.
auto &F = State->getStateManager().get_context<ArgIdxFactory>();
ImmutableSet<ArgIdxTy> Result = F.getEmptySet();
ForEachCallArg(
[&](ArgIdxTy I, const Expr *E, SVal V) {
if (PropDstArgs.contains(I)) {
LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs());
llvm::dbgs()
<< "> prepares tainting arg index: " << I << '\n';);
Result = F.add(Result, I);
}
// Taint property gets lost if the variable is passed as a
// non-const pointer or reference to a function which is
// not inlined. For matching rules we want to preserve the taintedness.
// TODO: We should traverse all reachable memory regions via the
// escaping parameter. Instead of doing that we simply mark only the
// referred memory region as tainted.
if (WouldEscape(V, E->getType()) && getTaintedPointeeOrPointer(State, V)) {
LLVM_DEBUG(if (!Result.contains(I)) {
llvm::dbgs() << "PreCall<";
Call.dump(llvm::dbgs());
llvm::dbgs() << "> prepares tainting arg index: " << I << '\n';
});
Result = F.add(Result, I);
}
});
if (!Result.isEmpty())
State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
const NoteTag *InjectionTag = taintOriginTrackerTag(
C, std::move(TaintedSymbols), std::move(TaintedIndexes),
Call.getCalleeStackFrame(0));
C.addTransition(State, InjectionTag);
}
bool GenericTaintRule::UntrustedEnv(CheckerContext &C) {
return !C.getAnalysisManager()
.getAnalyzerOptions()
.ShouldAssumeControlledEnvironment;
}
bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const {
assert(E);
std::optional<SVal> TaintedSVal =
getTaintedPointeeOrPointer(C.getState(), C.getSVal(E));
if (!TaintedSVal)
return false;
// Generate diagnostic.
if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
auto report = std::make_unique<PathSensitiveBugReport>(BT, Msg, N);
report->addRange(E->getSourceRange());
for (auto TaintedSym : getTaintedSymbols(C.getState(), *TaintedSVal)) {
report->markInteresting(TaintedSym);
}
C.emitReport(std::move(report));
return true;
}
return false;
}
/// TODO: remove checking for printf format attributes and socket whitelisting
/// from GenericTaintChecker, and that means the following functions:
/// getPrintfFormatArgumentNum,
/// GenericTaintChecker::checkUncontrolledFormatString,
/// GenericTaintChecker::taintUnsafeSocketProtocol
static bool getPrintfFormatArgumentNum(const CallEvent &Call,
const CheckerContext &C,
ArgIdxTy &ArgNum) {
// Find if the function contains a format string argument.
// Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
// vsnprintf, syslog, custom annotated functions.
const Decl *CallDecl = Call.getDecl();
if (!CallDecl)
return false;
const FunctionDecl *FDecl = CallDecl->getAsFunction();
if (!FDecl)
return false;
const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
ArgNum = Format->getFormatIdx() - 1;
if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum)
return true;
}
return false;
}
bool GenericTaintChecker::checkUncontrolledFormatString(
const CallEvent &Call, CheckerContext &C) const {
// Check if the function contains a format string argument.
ArgIdxTy ArgNum = 0;
if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
return false;
// If either the format string content or the pointer itself are tainted,
// warn.
return generateReportIfTainted(Call.getArgExpr(ArgNum),
MsgUncontrolledFormatString, C);
}
void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call,
CheckerContext &C) const {
if (Call.getNumArgs() < 1)
return;
const IdentifierInfo *ID = Call.getCalleeIdentifier();
if (!ID)
return;
if (!ID->getName().equals("socket"))
return;
SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
// Allow internal communication protocols.
bool SafeProtocol = DomName.equals("AF_SYSTEM") ||
DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") ||
DomName.equals("AF_RESERVED_36");
if (SafeProtocol)
return;
ProgramStateRef State = C.getState();
auto &F = State->getStateManager().get_context<ArgIdxFactory>();
ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex);
State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
C.addTransition(State);
}
/// Checker registration
void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
Mgr.registerChecker<GenericTaintChecker>();
}
bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
return true;
}