blob: e00c972602829ebf4b44f7a88e66102bf596dbcc [file] [log] [blame]
//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ constraints and concepts.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaConcept.h"
#include "TreeTransform.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "clang/Sema/EnterExpressionEvaluationContext.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include <optional>
using namespace clang;
using namespace sema;
namespace {
class LogicalBinOp {
SourceLocation Loc;
OverloadedOperatorKind Op = OO_None;
const Expr *LHS = nullptr;
const Expr *RHS = nullptr;
public:
LogicalBinOp(const Expr *E) {
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
LHS = BO->getLHS();
RHS = BO->getRHS();
Loc = BO->getExprLoc();
} else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
// If OO is not || or && it might not have exactly 2 arguments.
if (OO->getNumArgs() == 2) {
Op = OO->getOperator();
LHS = OO->getArg(0);
RHS = OO->getArg(1);
Loc = OO->getOperatorLoc();
}
}
}
bool isAnd() const { return Op == OO_AmpAmp; }
bool isOr() const { return Op == OO_PipePipe; }
explicit operator bool() const { return isAnd() || isOr(); }
const Expr *getLHS() const { return LHS; }
const Expr *getRHS() const { return RHS; }
ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const {
return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));
}
ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS,
ExprResult RHS) const {
assert((isAnd() || isOr()) && "Not the right kind of op?");
assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");
if (!LHS.isUsable() || !RHS.isUsable())
return ExprEmpty();
// We should just be able to 'normalize' these to the builtin Binary
// Operator, since that is how they are evaluated in constriant checks.
return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(),
BinaryOperator::getOverloadedOpcode(Op),
SemaRef.Context.BoolTy, VK_PRValue,
OK_Ordinary, Loc, FPOptionsOverride{});
}
};
}
bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
Token NextToken, bool *PossibleNonPrimary,
bool IsTrailingRequiresClause) {
// C++2a [temp.constr.atomic]p1
// ..E shall be a constant expression of type bool.
ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
if (LogicalBinOp BO = ConstraintExpression) {
return CheckConstraintExpression(BO.getLHS(), NextToken,
PossibleNonPrimary) &&
CheckConstraintExpression(BO.getRHS(), NextToken,
PossibleNonPrimary);
} else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
return CheckConstraintExpression(C->getSubExpr(), NextToken,
PossibleNonPrimary);
QualType Type = ConstraintExpression->getType();
auto CheckForNonPrimary = [&] {
if (!PossibleNonPrimary)
return;
*PossibleNonPrimary =
// We have the following case:
// template<typename> requires func(0) struct S { };
// The user probably isn't aware of the parentheses required around
// the function call, and we're only going to parse 'func' as the
// primary-expression, and complain that it is of non-bool type.
//
// However, if we're in a lambda, this might also be:
// []<typename> requires var () {};
// Which also looks like a function call due to the lambda parentheses,
// but unlike the first case, isn't an error, so this check is skipped.
(NextToken.is(tok::l_paren) &&
(IsTrailingRequiresClause ||
(Type->isDependentType() &&
isa<UnresolvedLookupExpr>(ConstraintExpression) &&
!dyn_cast_if_present<LambdaScopeInfo>(getCurFunction())) ||
Type->isFunctionType() ||
Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
// We have the following case:
// template<typename T> requires size_<T> == 0 struct S { };
// The user probably isn't aware of the parentheses required around
// the binary operator, and we're only going to parse 'func' as the
// first operand, and complain that it is of non-bool type.
getBinOpPrecedence(NextToken.getKind(),
/*GreaterThanIsOperator=*/true,
getLangOpts().CPlusPlus11) > prec::LogicalAnd;
};
// An atomic constraint!
if (ConstraintExpression->isTypeDependent()) {
CheckForNonPrimary();
return true;
}
if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
Diag(ConstraintExpression->getExprLoc(),
diag::err_non_bool_atomic_constraint) << Type
<< ConstraintExpression->getSourceRange();
CheckForNonPrimary();
return false;
}
if (PossibleNonPrimary)
*PossibleNonPrimary = false;
return true;
}
namespace {
struct SatisfactionStackRAII {
Sema &SemaRef;
bool Inserted = false;
SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND,
const llvm::FoldingSetNodeID &FSNID)
: SemaRef(SemaRef) {
if (ND) {
SemaRef.PushSatisfactionStackEntry(ND, FSNID);
Inserted = true;
}
}
~SatisfactionStackRAII() {
if (Inserted)
SemaRef.PopSatisfactionStackEntry();
}
};
} // namespace
template <typename AtomicEvaluator>
static ExprResult
calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction,
AtomicEvaluator &&Evaluator) {
ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
if (LogicalBinOp BO = ConstraintExpr) {
size_t EffectiveDetailEndIndex = Satisfaction.Details.size();
ExprResult LHSRes = calculateConstraintSatisfaction(
S, BO.getLHS(), Satisfaction, Evaluator);
if (LHSRes.isInvalid())
return ExprError();
bool IsLHSSatisfied = Satisfaction.IsSatisfied;
if (BO.isOr() && IsLHSSatisfied)
// [temp.constr.op] p3
// A disjunction is a constraint taking two operands. To determine if
// a disjunction is satisfied, the satisfaction of the first operand
// is checked. If that is satisfied, the disjunction is satisfied.
// Otherwise, the disjunction is satisfied if and only if the second
// operand is satisfied.
// LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
return LHSRes;
if (BO.isAnd() && !IsLHSSatisfied)
// [temp.constr.op] p2
// A conjunction is a constraint taking two operands. To determine if
// a conjunction is satisfied, the satisfaction of the first operand
// is checked. If that is not satisfied, the conjunction is not
// satisfied. Otherwise, the conjunction is satisfied if and only if
// the second operand is satisfied.
// LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
return LHSRes;
ExprResult RHSRes = calculateConstraintSatisfaction(
S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
if (RHSRes.isInvalid())
return ExprError();
bool IsRHSSatisfied = Satisfaction.IsSatisfied;
// Current implementation adds diagnostic information about the falsity
// of each false atomic constraint expression when it evaluates them.
// When the evaluation results to `false || true`, the information
// generated during the evaluation of left-hand side is meaningless
// because the whole expression evaluates to true.
// The following code removes the irrelevant diagnostic information.
// FIXME: We should probably delay the addition of diagnostic information
// until we know the entire expression is false.
if (BO.isOr() && IsRHSSatisfied) {
auto EffectiveDetailEnd = Satisfaction.Details.begin();
std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);
Satisfaction.Details.erase(EffectiveDetailEnd,
Satisfaction.Details.end());
}
return BO.recreateBinOp(S, LHSRes, RHSRes);
}
if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
// These aren't evaluated, so we don't care about cleanups, so we can just
// evaluate these as if the cleanups didn't exist.
return calculateConstraintSatisfaction(
S, C->getSubExpr(), Satisfaction,
std::forward<AtomicEvaluator>(Evaluator));
}
// An atomic constraint expression
ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
if (SubstitutedAtomicExpr.isInvalid())
return ExprError();
if (!SubstitutedAtomicExpr.isUsable())
// Evaluator has decided satisfaction without yielding an expression.
return ExprEmpty();
// We don't have the ability to evaluate this, since it contains a
// RecoveryExpr, so we want to fail overload resolution. Otherwise,
// we'd potentially pick up a different overload, and cause confusing
// diagnostics. SO, add a failure detail that will cause us to make this
// overload set not viable.
if (SubstitutedAtomicExpr.get()->containsErrors()) {
Satisfaction.IsSatisfied = false;
Satisfaction.ContainsErrors = true;
PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error);
SmallString<128> DiagString;
DiagString = ": ";
Msg.EmitToString(S.getDiagnostics(), DiagString);
unsigned MessageSize = DiagString.size();
char *Mem = new (S.Context) char[MessageSize];
memcpy(Mem, DiagString.c_str(), MessageSize);
Satisfaction.Details.emplace_back(
ConstraintExpr,
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
SubstitutedAtomicExpr.get()->getBeginLoc(),
StringRef(Mem, MessageSize)});
return SubstitutedAtomicExpr;
}
EnterExpressionEvaluationContext ConstantEvaluated(
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
Expr::EvalResult EvalResult;
EvalResult.Diag = &EvaluationDiags;
if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
S.Context) ||
!EvaluationDiags.empty()) {
// C++2a [temp.constr.atomic]p1
// ...E shall be a constant expression of type bool.
S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
diag::err_non_constant_constraint_expression)
<< SubstitutedAtomicExpr.get()->getSourceRange();
for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
S.Diag(PDiag.first, PDiag.second);
return ExprError();
}
assert(EvalResult.Val.isInt() &&
"evaluating bool expression didn't produce int");
Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
if (!Satisfaction.IsSatisfied)
Satisfaction.Details.emplace_back(ConstraintExpr,
SubstitutedAtomicExpr.get());
return SubstitutedAtomicExpr;
}
static bool
DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID,
const NamedDecl *Templ, const Expr *E,
const MultiLevelTemplateArgumentList &MLTAL) {
E->Profile(ID, S.Context, /*Canonical=*/true);
for (const auto &List : MLTAL)
for (const auto &TemplateArg : List.Args)
TemplateArg.Profile(ID, S.Context);
// Note that we have to do this with our own collection, because there are
// times where a constraint-expression check can cause us to need to evaluate
// other constriants that are unrelated, such as when evaluating a recovery
// expression, or when trying to determine the constexpr-ness of special
// members. Otherwise we could just use the
// Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function.
if (S.SatisfactionStackContains(Templ, ID)) {
S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self)
<< const_cast<Expr *>(E) << E->getSourceRange();
return true;
}
return false;
}
static ExprResult calculateConstraintSatisfaction(
Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc,
const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction) {
return calculateConstraintSatisfaction(
S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
EnterExpressionEvaluationContext ConstantEvaluated(
S, Sema::ExpressionEvaluationContext::ConstantEvaluated,
Sema::ReuseLambdaContextDecl);
// Atomic constraint - substitute arguments and check satisfaction.
ExprResult SubstitutedExpression;
{
TemplateDeductionInfo Info(TemplateNameLoc);
Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
Sema::InstantiatingTemplate::ConstraintSubstitution{},
const_cast<NamedDecl *>(Template), Info,
AtomicExpr->getSourceRange());
if (Inst.isInvalid())
return ExprError();
llvm::FoldingSetNodeID ID;
if (Template &&
DiagRecursiveConstraintEval(S, ID, Template, AtomicExpr, MLTAL)) {
Satisfaction.IsSatisfied = false;
Satisfaction.ContainsErrors = true;
return ExprEmpty();
}
SatisfactionStackRAII StackRAII(S, Template, ID);
// We do not want error diagnostics escaping here.
Sema::SFINAETrap Trap(S);
SubstitutedExpression =
S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL);
if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
// C++2a [temp.constr.atomic]p1
// ...If substitution results in an invalid type or expression, the
// constraint is not satisfied.
if (!Trap.hasErrorOccurred())
// A non-SFINAE error has occurred as a result of this
// substitution.
return ExprError();
PartialDiagnosticAt SubstDiag{SourceLocation(),
PartialDiagnostic::NullDiagnostic()};
Info.takeSFINAEDiagnostic(SubstDiag);
// FIXME: Concepts: This is an unfortunate consequence of there
// being no serialization code for PartialDiagnostics and the fact
// that serializing them would likely take a lot more storage than
// just storing them as strings. We would still like, in the
// future, to serialize the proper PartialDiagnostic as serializing
// it as a string defeats the purpose of the diagnostic mechanism.
SmallString<128> DiagString;
DiagString = ": ";
SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
unsigned MessageSize = DiagString.size();
char *Mem = new (S.Context) char[MessageSize];
memcpy(Mem, DiagString.c_str(), MessageSize);
Satisfaction.Details.emplace_back(
AtomicExpr,
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
SubstDiag.first, StringRef(Mem, MessageSize)});
Satisfaction.IsSatisfied = false;
return ExprEmpty();
}
}
if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
return ExprError();
// [temp.constr.atomic]p3: To determine if an atomic constraint is
// satisfied, the parameter mapping and template arguments are first
// substituted into its expression. If substitution results in an
// invalid type or expression, the constraint is not satisfied.
// Otherwise, the lvalue-to-rvalue conversion is performed if necessary,
// and E shall be a constant expression of type bool.
//
// Perform the L to R Value conversion if necessary. We do so for all
// non-PRValue categories, else we fail to extend the lifetime of
// temporaries, and that fails the constant expression check.
if (!SubstitutedExpression.get()->isPRValue())
SubstitutedExpression = ImplicitCastExpr::Create(
S.Context, SubstitutedExpression.get()->getType(),
CK_LValueToRValue, SubstitutedExpression.get(),
/*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
return SubstitutedExpression;
});
}
static bool CheckConstraintSatisfaction(
Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
llvm::SmallVectorImpl<Expr *> &Converted,
const MultiLevelTemplateArgumentList &TemplateArgsLists,
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
if (ConstraintExprs.empty()) {
Satisfaction.IsSatisfied = true;
return false;
}
if (TemplateArgsLists.isAnyArgInstantiationDependent()) {
// No need to check satisfaction for dependent constraint expressions.
Satisfaction.IsSatisfied = true;
return false;
}
ArrayRef<TemplateArgument> TemplateArgs =
TemplateArgsLists.getNumSubstitutedLevels() > 0
? TemplateArgsLists.getOutermost()
: ArrayRef<TemplateArgument> {};
Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
Sema::InstantiatingTemplate::ConstraintsCheck{},
const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
if (Inst.isInvalid())
return true;
for (const Expr *ConstraintExpr : ConstraintExprs) {
ExprResult Res = calculateConstraintSatisfaction(
S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,
ConstraintExpr, Satisfaction);
if (Res.isInvalid())
return true;
Converted.push_back(Res.get());
if (!Satisfaction.IsSatisfied) {
// Backfill the 'converted' list with nulls so we can keep the Converted
// and unconverted lists in sync.
Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);
// [temp.constr.op] p2
// [...] To determine if a conjunction is satisfied, the satisfaction
// of the first operand is checked. If that is not satisfied, the
// conjunction is not satisfied. [...]
return false;
}
}
return false;
}
bool Sema::CheckConstraintSatisfaction(
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
const MultiLevelTemplateArgumentList &TemplateArgsLists,
SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) {
if (ConstraintExprs.empty()) {
OutSatisfaction.IsSatisfied = true;
return false;
}
if (!Template) {
return ::CheckConstraintSatisfaction(
*this, nullptr, ConstraintExprs, ConvertedConstraints,
TemplateArgsLists, TemplateIDRange, OutSatisfaction);
}
// A list of the template argument list flattened in a predictible manner for
// the purposes of caching. The ConstraintSatisfaction type is in AST so it
// has no access to the MultiLevelTemplateArgumentList, so this has to happen
// here.
llvm::SmallVector<TemplateArgument, 4> FlattenedArgs;
for (auto List : TemplateArgsLists)
FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(),
List.Args.end());
llvm::FoldingSetNodeID ID;
ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs);
void *InsertPos;
if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
OutSatisfaction = *Cached;
return false;
}
auto Satisfaction =
std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs);
if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
ConvertedConstraints, TemplateArgsLists,
TemplateIDRange, *Satisfaction)) {
OutSatisfaction = *Satisfaction;
return true;
}
if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
// The evaluation of this constraint resulted in us trying to re-evaluate it
// recursively. This isn't really possible, except we try to form a
// RecoveryExpr as a part of the evaluation. If this is the case, just
// return the 'cached' version (which will have the same result), and save
// ourselves the extra-insert. If it ever becomes possible to legitimately
// recursively check a constraint, we should skip checking the 'inner' one
// above, and replace the cached version with this one, as it would be more
// specific.
OutSatisfaction = *Cached;
return false;
}
// Else we can simply add this satisfaction to the list.
OutSatisfaction = *Satisfaction;
// We cannot use InsertPos here because CheckConstraintSatisfaction might have
// invalidated it.
// Note that entries of SatisfactionCache are deleted in Sema's destructor.
SatisfactionCache.InsertNode(Satisfaction.release());
return false;
}
bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction) {
return calculateConstraintSatisfaction(
*this, ConstraintExpr, Satisfaction,
[this](const Expr *AtomicExpr) -> ExprResult {
// We only do this to immitate lvalue-to-rvalue conversion.
return PerformContextuallyConvertToBool(
const_cast<Expr *>(AtomicExpr));
})
.isInvalid();
}
bool Sema::addInstantiatedCapturesToScope(
FunctionDecl *Function, const FunctionDecl *PatternDecl,
LocalInstantiationScope &Scope,
const MultiLevelTemplateArgumentList &TemplateArgs) {
const auto *LambdaClass = cast<CXXMethodDecl>(Function)->getParent();
const auto *LambdaPattern = cast<CXXMethodDecl>(PatternDecl)->getParent();
unsigned Instantiated = 0;
auto AddSingleCapture = [&](const ValueDecl *CapturedPattern,
unsigned Index) {
ValueDecl *CapturedVar = LambdaClass->getCapture(Index)->getCapturedVar();
if (CapturedVar->isInitCapture())
Scope.InstantiatedLocal(CapturedPattern, CapturedVar);
};
for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) {
if (!CapturePattern.capturesVariable()) {
Instantiated++;
continue;
}
const ValueDecl *CapturedPattern = CapturePattern.getCapturedVar();
if (!CapturedPattern->isParameterPack()) {
AddSingleCapture(CapturedPattern, Instantiated++);
} else {
Scope.MakeInstantiatedLocalArgPack(CapturedPattern);
std::optional<unsigned> NumArgumentsInExpansion =
getNumArgumentsInExpansion(CapturedPattern->getType(), TemplateArgs);
if (!NumArgumentsInExpansion)
continue;
for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg)
AddSingleCapture(CapturedPattern, Instantiated++);
}
}
return false;
}
bool Sema::SetupConstraintScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
const MultiLevelTemplateArgumentList &MLTAL,
LocalInstantiationScope &Scope) {
if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) {
FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate();
InstantiatingTemplate Inst(
*this, FD->getPointOfInstantiation(),
Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate,
TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
SourceRange());
if (Inst.isInvalid())
return true;
// addInstantiatedParametersToScope creates a map of 'uninstantiated' to
// 'instantiated' parameters and adds it to the context. For the case where
// this function is a template being instantiated NOW, we also need to add
// the list of current template arguments to the list so that they also can
// be picked out of the map.
if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) {
MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(),
/*Final=*/false);
if (addInstantiatedParametersToScope(
FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs))
return true;
}
// If this is a member function, make sure we get the parameters that
// reference the original primary template.
// We walk up the instantiated template chain so that nested lambdas get
// handled properly.
// We should only collect instantiated parameters from the primary template.
// Otherwise, we may have mismatched template parameter depth!
if (FunctionTemplateDecl *FromMemTempl =
PrimaryTemplate->getInstantiatedFromMemberTemplate()) {
while (FromMemTempl->getInstantiatedFromMemberTemplate())
FromMemTempl = FromMemTempl->getInstantiatedFromMemberTemplate();
if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),
Scope, MLTAL))
return true;
}
return false;
}
if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization ||
FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) {
FunctionDecl *InstantiatedFrom =
FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
? FD->getInstantiatedFromMemberFunction()
: FD->getInstantiatedFromDecl();
InstantiatingTemplate Inst(
*this, FD->getPointOfInstantiation(),
Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom,
TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
SourceRange());
if (Inst.isInvalid())
return true;
// Case where this was not a template, but instantiated as a
// child-function.
if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))
return true;
}
return false;
}
// This function collects all of the template arguments for the purposes of
// constraint-instantiation and checking.
std::optional<MultiLevelTemplateArgumentList>
Sema::SetupConstraintCheckingTemplateArgumentsAndScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
LocalInstantiationScope &Scope) {
MultiLevelTemplateArgumentList MLTAL;
// Collect the list of template arguments relative to the 'primary' template.
// We need the entire list, since the constraint is completely uninstantiated
// at this point.
MLTAL =
getTemplateInstantiationArgs(FD, FD->getLexicalDeclContext(),
/*Final=*/false, /*Innermost=*/std::nullopt,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true);
if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))
return std::nullopt;
return MLTAL;
}
bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
ConstraintSatisfaction &Satisfaction,
SourceLocation UsageLoc,
bool ForOverloadResolution) {
// Don't check constraints if the function is dependent. Also don't check if
// this is a function template specialization, as the call to
// CheckinstantiatedFunctionTemplateConstraints after this will check it
// better.
if (FD->isDependentContext() ||
FD->getTemplatedKind() ==
FunctionDecl::TK_FunctionTemplateSpecialization) {
Satisfaction.IsSatisfied = true;
return false;
}
// A lambda conversion operator has the same constraints as the call operator
// and constraints checking relies on whether we are in a lambda call operator
// (and may refer to its parameters), so check the call operator instead.
// Note that the declarations outside of the lambda should also be
// considered. Turning on the 'ForOverloadResolution' flag results in the
// LocalInstantiationScope not looking into its parents, but we can still
// access Decls from the parents while building a lambda RAII scope later.
if (const auto *MD = dyn_cast<CXXConversionDecl>(FD);
MD && isLambdaConversionOperator(const_cast<CXXConversionDecl *>(MD)))
return CheckFunctionConstraints(MD->getParent()->getLambdaCallOperator(),
Satisfaction, UsageLoc,
/*ShouldAddDeclsFromParentScope=*/true);
DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD);
while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) {
if (isLambdaCallOperator(CtxToSave))
CtxToSave = CtxToSave->getParent()->getParent();
else
CtxToSave = CtxToSave->getNonTransparentContext();
}
ContextRAII SavedContext{*this, CtxToSave};
LocalInstantiationScope Scope(*this, !ForOverloadResolution);
std::optional<MultiLevelTemplateArgumentList> MLTAL =
SetupConstraintCheckingTemplateArgumentsAndScope(
const_cast<FunctionDecl *>(FD), {}, Scope);
if (!MLTAL)
return true;
Qualifiers ThisQuals;
CXXRecordDecl *Record = nullptr;
if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
ThisQuals = Method->getMethodQualifiers();
Record = const_cast<CXXRecordDecl *>(Method->getParent());
}
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
*this, const_cast<FunctionDecl *>(FD), *MLTAL, Scope,
ForOverloadResolution);
return CheckConstraintSatisfaction(
FD, {FD->getTrailingRequiresClause()}, *MLTAL,
SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
Satisfaction);
}
// Figure out the to-translation-unit depth for this function declaration for
// the purpose of seeing if they differ by constraints. This isn't the same as
// getTemplateDepth, because it includes already instantiated parents.
static unsigned
CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND,
bool SkipForSpecialization = false) {
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
ND, ND->getLexicalDeclContext(), /*Final=*/false,
/*Innermost=*/std::nullopt,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true, SkipForSpecialization);
return MLTAL.getNumLevels();
}
namespace {
class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> {
unsigned TemplateDepth = 0;
public:
using inherited = TreeTransform<AdjustConstraintDepth>;
AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)
: inherited(SemaRef), TemplateDepth(TemplateDepth) {}
using inherited::TransformTemplateTypeParmType;
QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL, bool) {
const TemplateTypeParmType *T = TL.getTypePtr();
TemplateTypeParmDecl *NewTTPDecl = nullptr;
if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
TransformDecl(TL.getNameLoc(), OldTTPDecl));
QualType Result = getSema().Context.getTemplateTypeParmType(
T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),
NewTTPDecl);
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
};
} // namespace
static const Expr *SubstituteConstraintExpressionWithoutSatisfaction(
Sema &S, const Sema::TemplateCompareNewDeclInfo &DeclInfo,
const Expr *ConstrExpr) {
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
DeclInfo.getDecl(), DeclInfo.getLexicalDeclContext(), /*Final=*/false,
/*Innermost=*/std::nullopt,
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true,
/*SkipForSpecialization*/ false);
if (MLTAL.getNumSubstitutedLevels() == 0)
return ConstrExpr;
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/false);
Sema::InstantiatingTemplate Inst(
S, DeclInfo.getLocation(),
Sema::InstantiatingTemplate::ConstraintNormalization{},
const_cast<NamedDecl *>(DeclInfo.getDecl()), SourceRange{});
if (Inst.isInvalid())
return nullptr;
// Set up a dummy 'instantiation' scope in the case of reference to function
// parameters that the surrounding function hasn't been instantiated yet. Note
// this may happen while we're comparing two templates' constraint
// equivalence.
LocalInstantiationScope ScopeForParameters(S);
if (auto *FD = llvm::dyn_cast<FunctionDecl>(DeclInfo.getDecl()))
for (auto *PVD : FD->parameters())
ScopeForParameters.InstantiatedLocal(PVD, PVD);
std::optional<Sema::CXXThisScopeRAII> ThisScope;
// See TreeTransform::RebuildTemplateSpecializationType. A context scope is
// essential for having an injected class as the canonical type for a template
// specialization type at the rebuilding stage. This guarantees that, for
// out-of-line definitions, injected class name types and their equivalent
// template specializations can be profiled to the same value, which makes it
// possible that e.g. constraints involving C<Class<T>> and C<Class> are
// perceived identical.
std::optional<Sema::ContextRAII> ContextScope;
if (auto *RD = dyn_cast<CXXRecordDecl>(DeclInfo.getDeclContext())) {
ThisScope.emplace(S, const_cast<CXXRecordDecl *>(RD), Qualifiers());
ContextScope.emplace(S, const_cast<DeclContext *>(cast<DeclContext>(RD)),
/*NewThisContext=*/false);
}
ExprResult SubstConstr = S.SubstConstraintExprWithoutSatisfaction(
const_cast<clang::Expr *>(ConstrExpr), MLTAL);
if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable())
return nullptr;
return SubstConstr.get();
}
bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
const Expr *OldConstr,
const TemplateCompareNewDeclInfo &New,
const Expr *NewConstr) {
if (OldConstr == NewConstr)
return true;
// C++ [temp.constr.decl]p4
if (Old && !New.isInvalid() && !New.ContainsDecl(Old) &&
Old->getLexicalDeclContext() != New.getLexicalDeclContext()) {
if (const Expr *SubstConstr =
SubstituteConstraintExpressionWithoutSatisfaction(*this, Old,
OldConstr))
OldConstr = SubstConstr;
else
return false;
if (const Expr *SubstConstr =
SubstituteConstraintExpressionWithoutSatisfaction(*this, New,
NewConstr))
NewConstr = SubstConstr;
else
return false;
}
llvm::FoldingSetNodeID ID1, ID2;
OldConstr->Profile(ID1, Context, /*Canonical=*/true);
NewConstr->Profile(ID2, Context, /*Canonical=*/true);
return ID1 == ID2;
}
bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) {
assert(FD->getFriendObjectKind() && "Must be a friend!");
// The logic for non-templates is handled in ASTContext::isSameEntity, so we
// don't have to bother checking 'DependsOnEnclosingTemplate' for a
// non-function-template.
assert(FD->getDescribedFunctionTemplate() &&
"Non-function templates don't need to be checked");
SmallVector<const Expr *, 3> ACs;
FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs);
unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD);
for (const Expr *Constraint : ACs)
if (ConstraintExpressionDependsOnEnclosingTemplate(FD, OldTemplateDepth,
Constraint))
return true;
return false;
}
bool Sema::EnsureTemplateArgumentListConstraints(
TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists,
SourceRange TemplateIDRange) {
ConstraintSatisfaction Satisfaction;
llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
TD->getAssociatedConstraints(AssociatedConstraints);
if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists,
TemplateIDRange, Satisfaction))
return true;
if (!Satisfaction.IsSatisfied) {
SmallString<128> TemplateArgString;
TemplateArgString = " ";
TemplateArgString += getTemplateArgumentBindingsText(
TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(),
TemplateArgsLists.getInnermost().size());
Diag(TemplateIDRange.getBegin(),
diag::err_template_arg_list_constraints_not_satisfied)
<< (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
<< TemplateArgString << TemplateIDRange;
DiagnoseUnsatisfiedConstraint(Satisfaction);
return true;
}
return false;
}
bool Sema::CheckInstantiatedFunctionTemplateConstraints(
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
ArrayRef<TemplateArgument> TemplateArgs,
ConstraintSatisfaction &Satisfaction) {
// In most cases we're not going to have constraints, so check for that first.
FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
// Note - code synthesis context for the constraints check is created
// inside CheckConstraintsSatisfaction.
SmallVector<const Expr *, 3> TemplateAC;
Template->getAssociatedConstraints(TemplateAC);
if (TemplateAC.empty()) {
Satisfaction.IsSatisfied = true;
return false;
}
// Enter the scope of this instantiation. We don't use
// PushDeclContext because we don't have a scope.
Sema::ContextRAII savedContext(*this, Decl);
LocalInstantiationScope Scope(*this);
std::optional<MultiLevelTemplateArgumentList> MLTAL =
SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,
Scope);
if (!MLTAL)
return true;
Qualifiers ThisQuals;
CXXRecordDecl *Record = nullptr;
if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
ThisQuals = Method->getMethodQualifiers();
Record = Method->getParent();
}
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
*this, const_cast<FunctionDecl *>(Decl), *MLTAL, Scope);
llvm::SmallVector<Expr *, 1> Converted;
return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL,
PointOfInstantiation, Satisfaction);
}
static void diagnoseUnsatisfiedRequirement(Sema &S,
concepts::ExprRequirement *Req,
bool First) {
assert(!Req->isSatisfied()
&& "Diagnose() can only be used on an unsatisfied requirement");
switch (Req->getSatisfactionStatus()) {
case concepts::ExprRequirement::SS_Dependent:
llvm_unreachable("Diagnosing a dependent requirement");
break;
case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
if (!SubstDiag->DiagMessage.empty())
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_expr_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity
<< SubstDiag->DiagMessage;
else
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_expr_unknown_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity;
break;
}
case concepts::ExprRequirement::SS_NoexceptNotMet:
S.Diag(Req->getNoexceptLoc(),
diag::note_expr_requirement_noexcept_not_met)
<< (int)First << Req->getExpr();
break;
case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
auto *SubstDiag =
Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
if (!SubstDiag->DiagMessage.empty())
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_type_requirement_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity
<< SubstDiag->DiagMessage;
else
S.Diag(SubstDiag->DiagLoc,
diag::note_expr_requirement_type_requirement_unknown_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity;
break;
}
case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
ConceptSpecializationExpr *ConstraintExpr =
Req->getReturnTypeRequirementSubstitutedConstraintExpr();
if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
// A simple case - expr type is the type being constrained and the concept
// was not provided arguments.
Expr *e = Req->getExpr();
S.Diag(e->getBeginLoc(),
diag::note_expr_requirement_constraints_not_satisfied_simple)
<< (int)First << S.Context.getReferenceQualifiedType(e)
<< ConstraintExpr->getNamedConcept();
} else {
S.Diag(ConstraintExpr->getBeginLoc(),
diag::note_expr_requirement_constraints_not_satisfied)
<< (int)First << ConstraintExpr;
}
S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
break;
}
case concepts::ExprRequirement::SS_Satisfied:
llvm_unreachable("We checked this above");
}
}
static void diagnoseUnsatisfiedRequirement(Sema &S,
concepts::TypeRequirement *Req,
bool First) {
assert(!Req->isSatisfied()
&& "Diagnose() can only be used on an unsatisfied requirement");
switch (Req->getSatisfactionStatus()) {
case concepts::TypeRequirement::SS_Dependent:
llvm_unreachable("Diagnosing a dependent requirement");
return;
case concepts::TypeRequirement::SS_SubstitutionFailure: {
auto *SubstDiag = Req->getSubstitutionDiagnostic();
if (!SubstDiag->DiagMessage.empty())
S.Diag(SubstDiag->DiagLoc,
diag::note_type_requirement_substitution_error) << (int)First
<< SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
else
S.Diag(SubstDiag->DiagLoc,
diag::note_type_requirement_unknown_substitution_error)
<< (int)First << SubstDiag->SubstitutedEntity;
return;
}
default:
llvm_unreachable("Unknown satisfaction status");
return;
}
}
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
Expr *SubstExpr,
bool First = true);
static void diagnoseUnsatisfiedRequirement(Sema &S,
concepts::NestedRequirement *Req,
bool First) {
using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>;
for (auto &Pair : Req->getConstraintSatisfaction()) {
if (auto *SubstDiag = Pair.second.dyn_cast<SubstitutionDiagnostic *>())
S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error)
<< (int)First << Req->getInvalidConstraintEntity() << SubstDiag->second;
else
diagnoseWellFormedUnsatisfiedConstraintExpr(
S, Pair.second.dyn_cast<Expr *>(), First);
First = false;
}
}
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
Expr *SubstExpr,
bool First) {
SubstExpr = SubstExpr->IgnoreParenImpCasts();
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
switch (BO->getOpcode()) {
// These two cases will in practice only be reached when using fold
// expressions with || and &&, since otherwise the || and && will have been
// broken down into atomic constraints during satisfaction checking.
case BO_LOr:
// Or evaluated to false - meaning both RHS and LHS evaluated to false.
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
/*First=*/false);
return;
case BO_LAnd: {
bool LHSSatisfied =
BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
if (LHSSatisfied) {
// LHS is true, so RHS must be false.
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
return;
}
// LHS is false
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
// RHS might also be false
bool RHSSatisfied =
BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
if (!RHSSatisfied)
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
/*First=*/false);
return;
}
case BO_GE:
case BO_LE:
case BO_GT:
case BO_LT:
case BO_EQ:
case BO_NE:
if (BO->getLHS()->getType()->isIntegerType() &&
BO->getRHS()->getType()->isIntegerType()) {
Expr::EvalResult SimplifiedLHS;
Expr::EvalResult SimplifiedRHS;
BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
Expr::SE_NoSideEffects,
/*InConstantContext=*/true);
BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
Expr::SE_NoSideEffects,
/*InConstantContext=*/true);
if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
S.Diag(SubstExpr->getBeginLoc(),
diag::note_atomic_constraint_evaluated_to_false_elaborated)
<< (int)First << SubstExpr
<< toString(SimplifiedLHS.Val.getInt(), 10)
<< BinaryOperator::getOpcodeStr(BO->getOpcode())
<< toString(SimplifiedRHS.Val.getInt(), 10);
return;
}
}
break;
default:
break;
}
} else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
S.Diag(
CSE->getSourceRange().getBegin(),
diag::
note_single_arg_concept_specialization_constraint_evaluated_to_false)
<< (int)First
<< CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
<< CSE->getNamedConcept();
} else {
S.Diag(SubstExpr->getSourceRange().getBegin(),
diag::note_concept_specialization_constraint_evaluated_to_false)
<< (int)First << CSE;
}
S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
return;
} else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
// FIXME: RequiresExpr should store dependent diagnostics.
for (concepts::Requirement *Req : RE->getRequirements())
if (!Req->isDependent() && !Req->isSatisfied()) {
if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
diagnoseUnsatisfiedRequirement(S, E, First);
else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
diagnoseUnsatisfiedRequirement(S, T, First);
else
diagnoseUnsatisfiedRequirement(
S, cast<concepts::NestedRequirement>(Req), First);
break;
}
return;
}
S.Diag(SubstExpr->getSourceRange().getBegin(),
diag::note_atomic_constraint_evaluated_to_false)
<< (int)First << SubstExpr;
}
template<typename SubstitutionDiagnostic>
static void diagnoseUnsatisfiedConstraintExpr(
Sema &S, const Expr *E,
const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
bool First = true) {
if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
<< Diag->second;
return;
}
diagnoseWellFormedUnsatisfiedConstraintExpr(S,
Record.template get<Expr *>(), First);
}
void
Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
bool First) {
assert(!Satisfaction.IsSatisfied &&
"Attempted to diagnose a satisfied constraint");
for (auto &Pair : Satisfaction.Details) {
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
First = false;
}
}
void Sema::DiagnoseUnsatisfiedConstraint(
const ASTConstraintSatisfaction &Satisfaction,
bool First) {
assert(!Satisfaction.IsSatisfied &&
"Attempted to diagnose a satisfied constraint");
for (auto &Pair : Satisfaction) {
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
First = false;
}
}
const NormalizedConstraint *
Sema::getNormalizedAssociatedConstraints(
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
// In case the ConstrainedDecl comes from modules, it is necessary to use
// the canonical decl to avoid different atomic constraints with the 'same'
// declarations.
ConstrainedDecl = cast<NamedDecl>(ConstrainedDecl->getCanonicalDecl());
auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
if (CacheEntry == NormalizationCache.end()) {
auto Normalized =
NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
AssociatedConstraints);
CacheEntry =
NormalizationCache
.try_emplace(ConstrainedDecl,
Normalized
? new (Context) NormalizedConstraint(
std::move(*Normalized))
: nullptr)
.first;
}
return CacheEntry->second;
}
static bool
substituteParameterMappings(Sema &S, NormalizedConstraint &N,
ConceptDecl *Concept,
const MultiLevelTemplateArgumentList &MLTAL,
const ASTTemplateArgumentListInfo *ArgsAsWritten) {
if (!N.isAtomic()) {
if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL,
ArgsAsWritten))
return true;
return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL,
ArgsAsWritten);
}
TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
AtomicConstraint &Atomic = *N.getAtomicConstraint();
TemplateArgumentListInfo SubstArgs;
if (!Atomic.ParameterMapping) {
llvm::SmallBitVector OccurringIndices(TemplateParams->size());
S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
/*Depth=*/0, OccurringIndices);
TemplateArgumentLoc *TempArgs =
new (S.Context) TemplateArgumentLoc[OccurringIndices.count()];
for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
if (OccurringIndices[I])
new (&(TempArgs)[J++])
TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc(
TemplateParams->begin()[I],
// Here we assume we do not support things like
// template<typename A, typename B>
// concept C = ...;
//
// template<typename... Ts> requires C<Ts...>
// struct S { };
// The above currently yields a diagnostic.
// We still might have default arguments for concept parameters.
ArgsAsWritten->NumTemplateArgs > I
? ArgsAsWritten->arguments()[I].getLocation()
: SourceLocation()));
Atomic.ParameterMapping.emplace(TempArgs, OccurringIndices.count());
}
SourceLocation InstLocBegin =
ArgsAsWritten->arguments().empty()
? ArgsAsWritten->getLAngleLoc()
: ArgsAsWritten->arguments().front().getSourceRange().getBegin();
SourceLocation InstLocEnd =
ArgsAsWritten->arguments().empty()
? ArgsAsWritten->getRAngleLoc()
: ArgsAsWritten->arguments().front().getSourceRange().getEnd();
Sema::InstantiatingTemplate Inst(
S, InstLocBegin,
Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
{InstLocBegin, InstLocEnd});
if (Inst.isInvalid())
return true;
if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
return true;
TemplateArgumentLoc *TempArgs =
new (S.Context) TemplateArgumentLoc[SubstArgs.size()];
std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
TempArgs);
Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());
return false;
}
static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
const ConceptSpecializationExpr *CSE) {
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
CSE->getNamedConcept(), CSE->getNamedConcept()->getLexicalDeclContext(),
/*Final=*/false, CSE->getTemplateArguments(),
/*RelativeToPrimary=*/true,
/*Pattern=*/nullptr,
/*ForConstraintInstantiation=*/true);
return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL,
CSE->getTemplateArgsAsWritten());
}
std::optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
ArrayRef<const Expr *> E) {
assert(E.size() != 0);
auto Conjunction = fromConstraintExpr(S, D, E[0]);
if (!Conjunction)
return std::nullopt;
for (unsigned I = 1; I < E.size(); ++I) {
auto Next = fromConstraintExpr(S, D, E[I]);
if (!Next)
return std::nullopt;
*Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
std::move(*Next), CCK_Conjunction);
}
return Conjunction;
}
std::optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
assert(E != nullptr);
// C++ [temp.constr.normal]p1.1
// [...]
// - The normal form of an expression (E) is the normal form of E.
// [...]
E = E->IgnoreParenImpCasts();
// C++2a [temp.param]p4:
// [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
// Fold expression is considered atomic constraints per current wording.
// See http://cplusplus.github.io/concepts-ts/ts-active.html#28
if (LogicalBinOp BO = E) {
auto LHS = fromConstraintExpr(S, D, BO.getLHS());
if (!LHS)
return std::nullopt;
auto RHS = fromConstraintExpr(S, D, BO.getRHS());
if (!RHS)
return std::nullopt;
return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
} else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
const NormalizedConstraint *SubNF;
{
Sema::InstantiatingTemplate Inst(
S, CSE->getExprLoc(),
Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
CSE->getSourceRange());
if (Inst.isInvalid())
return std::nullopt;
// C++ [temp.constr.normal]p1.1
// [...]
// The normal form of an id-expression of the form C<A1, A2, ..., AN>,
// where C names a concept, is the normal form of the
// constraint-expression of C, after substituting A1, A2, ..., AN for C’s
// respective template parameters in the parameter mappings in each atomic
// constraint. If any such substitution results in an invalid type or
// expression, the program is ill-formed; no diagnostic is required.
// [...]
ConceptDecl *CD = CSE->getNamedConcept();
SubNF = S.getNormalizedAssociatedConstraints(CD,
{CD->getConstraintExpr()});
if (!SubNF)
return std::nullopt;
}
std::optional<NormalizedConstraint> New;
New.emplace(S.Context, *SubNF);
if (substituteParameterMappings(S, *New, CSE))
return std::nullopt;
return New;
}
return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
}
using NormalForm =
llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
if (Normalized.isAtomic())
return {{Normalized.getAtomicConstraint()}};
NormalForm LCNF = makeCNF(Normalized.getLHS());
NormalForm RCNF = makeCNF(Normalized.getRHS());
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
LCNF.reserve(LCNF.size() + RCNF.size());
while (!RCNF.empty())
LCNF.push_back(RCNF.pop_back_val());
return LCNF;
}
// Disjunction
NormalForm Res;
Res.reserve(LCNF.size() * RCNF.size());
for (auto &LDisjunction : LCNF)
for (auto &RDisjunction : RCNF) {
NormalForm::value_type Combined;
Combined.reserve(LDisjunction.size() + RDisjunction.size());
std::copy(LDisjunction.begin(), LDisjunction.end(),
std::back_inserter(Combined));
std::copy(RDisjunction.begin(), RDisjunction.end(),
std::back_inserter(Combined));
Res.emplace_back(Combined);
}
return Res;
}
static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
if (Normalized.isAtomic())
return {{Normalized.getAtomicConstraint()}};
NormalForm LDNF = makeDNF(Normalized.getLHS());
NormalForm RDNF = makeDNF(Normalized.getRHS());
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
LDNF.reserve(LDNF.size() + RDNF.size());
while (!RDNF.empty())
LDNF.push_back(RDNF.pop_back_val());
return LDNF;
}
// Conjunction
NormalForm Res;
Res.reserve(LDNF.size() * RDNF.size());
for (auto &LConjunction : LDNF) {
for (auto &RConjunction : RDNF) {
NormalForm::value_type Combined;
Combined.reserve(LConjunction.size() + RConjunction.size());
std::copy(LConjunction.begin(), LConjunction.end(),
std::back_inserter(Combined));
std::copy(RConjunction.begin(), RConjunction.end(),
std::back_inserter(Combined));
Res.emplace_back(Combined);
}
}
return Res;
}
template<typename AtomicSubsumptionEvaluator>
static bool subsumes(const NormalForm &PDNF, const NormalForm &QCNF,
AtomicSubsumptionEvaluator E) {
// C++ [temp.constr.order] p2
// Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
// disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
// the conjuctive normal form of Q, where [...]
for (const auto &Pi : PDNF) {
for (const auto &Qj : QCNF) {
// C++ [temp.constr.order] p2
// - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
// and only if there exists an atomic constraint Pia in Pi for which
// there exists an atomic constraint, Qjb, in Qj such that Pia
// subsumes Qjb.
bool Found = false;
for (const AtomicConstraint *Pia : Pi) {
for (const AtomicConstraint *Qjb : Qj) {
if (E(*Pia, *Qjb)) {
Found = true;
break;
}
}
if (Found)
break;
}
if (!Found)
return false;
}
}
return true;
}
template<typename AtomicSubsumptionEvaluator>
static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
AtomicSubsumptionEvaluator E) {
// C++ [temp.constr.order] p2
// In order to determine if a constraint P subsumes a constraint Q, P is
// transformed into disjunctive normal form, and Q is transformed into
// conjunctive normal form. [...]
auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
if (!PNormalized)
return true;
const NormalForm PDNF = makeDNF(*PNormalized);
auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
if (!QNormalized)
return true;
const NormalForm QCNF = makeCNF(*QNormalized);
Subsumes = subsumes(PDNF, QCNF, E);
return false;
}
bool Sema::IsAtLeastAsConstrained(NamedDecl *D1,
MutableArrayRef<const Expr *> AC1,
NamedDecl *D2,
MutableArrayRef<const Expr *> AC2,
bool &Result) {
if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) {
auto IsExpectedEntity = [](const FunctionDecl *FD) {
FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind();
return Kind == FunctionDecl::TK_NonTemplate ||
Kind == FunctionDecl::TK_FunctionTemplate;
};
const auto *FD2 = dyn_cast<FunctionDecl>(D2);
(void)IsExpectedEntity;
(void)FD1;
(void)FD2;
assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) &&
"use non-instantiated function declaration for constraints partial "
"ordering");
}
if (AC1.empty()) {
Result = AC2.empty();
return false;
}
if (AC2.empty()) {
// TD1 has associated constraints and TD2 does not.
Result = true;
return false;
}
std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
auto CacheEntry = SubsumptionCache.find(Key);
if (CacheEntry != SubsumptionCache.end()) {
Result = CacheEntry->second;
return false;
}
unsigned Depth1 = CalculateTemplateDepthForConstraints(*this, D1, true);
unsigned Depth2 = CalculateTemplateDepthForConstraints(*this, D2, true);
for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) {
if (Depth2 > Depth1) {
AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1)
.TransformExpr(const_cast<Expr *>(AC1[I]))
.get();
} else if (Depth1 > Depth2) {
AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2)
.TransformExpr(const_cast<Expr *>(AC2[I]))
.get();
}
}
if (subsumes(*this, D1, AC1, D2, AC2, Result,
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
return A.subsumes(Context, B);
}))
return true;
SubsumptionCache.try_emplace(Key, Result);
return false;
}
bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
if (isSFINAEContext())
// No need to work here because our notes would be discarded.
return false;
if (AC1.empty() || AC2.empty())
return false;
auto NormalExprEvaluator =
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
return A.subsumes(Context, B);
};
const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
auto IdenticalExprEvaluator =
[&] (const AtomicConstraint &A, const AtomicConstraint &B) {
if (!A.hasMatchingParameterMapping(Context, B))
return false;
const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
if (EA == EB)
return true;
// Not the same source level expression - are the expressions
// identical?
llvm::FoldingSetNodeID IDA, IDB;
EA->Profile(IDA, Context, /*Canonical=*/true);
EB->Profile(IDB, Context, /*Canonical=*/true);
if (IDA != IDB)
return false;
AmbiguousAtomic1 = EA;
AmbiguousAtomic2 = EB;
return true;
};
{
// The subsumption checks might cause diagnostics
SFINAETrap Trap(*this);
auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
if (!Normalized1)
return false;
const NormalForm DNF1 = makeDNF(*Normalized1);
const NormalForm CNF1 = makeCNF(*Normalized1);
auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
if (!Normalized2)
return false;
const NormalForm DNF2 = makeDNF(*Normalized2);
const NormalForm CNF2 = makeCNF(*Normalized2);
bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
Is2AtLeastAs1 == Is2AtLeastAs1Normally)
// Same result - no ambiguity was caused by identical atomic expressions.
return false;
}
// A different result! Some ambiguous atomic constraint(s) caused a difference
assert(AmbiguousAtomic1 && AmbiguousAtomic2);
Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
<< AmbiguousAtomic1->getSourceRange();
Diag(AmbiguousAtomic2->getBeginLoc(),
diag::note_ambiguous_atomic_constraints_similar_expression)
<< AmbiguousAtomic2->getSourceRange();
return true;
}
concepts::ExprRequirement::ExprRequirement(
Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
ReturnTypeRequirement Req, SatisfactionStatus Status,
ConceptSpecializationExpr *SubstitutedConstraintExpr) :
Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
Status == SS_Dependent &&
(E->containsUnexpandedParameterPack() ||
Req.containsUnexpandedParameterPack()),
Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
Status(Status) {
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
"Simple requirement must not have a return type requirement or a "
"noexcept specification");
assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
(SubstitutedConstraintExpr != nullptr));
}
concepts::ExprRequirement::ExprRequirement(
SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
Status(SS_ExprSubstitutionFailure) {
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
"Simple requirement must not have a return type requirement or a "
"noexcept specification");
}
concepts::ExprRequirement::ReturnTypeRequirement::
ReturnTypeRequirement(TemplateParameterList *TPL) :
TypeConstraintInfo(TPL, false) {
assert(TPL->size() == 1);
const TypeConstraint *TC =
cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
assert(TC &&
"TPL must have a template type parameter with a type constraint");
auto *Constraint =
cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
bool Dependent =
Constraint->getTemplateArgsAsWritten() &&
TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
TypeConstraintInfo.setInt(Dependent ? true : false);
}
concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
T->getType()->containsUnexpandedParameterPack(),
// We reach this ctor with either dependent types (in which
// IsSatisfied doesn't matter) or with non-dependent type in
// which the existence of the type indicates satisfaction.
/*IsSatisfied=*/true),
Value(T),
Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
: SS_Satisfied) {}