blob: 9d44c22c8ddcc3a234c46af72b16d19e96829d4f [file] [log] [blame]
//===--- SemaStmtAttr.cpp - Statement Attribute Handling ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements stmt-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/StringExtras.h"
#include <optional>
using namespace clang;
using namespace sema;
static Attr *handleFallThroughAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
FallThroughAttr Attr(S.Context, A);
if (isa<SwitchCase>(St)) {
S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_wrong_target)
<< A << St->getBeginLoc();
SourceLocation L = S.getLocForEndOfToken(Range.getEnd());
S.Diag(L, diag::note_fallthrough_insert_semi_fixit)
<< FixItHint::CreateInsertion(L, ";");
return nullptr;
}
auto *FnScope = S.getCurFunction();
if (FnScope->SwitchStack.empty()) {
S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_outside_switch);
return nullptr;
}
// If this is spelled as the standard C++17 attribute, but not in C++17, warn
// about using it as an extension.
if (!S.getLangOpts().CPlusPlus17 && A.isCXX11Attribute() &&
!A.getScopeName())
S.Diag(A.getLoc(), diag::ext_cxx17_attr) << A;
FnScope->setHasFallthroughStmt();
return ::new (S.Context) FallThroughAttr(S.Context, A);
}
static Attr *handleSuppressAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress &&
A.getNumArgs() < 1) {
// Suppression attribute with GSL spelling requires at least 1 argument.
S.Diag(A.getLoc(), diag::err_attribute_too_few_arguments) << A << 1;
return nullptr;
}
std::vector<StringRef> DiagnosticIdentifiers;
for (unsigned I = 0, E = A.getNumArgs(); I != E; ++I) {
StringRef RuleName;
if (!S.checkStringLiteralArgumentAttr(A, I, RuleName, nullptr))
return nullptr;
DiagnosticIdentifiers.push_back(RuleName);
}
return ::new (S.Context) SuppressAttr(
S.Context, A, DiagnosticIdentifiers.data(), DiagnosticIdentifiers.size());
}
static Attr *handleLoopHintAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange) {
IdentifierLoc *PragmaNameLoc = A.getArgAsIdent(0);
IdentifierLoc *OptionLoc = A.getArgAsIdent(1);
IdentifierLoc *StateLoc = A.getArgAsIdent(2);
Expr *ValueExpr = A.getArgAsExpr(3);
StringRef PragmaName =
llvm::StringSwitch<StringRef>(PragmaNameLoc->Ident->getName())
.Cases("unroll", "nounroll", "unroll_and_jam", "nounroll_and_jam",
PragmaNameLoc->Ident->getName())
.Default("clang loop");
// This could be handled automatically by adding a Subjects definition in
// Attr.td, but that would make the diagnostic behavior worse in this case
// because the user spells this attribute as a pragma.
if (!isa<DoStmt, ForStmt, CXXForRangeStmt, WhileStmt>(St)) {
std::string Pragma = "#pragma " + std::string(PragmaName);
S.Diag(St->getBeginLoc(), diag::err_pragma_loop_precedes_nonloop) << Pragma;
return nullptr;
}
LoopHintAttr::OptionType Option;
LoopHintAttr::LoopHintState State;
auto SetHints = [&Option, &State](LoopHintAttr::OptionType O,
LoopHintAttr::LoopHintState S) {
Option = O;
State = S;
};
if (PragmaName == "nounroll") {
SetHints(LoopHintAttr::Unroll, LoopHintAttr::Disable);
} else if (PragmaName == "unroll") {
// #pragma unroll N
if (ValueExpr && !ValueExpr->isValueDependent()) {
llvm::APSInt ValueAPS;
ExprResult R = S.VerifyIntegerConstantExpression(ValueExpr, &ValueAPS);
assert(!R.isInvalid() && "unroll count value must be a valid value, it's "
"should be checked in Sema::CheckLoopHintExpr");
(void)R;
// The values of 0 and 1 block any unrolling of the loop.
if (ValueAPS.isZero() || ValueAPS.isOne())
SetHints(LoopHintAttr::UnrollCount, LoopHintAttr::Disable);
else
SetHints(LoopHintAttr::UnrollCount, LoopHintAttr::Numeric);
} else
SetHints(LoopHintAttr::Unroll, LoopHintAttr::Enable);
} else if (PragmaName == "nounroll_and_jam") {
SetHints(LoopHintAttr::UnrollAndJam, LoopHintAttr::Disable);
} else if (PragmaName == "unroll_and_jam") {
// #pragma unroll_and_jam N
if (ValueExpr)
SetHints(LoopHintAttr::UnrollAndJamCount, LoopHintAttr::Numeric);
else
SetHints(LoopHintAttr::UnrollAndJam, LoopHintAttr::Enable);
} else {
// #pragma clang loop ...
assert(OptionLoc && OptionLoc->Ident &&
"Attribute must have valid option info.");
Option = llvm::StringSwitch<LoopHintAttr::OptionType>(
OptionLoc->Ident->getName())
.Case("vectorize", LoopHintAttr::Vectorize)
.Case("vectorize_width", LoopHintAttr::VectorizeWidth)
.Case("interleave", LoopHintAttr::Interleave)
.Case("vectorize_predicate", LoopHintAttr::VectorizePredicate)
.Case("interleave_count", LoopHintAttr::InterleaveCount)
.Case("unroll", LoopHintAttr::Unroll)
.Case("unroll_count", LoopHintAttr::UnrollCount)
.Case("pipeline", LoopHintAttr::PipelineDisabled)
.Case("pipeline_initiation_interval",
LoopHintAttr::PipelineInitiationInterval)
.Case("distribute", LoopHintAttr::Distribute)
.Default(LoopHintAttr::Vectorize);
if (Option == LoopHintAttr::VectorizeWidth) {
assert((ValueExpr || (StateLoc && StateLoc->Ident)) &&
"Attribute must have a valid value expression or argument.");
if (ValueExpr && S.CheckLoopHintExpr(ValueExpr, St->getBeginLoc(),
/*AllowZero=*/false))
return nullptr;
if (StateLoc && StateLoc->Ident && StateLoc->Ident->isStr("scalable"))
State = LoopHintAttr::ScalableWidth;
else
State = LoopHintAttr::FixedWidth;
} else if (Option == LoopHintAttr::InterleaveCount ||
Option == LoopHintAttr::UnrollCount ||
Option == LoopHintAttr::PipelineInitiationInterval) {
assert(ValueExpr && "Attribute must have a valid value expression.");
if (S.CheckLoopHintExpr(ValueExpr, St->getBeginLoc(),
/*AllowZero=*/false))
return nullptr;
State = LoopHintAttr::Numeric;
} else if (Option == LoopHintAttr::Vectorize ||
Option == LoopHintAttr::Interleave ||
Option == LoopHintAttr::VectorizePredicate ||
Option == LoopHintAttr::Unroll ||
Option == LoopHintAttr::Distribute ||
Option == LoopHintAttr::PipelineDisabled) {
assert(StateLoc && StateLoc->Ident && "Loop hint must have an argument");
if (StateLoc->Ident->isStr("disable"))
State = LoopHintAttr::Disable;
else if (StateLoc->Ident->isStr("assume_safety"))
State = LoopHintAttr::AssumeSafety;
else if (StateLoc->Ident->isStr("full"))
State = LoopHintAttr::Full;
else if (StateLoc->Ident->isStr("enable"))
State = LoopHintAttr::Enable;
else
llvm_unreachable("bad loop hint argument");
} else
llvm_unreachable("bad loop hint");
}
return LoopHintAttr::CreateImplicit(S.Context, Option, State, ValueExpr, A);
}
namespace {
class CallExprFinder : public ConstEvaluatedExprVisitor<CallExprFinder> {
bool FoundAsmStmt = false;
std::vector<const CallExpr *> CallExprs;
public:
typedef ConstEvaluatedExprVisitor<CallExprFinder> Inherited;
CallExprFinder(Sema &S, const Stmt *St) : Inherited(S.Context) { Visit(St); }
bool foundCallExpr() { return !CallExprs.empty(); }
const std::vector<const CallExpr *> &getCallExprs() { return CallExprs; }
bool foundAsmStmt() { return FoundAsmStmt; }
void VisitCallExpr(const CallExpr *E) { CallExprs.push_back(E); }
void VisitAsmStmt(const AsmStmt *S) { FoundAsmStmt = true; }
void Visit(const Stmt *St) {
if (!St)
return;
ConstEvaluatedExprVisitor<CallExprFinder>::Visit(St);
}
};
} // namespace
static Attr *handleNoMergeAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
NoMergeAttr NMA(S.Context, A);
CallExprFinder CEF(S, St);
if (!CEF.foundCallExpr() && !CEF.foundAsmStmt()) {
S.Diag(St->getBeginLoc(), diag::warn_attribute_ignored_no_calls_in_stmt)
<< A;
return nullptr;
}
return ::new (S.Context) NoMergeAttr(S.Context, A);
}
template <typename OtherAttr, int DiagIdx>
static bool CheckStmtInlineAttr(Sema &SemaRef, const Stmt *OrigSt,
const Stmt *CurSt,
const AttributeCommonInfo &A) {
CallExprFinder OrigCEF(SemaRef, OrigSt);
CallExprFinder CEF(SemaRef, CurSt);
// If the call expressions lists are equal in size, we can skip
// previously emitted diagnostics. However, if the statement has a pack
// expansion, we have no way of telling which CallExpr is the instantiated
// version of the other. In this case, we will end up re-diagnosing in the
// instantiation.
// ie: [[clang::always_inline]] non_dependent(), (other_call<Pack>()...)
// will diagnose nondependent again.
bool CanSuppressDiag =
OrigSt && CEF.getCallExprs().size() == OrigCEF.getCallExprs().size();
if (!CEF.foundCallExpr()) {
return SemaRef.Diag(CurSt->getBeginLoc(),
diag::warn_attribute_ignored_no_calls_in_stmt)
<< A;
}
for (const auto &Tup :
llvm::zip_longest(OrigCEF.getCallExprs(), CEF.getCallExprs())) {
// If the original call expression already had a callee, we already
// diagnosed this, so skip it here. We can't skip if there isn't a 1:1
// relationship between the two lists of call expressions.
if (!CanSuppressDiag || !(*std::get<0>(Tup))->getCalleeDecl()) {
const Decl *Callee = (*std::get<1>(Tup))->getCalleeDecl();
if (Callee &&
(Callee->hasAttr<OtherAttr>() || Callee->hasAttr<FlattenAttr>())) {
SemaRef.Diag(CurSt->getBeginLoc(),
diag::warn_function_stmt_attribute_precedence)
<< A << (Callee->hasAttr<OtherAttr>() ? DiagIdx : 1);
SemaRef.Diag(Callee->getBeginLoc(), diag::note_conflicting_attribute);
}
}
}
return false;
}
bool Sema::CheckNoInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
const AttributeCommonInfo &A) {
return CheckStmtInlineAttr<AlwaysInlineAttr, 0>(*this, OrigSt, CurSt, A);
}
bool Sema::CheckAlwaysInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
const AttributeCommonInfo &A) {
return CheckStmtInlineAttr<NoInlineAttr, 2>(*this, OrigSt, CurSt, A);
}
static Attr *handleNoInlineAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
NoInlineAttr NIA(S.Context, A);
if (!NIA.isClangNoInline()) {
S.Diag(St->getBeginLoc(), diag::warn_function_attribute_ignored_in_stmt)
<< "[[clang::noinline]]";
return nullptr;
}
if (S.CheckNoInlineAttr(/*OrigSt=*/nullptr, St, A))
return nullptr;
return ::new (S.Context) NoInlineAttr(S.Context, A);
}
static Attr *handleAlwaysInlineAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
AlwaysInlineAttr AIA(S.Context, A);
if (!AIA.isClangAlwaysInline()) {
S.Diag(St->getBeginLoc(), diag::warn_function_attribute_ignored_in_stmt)
<< "[[clang::always_inline]]";
return nullptr;
}
if (S.CheckAlwaysInlineAttr(/*OrigSt=*/nullptr, St, A))
return nullptr;
return ::new (S.Context) AlwaysInlineAttr(S.Context, A);
}
static Attr *handleCXXAssumeAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
ExprResult Res = S.ActOnCXXAssumeAttr(St, A, Range);
if (!Res.isUsable())
return nullptr;
return ::new (S.Context) CXXAssumeAttr(S.Context, A, Res.get());
}
static Attr *handleMustTailAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
// Validation is in Sema::ActOnAttributedStmt().
return ::new (S.Context) MustTailAttr(S.Context, A);
}
static Attr *handleLikely(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (!S.getLangOpts().CPlusPlus20 && A.isCXX11Attribute() && !A.getScopeName())
S.Diag(A.getLoc(), diag::ext_cxx20_attr) << A << Range;
return ::new (S.Context) LikelyAttr(S.Context, A);
}
static Attr *handleUnlikely(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (!S.getLangOpts().CPlusPlus20 && A.isCXX11Attribute() && !A.getScopeName())
S.Diag(A.getLoc(), diag::ext_cxx20_attr) << A << Range;
return ::new (S.Context) UnlikelyAttr(S.Context, A);
}
CodeAlignAttr *Sema::BuildCodeAlignAttr(const AttributeCommonInfo &CI,
Expr *E) {
if (!E->isValueDependent()) {
llvm::APSInt ArgVal;
ExprResult Res = VerifyIntegerConstantExpression(E, &ArgVal);
if (Res.isInvalid())
return nullptr;
E = Res.get();
// This attribute requires an integer argument which is a constant power of
// two between 1 and 4096 inclusive.
if (ArgVal < CodeAlignAttr::MinimumAlignment ||
ArgVal > CodeAlignAttr::MaximumAlignment || !ArgVal.isPowerOf2()) {
if (std::optional<int64_t> Value = ArgVal.trySExtValue())
Diag(CI.getLoc(), diag::err_attribute_power_of_two_in_range)
<< CI << CodeAlignAttr::MinimumAlignment
<< CodeAlignAttr::MaximumAlignment << Value.value();
else
Diag(CI.getLoc(), diag::err_attribute_power_of_two_in_range)
<< CI << CodeAlignAttr::MinimumAlignment
<< CodeAlignAttr::MaximumAlignment << E;
return nullptr;
}
}
return new (Context) CodeAlignAttr(Context, CI, E);
}
static Attr *handleCodeAlignAttr(Sema &S, Stmt *St, const ParsedAttr &A) {
Expr *E = A.getArgAsExpr(0);
return S.BuildCodeAlignAttr(A, E);
}
// Diagnose non-identical duplicates as a 'conflicting' loop attributes
// and suppress duplicate errors in cases where the two match.
template <typename LoopAttrT>
static void CheckForDuplicateLoopAttrs(Sema &S, ArrayRef<const Attr *> Attrs) {
auto FindFunc = [](const Attr *A) { return isa<const LoopAttrT>(A); };
const auto *FirstItr = std::find_if(Attrs.begin(), Attrs.end(), FindFunc);
if (FirstItr == Attrs.end()) // no attributes found
return;
const auto *LastFoundItr = FirstItr;
std::optional<llvm::APSInt> FirstValue;
const auto *CAFA =
dyn_cast<ConstantExpr>(cast<LoopAttrT>(*FirstItr)->getAlignment());
// Return early if first alignment expression is dependent (since we don't
// know what the effective size will be), and skip the loop entirely.
if (!CAFA)
return;
while (Attrs.end() != (LastFoundItr = std::find_if(LastFoundItr + 1,
Attrs.end(), FindFunc))) {
const auto *CASA =
dyn_cast<ConstantExpr>(cast<LoopAttrT>(*LastFoundItr)->getAlignment());
// If the value is dependent, we can not test anything.
if (!CASA)
return;
// Test the attribute values.
llvm::APSInt SecondValue = CASA->getResultAsAPSInt();
if (!FirstValue)
FirstValue = CAFA->getResultAsAPSInt();
if (FirstValue != SecondValue) {
S.Diag((*LastFoundItr)->getLocation(), diag::err_loop_attr_conflict)
<< *FirstItr;
S.Diag((*FirstItr)->getLocation(), diag::note_previous_attribute);
}
}
return;
}
static Attr *handleMSConstexprAttr(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (!S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2022_3)) {
S.Diag(A.getLoc(), diag::warn_unknown_attribute_ignored)
<< A << A.getRange();
return nullptr;
}
return ::new (S.Context) MSConstexprAttr(S.Context, A);
}
#define WANT_STMT_MERGE_LOGIC
#include "clang/Sema/AttrParsedAttrImpl.inc"
#undef WANT_STMT_MERGE_LOGIC
static void
CheckForIncompatibleAttributes(Sema &S,
const SmallVectorImpl<const Attr *> &Attrs) {
// The vast majority of attributed statements will only have one attribute
// on them, so skip all of the checking in the common case.
if (Attrs.size() < 2)
return;
// First, check for the easy cases that are table-generated for us.
if (!DiagnoseMutualExclusions(S, Attrs))
return;
enum CategoryType {
// For the following categories, they come in two variants: a state form and
// a numeric form. The state form may be one of default, enable, and
// disable. The numeric form provides an integer hint (for example, unroll
// count) to the transformer.
Vectorize,
Interleave,
UnrollAndJam,
Pipeline,
// For unroll, default indicates full unrolling rather than enabling the
// transformation.
Unroll,
// The loop distribution transformation only has a state form that is
// exposed by #pragma clang loop distribute (enable | disable).
Distribute,
// The vector predication only has a state form that is exposed by
// #pragma clang loop vectorize_predicate (enable | disable).
VectorizePredicate,
// This serves as a indicator to how many category are listed in this enum.
NumberOfCategories
};
// The following array accumulates the hints encountered while iterating
// through the attributes to check for compatibility.
struct {
const LoopHintAttr *StateAttr;
const LoopHintAttr *NumericAttr;
} HintAttrs[CategoryType::NumberOfCategories] = {};
for (const auto *I : Attrs) {
const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(I);
// Skip non loop hint attributes
if (!LH)
continue;
CategoryType Category = CategoryType::NumberOfCategories;
LoopHintAttr::OptionType Option = LH->getOption();
switch (Option) {
case LoopHintAttr::Vectorize:
case LoopHintAttr::VectorizeWidth:
Category = Vectorize;
break;
case LoopHintAttr::Interleave:
case LoopHintAttr::InterleaveCount:
Category = Interleave;
break;
case LoopHintAttr::Unroll:
case LoopHintAttr::UnrollCount:
Category = Unroll;
break;
case LoopHintAttr::UnrollAndJam:
case LoopHintAttr::UnrollAndJamCount:
Category = UnrollAndJam;
break;
case LoopHintAttr::Distribute:
// Perform the check for duplicated 'distribute' hints.
Category = Distribute;
break;
case LoopHintAttr::PipelineDisabled:
case LoopHintAttr::PipelineInitiationInterval:
Category = Pipeline;
break;
case LoopHintAttr::VectorizePredicate:
Category = VectorizePredicate;
break;
};
assert(Category != NumberOfCategories && "Unhandled loop hint option");
auto &CategoryState = HintAttrs[Category];
const LoopHintAttr *PrevAttr;
if (Option == LoopHintAttr::Vectorize ||
Option == LoopHintAttr::Interleave || Option == LoopHintAttr::Unroll ||
Option == LoopHintAttr::UnrollAndJam ||
Option == LoopHintAttr::VectorizePredicate ||
Option == LoopHintAttr::PipelineDisabled ||
Option == LoopHintAttr::Distribute) {
// Enable|Disable|AssumeSafety hint. For example, vectorize(enable).
PrevAttr = CategoryState.StateAttr;
CategoryState.StateAttr = LH;
} else {
// Numeric hint. For example, vectorize_width(8).
PrevAttr = CategoryState.NumericAttr;
CategoryState.NumericAttr = LH;
}
PrintingPolicy Policy(S.Context.getLangOpts());
SourceLocation OptionLoc = LH->getRange().getBegin();
if (PrevAttr)
// Cannot specify same type of attribute twice.
S.Diag(OptionLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/true << PrevAttr->getDiagnosticName(Policy)
<< LH->getDiagnosticName(Policy);
if (CategoryState.StateAttr && CategoryState.NumericAttr &&
(Category == Unroll || Category == UnrollAndJam ||
CategoryState.StateAttr->getState() == LoopHintAttr::Disable)) {
// Disable hints are not compatible with numeric hints of the same
// category. As a special case, numeric unroll hints are also not
// compatible with enable or full form of the unroll pragma because these
// directives indicate full unrolling.
S.Diag(OptionLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/false
<< CategoryState.StateAttr->getDiagnosticName(Policy)
<< CategoryState.NumericAttr->getDiagnosticName(Policy);
}
}
}
static Attr *handleOpenCLUnrollHint(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
// Although the feature was introduced only in OpenCL C v2.0 s6.11.5, it's
// useful for OpenCL 1.x too and doesn't require HW support.
// opencl_unroll_hint can have 0 arguments (compiler
// determines unrolling factor) or 1 argument (the unroll factor provided
// by the user).
unsigned UnrollFactor = 0;
if (A.getNumArgs() == 1) {
Expr *E = A.getArgAsExpr(0);
std::optional<llvm::APSInt> ArgVal;
if (!(ArgVal = E->getIntegerConstantExpr(S.Context))) {
S.Diag(A.getLoc(), diag::err_attribute_argument_type)
<< A << AANT_ArgumentIntegerConstant << E->getSourceRange();
return nullptr;
}
int Val = ArgVal->getSExtValue();
if (Val <= 0) {
S.Diag(A.getRange().getBegin(),
diag::err_attribute_requires_positive_integer)
<< A << /* positive */ 0;
return nullptr;
}
UnrollFactor = static_cast<unsigned>(Val);
}
return ::new (S.Context) OpenCLUnrollHintAttr(S.Context, A, UnrollFactor);
}
static Attr *ProcessStmtAttribute(Sema &S, Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.isInvalid() || A.getKind() == ParsedAttr::IgnoredAttribute)
return nullptr;
// Unknown attributes are automatically warned on. Target-specific attributes
// which do not apply to the current target architecture are treated as
// though they were unknown attributes.
const TargetInfo *Aux = S.Context.getAuxTargetInfo();
if (A.getKind() == ParsedAttr::UnknownAttribute ||
!(A.existsInTarget(S.Context.getTargetInfo()) ||
(S.Context.getLangOpts().SYCLIsDevice && Aux &&
A.existsInTarget(*Aux)))) {
S.Diag(A.getLoc(), A.isRegularKeywordAttribute()
? (unsigned)diag::err_keyword_not_supported_on_target
: A.isDeclspecAttribute()
? (unsigned)diag::warn_unhandled_ms_attribute_ignored
: (unsigned)diag::warn_unknown_attribute_ignored)
<< A << A.getRange();
return nullptr;
}
if (S.checkCommonAttributeFeatures(St, A))
return nullptr;
switch (A.getKind()) {
case ParsedAttr::AT_AlwaysInline:
return handleAlwaysInlineAttr(S, St, A, Range);
case ParsedAttr::AT_CXXAssume:
return handleCXXAssumeAttr(S, St, A, Range);
case ParsedAttr::AT_FallThrough:
return handleFallThroughAttr(S, St, A, Range);
case ParsedAttr::AT_LoopHint:
return handleLoopHintAttr(S, St, A, Range);
case ParsedAttr::AT_OpenCLUnrollHint:
return handleOpenCLUnrollHint(S, St, A, Range);
case ParsedAttr::AT_Suppress:
return handleSuppressAttr(S, St, A, Range);
case ParsedAttr::AT_NoMerge:
return handleNoMergeAttr(S, St, A, Range);
case ParsedAttr::AT_NoInline:
return handleNoInlineAttr(S, St, A, Range);
case ParsedAttr::AT_MustTail:
return handleMustTailAttr(S, St, A, Range);
case ParsedAttr::AT_Likely:
return handleLikely(S, St, A, Range);
case ParsedAttr::AT_Unlikely:
return handleUnlikely(S, St, A, Range);
case ParsedAttr::AT_CodeAlign:
return handleCodeAlignAttr(S, St, A);
case ParsedAttr::AT_MSConstexpr:
return handleMSConstexprAttr(S, St, A, Range);
default:
// N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
// declaration attribute is not written on a statement, but this code is
// needed for attributes in Attr.td that do not list any subjects.
S.Diag(A.getRange().getBegin(), diag::err_decl_attribute_invalid_on_stmt)
<< A << A.isRegularKeywordAttribute() << St->getBeginLoc();
return nullptr;
}
}
void Sema::ProcessStmtAttributes(Stmt *S, const ParsedAttributes &InAttrs,
SmallVectorImpl<const Attr *> &OutAttrs) {
for (const ParsedAttr &AL : InAttrs) {
if (const Attr *A = ProcessStmtAttribute(*this, S, AL, InAttrs.Range))
OutAttrs.push_back(A);
}
CheckForIncompatibleAttributes(*this, OutAttrs);
CheckForDuplicateLoopAttrs<CodeAlignAttr>(*this, OutAttrs);
}
bool Sema::CheckRebuiltStmtAttributes(ArrayRef<const Attr *> Attrs) {
CheckForDuplicateLoopAttrs<CodeAlignAttr>(*this, Attrs);
return false;
}
ExprResult Sema::ActOnCXXAssumeAttr(Stmt *St, const ParsedAttr &A,
SourceRange Range) {
if (A.getNumArgs() != 1 || !A.getArgAsExpr(0)) {
Diag(A.getLoc(), diag::err_assume_attr_args) << A.getAttrName() << Range;
return ExprError();
}
auto *Assumption = A.getArgAsExpr(0);
if (Assumption->getDependence() == ExprDependence::None) {
ExprResult Res = BuildCXXAssumeExpr(Assumption, A.getAttrName(), Range);
if (Res.isInvalid())
return ExprError();
Assumption = Res.get();
}
if (!getLangOpts().CPlusPlus23)
Diag(A.getLoc(), diag::ext_cxx23_attr) << A << Range;
return Assumption;
}
ExprResult Sema::BuildCXXAssumeExpr(Expr *Assumption,
const IdentifierInfo *AttrName,
SourceRange Range) {
ExprResult Res = CorrectDelayedTyposInExpr(Assumption);
if (Res.isInvalid())
return ExprError();
Res = CheckPlaceholderExpr(Res.get());
if (Res.isInvalid())
return ExprError();
Res = PerformContextuallyConvertToBool(Res.get());
if (Res.isInvalid())
return ExprError();
Assumption = Res.get();
if (Assumption->HasSideEffects(Context))
Diag(Assumption->getBeginLoc(), diag::warn_assume_side_effects)
<< AttrName << Range;
return Assumption;
}