blob: 237092ed07e5dcf09dd90974d7a634d4cfecb507 [file] [log] [blame]
//===- ToolChain.cpp - Collections of tools for one platform --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Driver/ToolChain.h"
#include "ToolChains/Arch/AArch64.h"
#include "ToolChains/Arch/ARM.h"
#include "ToolChains/Clang.h"
#include "ToolChains/CommonArgs.h"
#include "ToolChains/Flang.h"
#include "ToolChains/InterfaceStubs.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/InputInfo.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/XRayArgs.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/TargetParser/AArch64TargetParser.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/TargetParser/Triple.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <string>
using namespace clang;
using namespace driver;
using namespace tools;
using namespace llvm;
using namespace llvm::opt;
static llvm::opt::Arg *GetRTTIArgument(const ArgList &Args) {
return Args.getLastArg(options::OPT_mkernel, options::OPT_fapple_kext,
options::OPT_fno_rtti, options::OPT_frtti);
}
static ToolChain::RTTIMode CalculateRTTIMode(const ArgList &Args,
const llvm::Triple &Triple,
const Arg *CachedRTTIArg) {
// Explicit rtti/no-rtti args
if (CachedRTTIArg) {
if (CachedRTTIArg->getOption().matches(options::OPT_frtti))
return ToolChain::RM_Enabled;
else
return ToolChain::RM_Disabled;
}
// -frtti is default, except for the PS4/PS5 and DriverKit.
bool NoRTTI = Triple.isPS() || Triple.isDriverKit();
return NoRTTI ? ToolChain::RM_Disabled : ToolChain::RM_Enabled;
}
static ToolChain::ExceptionsMode CalculateExceptionsMode(const ArgList &Args) {
if (Args.hasFlag(options::OPT_fexceptions, options::OPT_fno_exceptions,
true)) {
return ToolChain::EM_Enabled;
}
return ToolChain::EM_Disabled;
}
ToolChain::ToolChain(const Driver &D, const llvm::Triple &T,
const ArgList &Args)
: D(D), Triple(T), Args(Args), CachedRTTIArg(GetRTTIArgument(Args)),
CachedRTTIMode(CalculateRTTIMode(Args, Triple, CachedRTTIArg)),
CachedExceptionsMode(CalculateExceptionsMode(Args)) {
auto addIfExists = [this](path_list &List, const std::string &Path) {
if (getVFS().exists(Path))
List.push_back(Path);
};
if (std::optional<std::string> Path = getRuntimePath())
getLibraryPaths().push_back(*Path);
if (std::optional<std::string> Path = getStdlibPath())
getFilePaths().push_back(*Path);
for (const auto &Path : getArchSpecificLibPaths())
addIfExists(getFilePaths(), Path);
}
llvm::Expected<std::unique_ptr<llvm::MemoryBuffer>>
ToolChain::executeToolChainProgram(StringRef Executable) const {
llvm::SmallString<64> OutputFile;
llvm::sys::fs::createTemporaryFile("toolchain-program", "txt", OutputFile);
llvm::FileRemover OutputRemover(OutputFile.c_str());
std::optional<llvm::StringRef> Redirects[] = {
{""},
OutputFile.str(),
{""},
};
std::string ErrorMessage;
if (llvm::sys::ExecuteAndWait(Executable, {}, {}, Redirects,
/* SecondsToWait */ 0,
/*MemoryLimit*/ 0, &ErrorMessage))
return llvm::createStringError(std::error_code(),
Executable + ": " + ErrorMessage);
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> OutputBuf =
llvm::MemoryBuffer::getFile(OutputFile.c_str());
if (!OutputBuf)
return llvm::createStringError(OutputBuf.getError(),
"Failed to read stdout of " + Executable +
": " + OutputBuf.getError().message());
return std::move(*OutputBuf);
}
void ToolChain::setTripleEnvironment(llvm::Triple::EnvironmentType Env) {
Triple.setEnvironment(Env);
if (EffectiveTriple != llvm::Triple())
EffectiveTriple.setEnvironment(Env);
}
ToolChain::~ToolChain() = default;
llvm::vfs::FileSystem &ToolChain::getVFS() const {
return getDriver().getVFS();
}
bool ToolChain::useIntegratedAs() const {
return Args.hasFlag(options::OPT_fintegrated_as,
options::OPT_fno_integrated_as,
IsIntegratedAssemblerDefault());
}
bool ToolChain::useIntegratedBackend() const {
assert(
((IsIntegratedBackendDefault() && IsIntegratedBackendSupported()) ||
(!IsIntegratedBackendDefault() || IsNonIntegratedBackendSupported())) &&
"(Non-)integrated backend set incorrectly!");
bool IBackend = Args.hasFlag(options::OPT_fintegrated_objemitter,
options::OPT_fno_integrated_objemitter,
IsIntegratedBackendDefault());
// Diagnose when integrated-objemitter options are not supported by this
// toolchain.
unsigned DiagID;
if ((IBackend && !IsIntegratedBackendSupported()) ||
(!IBackend && !IsNonIntegratedBackendSupported()))
DiagID = clang::diag::err_drv_unsupported_opt_for_target;
else
DiagID = clang::diag::warn_drv_unsupported_opt_for_target;
Arg *A = Args.getLastArg(options::OPT_fno_integrated_objemitter);
if (A && !IsNonIntegratedBackendSupported())
D.Diag(DiagID) << A->getAsString(Args) << Triple.getTriple();
A = Args.getLastArg(options::OPT_fintegrated_objemitter);
if (A && !IsIntegratedBackendSupported())
D.Diag(DiagID) << A->getAsString(Args) << Triple.getTriple();
return IBackend;
}
bool ToolChain::useRelaxRelocations() const {
return ENABLE_X86_RELAX_RELOCATIONS;
}
bool ToolChain::defaultToIEEELongDouble() const {
return PPC_LINUX_DEFAULT_IEEELONGDOUBLE && getTriple().isOSLinux();
}
static void getAArch64MultilibFlags(const Driver &D,
const llvm::Triple &Triple,
const llvm::opt::ArgList &Args,
Multilib::flags_list &Result) {
std::vector<StringRef> Features;
tools::aarch64::getAArch64TargetFeatures(D, Triple, Args, Features, false);
const auto UnifiedFeatures = tools::unifyTargetFeatures(Features);
llvm::DenseSet<StringRef> FeatureSet(UnifiedFeatures.begin(),
UnifiedFeatures.end());
std::vector<std::string> MArch;
for (const auto &Ext : AArch64::Extensions)
if (FeatureSet.contains(Ext.Feature))
MArch.push_back(Ext.Name.str());
for (const auto &Ext : AArch64::Extensions)
if (FeatureSet.contains(Ext.NegFeature))
MArch.push_back(("no" + Ext.Name).str());
StringRef ArchName;
for (const auto &ArchInfo : AArch64::ArchInfos)
if (FeatureSet.contains(ArchInfo->ArchFeature))
ArchName = ArchInfo->Name;
assert(!ArchName.empty() && "at least one architecture should be found");
MArch.insert(MArch.begin(), ("-march=" + ArchName).str());
Result.push_back(llvm::join(MArch, "+"));
}
static void getARMMultilibFlags(const Driver &D,
const llvm::Triple &Triple,
const llvm::opt::ArgList &Args,
Multilib::flags_list &Result) {
std::vector<StringRef> Features;
llvm::ARM::FPUKind FPUKind = tools::arm::getARMTargetFeatures(
D, Triple, Args, Features, false /*ForAs*/, true /*ForMultilib*/);
const auto UnifiedFeatures = tools::unifyTargetFeatures(Features);
llvm::DenseSet<StringRef> FeatureSet(UnifiedFeatures.begin(),
UnifiedFeatures.end());
std::vector<std::string> MArch;
for (const auto &Ext : ARM::ARCHExtNames)
if (FeatureSet.contains(Ext.Feature))
MArch.push_back(Ext.Name.str());
for (const auto &Ext : ARM::ARCHExtNames)
if (FeatureSet.contains(Ext.NegFeature))
MArch.push_back(("no" + Ext.Name).str());
MArch.insert(MArch.begin(), ("-march=" + Triple.getArchName()).str());
Result.push_back(llvm::join(MArch, "+"));
switch (FPUKind) {
#define ARM_FPU(NAME, KIND, VERSION, NEON_SUPPORT, RESTRICTION) \
case llvm::ARM::KIND: \
Result.push_back("-mfpu=" NAME); \
break;
#include "llvm/TargetParser/ARMTargetParser.def"
default:
llvm_unreachable("Invalid FPUKind");
}
switch (arm::getARMFloatABI(D, Triple, Args)) {
case arm::FloatABI::Soft:
Result.push_back("-mfloat-abi=soft");
break;
case arm::FloatABI::SoftFP:
Result.push_back("-mfloat-abi=softfp");
break;
case arm::FloatABI::Hard:
Result.push_back("-mfloat-abi=hard");
break;
case arm::FloatABI::Invalid:
llvm_unreachable("Invalid float ABI");
}
}
Multilib::flags_list
ToolChain::getMultilibFlags(const llvm::opt::ArgList &Args) const {
using namespace clang::driver::options;
std::vector<std::string> Result;
const llvm::Triple Triple(ComputeEffectiveClangTriple(Args));
Result.push_back("--target=" + Triple.str());
switch (Triple.getArch()) {
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
getAArch64MultilibFlags(D, Triple, Args, Result);
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
getARMMultilibFlags(D, Triple, Args, Result);
break;
default:
break;
}
// Include fno-exceptions and fno-rtti
// to improve multilib selection
if (getRTTIMode() == ToolChain::RTTIMode::RM_Disabled)
Result.push_back("-fno-rtti");
else
Result.push_back("-frtti");
if (getExceptionsMode() == ToolChain::ExceptionsMode::EM_Disabled)
Result.push_back("-fno-exceptions");
else
Result.push_back("-fexceptions");
// Sort and remove duplicates.
std::sort(Result.begin(), Result.end());
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
return Result;
}
SanitizerArgs
ToolChain::getSanitizerArgs(const llvm::opt::ArgList &JobArgs) const {
SanitizerArgs SanArgs(*this, JobArgs, !SanitizerArgsChecked);
SanitizerArgsChecked = true;
return SanArgs;
}
const XRayArgs& ToolChain::getXRayArgs() const {
if (!XRayArguments)
XRayArguments.reset(new XRayArgs(*this, Args));
return *XRayArguments;
}
namespace {
struct DriverSuffix {
const char *Suffix;
const char *ModeFlag;
};
} // namespace
static const DriverSuffix *FindDriverSuffix(StringRef ProgName, size_t &Pos) {
// A list of known driver suffixes. Suffixes are compared against the
// program name in order. If there is a match, the frontend type is updated as
// necessary by applying the ModeFlag.
static const DriverSuffix DriverSuffixes[] = {
{"clang", nullptr},
{"clang++", "--driver-mode=g++"},
{"clang-c++", "--driver-mode=g++"},
{"clang-cc", nullptr},
{"clang-cpp", "--driver-mode=cpp"},
{"clang-g++", "--driver-mode=g++"},
{"clang-gcc", nullptr},
{"clang-cl", "--driver-mode=cl"},
{"cc", nullptr},
{"cpp", "--driver-mode=cpp"},
{"cl", "--driver-mode=cl"},
{"++", "--driver-mode=g++"},
{"flang", "--driver-mode=flang"},
{"clang-dxc", "--driver-mode=dxc"},
};
for (const auto &DS : DriverSuffixes) {
StringRef Suffix(DS.Suffix);
if (ProgName.ends_with(Suffix)) {
Pos = ProgName.size() - Suffix.size();
return &DS;
}
}
return nullptr;
}
/// Normalize the program name from argv[0] by stripping the file extension if
/// present and lower-casing the string on Windows.
static std::string normalizeProgramName(llvm::StringRef Argv0) {
std::string ProgName = std::string(llvm::sys::path::filename(Argv0));
if (is_style_windows(llvm::sys::path::Style::native)) {
// Transform to lowercase for case insensitive file systems.
std::transform(ProgName.begin(), ProgName.end(), ProgName.begin(),
::tolower);
}
return ProgName;
}
static const DriverSuffix *parseDriverSuffix(StringRef ProgName, size_t &Pos) {
// Try to infer frontend type and default target from the program name by
// comparing it against DriverSuffixes in order.
// If there is a match, the function tries to identify a target as prefix.
// E.g. "x86_64-linux-clang" as interpreted as suffix "clang" with target
// prefix "x86_64-linux". If such a target prefix is found, it may be
// added via -target as implicit first argument.
const DriverSuffix *DS = FindDriverSuffix(ProgName, Pos);
if (!DS && ProgName.ends_with(".exe")) {
// Try again after stripping the executable suffix:
// clang++.exe -> clang++
ProgName = ProgName.drop_back(StringRef(".exe").size());
DS = FindDriverSuffix(ProgName, Pos);
}
if (!DS) {
// Try again after stripping any trailing version number:
// clang++3.5 -> clang++
ProgName = ProgName.rtrim("0123456789.");
DS = FindDriverSuffix(ProgName, Pos);
}
if (!DS) {
// Try again after stripping trailing -component.
// clang++-tot -> clang++
ProgName = ProgName.slice(0, ProgName.rfind('-'));
DS = FindDriverSuffix(ProgName, Pos);
}
return DS;
}
ParsedClangName
ToolChain::getTargetAndModeFromProgramName(StringRef PN) {
std::string ProgName = normalizeProgramName(PN);
size_t SuffixPos;
const DriverSuffix *DS = parseDriverSuffix(ProgName, SuffixPos);
if (!DS)
return {};
size_t SuffixEnd = SuffixPos + strlen(DS->Suffix);
size_t LastComponent = ProgName.rfind('-', SuffixPos);
if (LastComponent == std::string::npos)
return ParsedClangName(ProgName.substr(0, SuffixEnd), DS->ModeFlag);
std::string ModeSuffix = ProgName.substr(LastComponent + 1,
SuffixEnd - LastComponent - 1);
// Infer target from the prefix.
StringRef Prefix(ProgName);
Prefix = Prefix.slice(0, LastComponent);
std::string IgnoredError;
bool IsRegistered =
llvm::TargetRegistry::lookupTarget(std::string(Prefix), IgnoredError);
return ParsedClangName{std::string(Prefix), ModeSuffix, DS->ModeFlag,
IsRegistered};
}
StringRef ToolChain::getDefaultUniversalArchName() const {
// In universal driver terms, the arch name accepted by -arch isn't exactly
// the same as the ones that appear in the triple. Roughly speaking, this is
// an inverse of the darwin::getArchTypeForDarwinArchName() function.
switch (Triple.getArch()) {
case llvm::Triple::aarch64: {
if (getTriple().isArm64e())
return "arm64e";
return "arm64";
}
case llvm::Triple::aarch64_32:
return "arm64_32";
case llvm::Triple::ppc:
return "ppc";
case llvm::Triple::ppcle:
return "ppcle";
case llvm::Triple::ppc64:
return "ppc64";
case llvm::Triple::ppc64le:
return "ppc64le";
default:
return Triple.getArchName();
}
}
std::string ToolChain::getInputFilename(const InputInfo &Input) const {
return Input.getFilename();
}
ToolChain::UnwindTableLevel
ToolChain::getDefaultUnwindTableLevel(const ArgList &Args) const {
return UnwindTableLevel::None;
}
Tool *ToolChain::getClang() const {
if (!Clang)
Clang.reset(new tools::Clang(*this, useIntegratedBackend()));
return Clang.get();
}
Tool *ToolChain::getFlang() const {
if (!Flang)
Flang.reset(new tools::Flang(*this));
return Flang.get();
}
Tool *ToolChain::buildAssembler() const {
return new tools::ClangAs(*this);
}
Tool *ToolChain::buildLinker() const {
llvm_unreachable("Linking is not supported by this toolchain");
}
Tool *ToolChain::buildStaticLibTool() const {
llvm_unreachable("Creating static lib is not supported by this toolchain");
}
Tool *ToolChain::getAssemble() const {
if (!Assemble)
Assemble.reset(buildAssembler());
return Assemble.get();
}
Tool *ToolChain::getClangAs() const {
if (!Assemble)
Assemble.reset(new tools::ClangAs(*this));
return Assemble.get();
}
Tool *ToolChain::getLink() const {
if (!Link)
Link.reset(buildLinker());
return Link.get();
}
Tool *ToolChain::getStaticLibTool() const {
if (!StaticLibTool)
StaticLibTool.reset(buildStaticLibTool());
return StaticLibTool.get();
}
Tool *ToolChain::getIfsMerge() const {
if (!IfsMerge)
IfsMerge.reset(new tools::ifstool::Merger(*this));
return IfsMerge.get();
}
Tool *ToolChain::getOffloadBundler() const {
if (!OffloadBundler)
OffloadBundler.reset(new tools::OffloadBundler(*this));
return OffloadBundler.get();
}
Tool *ToolChain::getOffloadPackager() const {
if (!OffloadPackager)
OffloadPackager.reset(new tools::OffloadPackager(*this));
return OffloadPackager.get();
}
Tool *ToolChain::getLinkerWrapper() const {
if (!LinkerWrapper)
LinkerWrapper.reset(new tools::LinkerWrapper(*this, getLink()));
return LinkerWrapper.get();
}
Tool *ToolChain::getTool(Action::ActionClass AC) const {
switch (AC) {
case Action::AssembleJobClass:
return getAssemble();
case Action::IfsMergeJobClass:
return getIfsMerge();
case Action::LinkJobClass:
return getLink();
case Action::StaticLibJobClass:
return getStaticLibTool();
case Action::InputClass:
case Action::BindArchClass:
case Action::OffloadClass:
case Action::LipoJobClass:
case Action::DsymutilJobClass:
case Action::VerifyDebugInfoJobClass:
case Action::BinaryAnalyzeJobClass:
llvm_unreachable("Invalid tool kind.");
case Action::CompileJobClass:
case Action::PrecompileJobClass:
case Action::PreprocessJobClass:
case Action::ExtractAPIJobClass:
case Action::AnalyzeJobClass:
case Action::MigrateJobClass:
case Action::VerifyPCHJobClass:
case Action::BackendJobClass:
return getClang();
case Action::OffloadBundlingJobClass:
case Action::OffloadUnbundlingJobClass:
return getOffloadBundler();
case Action::OffloadPackagerJobClass:
return getOffloadPackager();
case Action::LinkerWrapperJobClass:
return getLinkerWrapper();
}
llvm_unreachable("Invalid tool kind.");
}
static StringRef getArchNameForCompilerRTLib(const ToolChain &TC,
const ArgList &Args) {
const llvm::Triple &Triple = TC.getTriple();
bool IsWindows = Triple.isOSWindows();
if (TC.isBareMetal())
return Triple.getArchName();
if (TC.getArch() == llvm::Triple::arm || TC.getArch() == llvm::Triple::armeb)
return (arm::getARMFloatABI(TC, Args) == arm::FloatABI::Hard && !IsWindows)
? "armhf"
: "arm";
// For historic reasons, Android library is using i686 instead of i386.
if (TC.getArch() == llvm::Triple::x86 && Triple.isAndroid())
return "i686";
if (TC.getArch() == llvm::Triple::x86_64 && Triple.isX32())
return "x32";
return llvm::Triple::getArchTypeName(TC.getArch());
}
StringRef ToolChain::getOSLibName() const {
if (Triple.isOSDarwin())
return "darwin";
switch (Triple.getOS()) {
case llvm::Triple::FreeBSD:
return "freebsd";
case llvm::Triple::NetBSD:
return "netbsd";
case llvm::Triple::OpenBSD:
return "openbsd";
case llvm::Triple::Solaris:
return "sunos";
case llvm::Triple::AIX:
return "aix";
default:
return getOS();
}
}
std::string ToolChain::getCompilerRTPath() const {
SmallString<128> Path(getDriver().ResourceDir);
if (isBareMetal()) {
llvm::sys::path::append(Path, "lib", getOSLibName());
if (!SelectedMultilibs.empty()) {
Path += SelectedMultilibs.back().gccSuffix();
}
} else if (Triple.isOSUnknown()) {
llvm::sys::path::append(Path, "lib");
} else {
llvm::sys::path::append(Path, "lib", getOSLibName());
}
return std::string(Path);
}
std::string ToolChain::getCompilerRTBasename(const ArgList &Args,
StringRef Component,
FileType Type) const {
std::string CRTAbsolutePath = getCompilerRT(Args, Component, Type);
return llvm::sys::path::filename(CRTAbsolutePath).str();
}
std::string ToolChain::buildCompilerRTBasename(const llvm::opt::ArgList &Args,
StringRef Component,
FileType Type,
bool AddArch) const {
const llvm::Triple &TT = getTriple();
bool IsITANMSVCWindows =
TT.isWindowsMSVCEnvironment() || TT.isWindowsItaniumEnvironment();
const char *Prefix =
IsITANMSVCWindows || Type == ToolChain::FT_Object ? "" : "lib";
const char *Suffix;
switch (Type) {
case ToolChain::FT_Object:
Suffix = IsITANMSVCWindows ? ".obj" : ".o";
break;
case ToolChain::FT_Static:
Suffix = IsITANMSVCWindows ? ".lib" : ".a";
break;
case ToolChain::FT_Shared:
Suffix = TT.isOSWindows()
? (TT.isWindowsGNUEnvironment() ? ".dll.a" : ".lib")
: ".so";
break;
}
std::string ArchAndEnv;
if (AddArch) {
StringRef Arch = getArchNameForCompilerRTLib(*this, Args);
const char *Env = TT.isAndroid() ? "-android" : "";
ArchAndEnv = ("-" + Arch + Env).str();
}
return (Prefix + Twine("clang_rt.") + Component + ArchAndEnv + Suffix).str();
}
std::string ToolChain::getCompilerRT(const ArgList &Args, StringRef Component,
FileType Type) const {
// Check for runtime files in the new layout without the architecture first.
std::string CRTBasename =
buildCompilerRTBasename(Args, Component, Type, /*AddArch=*/false);
SmallString<128> Path;
for (const auto &LibPath : getLibraryPaths()) {
SmallString<128> P(LibPath);
llvm::sys::path::append(P, CRTBasename);
if (getVFS().exists(P))
return std::string(P);
if (Path.empty())
Path = P;
}
if (getTriple().isOSAIX())
Path.clear();
// Check the filename for the old layout if the new one does not exist.
CRTBasename =
buildCompilerRTBasename(Args, Component, Type, /*AddArch=*/true);
SmallString<128> OldPath(getCompilerRTPath());
llvm::sys::path::append(OldPath, CRTBasename);
if (Path.empty() || getVFS().exists(OldPath))
return std::string(OldPath);
// If none is found, use a file name from the new layout, which may get
// printed in an error message, aiding users in knowing what Clang is
// looking for.
return std::string(Path);
}
const char *ToolChain::getCompilerRTArgString(const llvm::opt::ArgList &Args,
StringRef Component,
FileType Type) const {
return Args.MakeArgString(getCompilerRT(Args, Component, Type));
}
// Android target triples contain a target version. If we don't have libraries
// for the exact target version, we should fall back to the next newest version
// or a versionless path, if any.
std::optional<std::string>
ToolChain::getFallbackAndroidTargetPath(StringRef BaseDir) const {
llvm::Triple TripleWithoutLevel(getTriple());
TripleWithoutLevel.setEnvironmentName("android"); // remove any version number
const std::string &TripleWithoutLevelStr = TripleWithoutLevel.str();
unsigned TripleVersion = getTriple().getEnvironmentVersion().getMajor();
unsigned BestVersion = 0;
SmallString<32> TripleDir;
bool UsingUnversionedDir = false;
std::error_code EC;
for (llvm::vfs::directory_iterator LI = getVFS().dir_begin(BaseDir, EC), LE;
!EC && LI != LE; LI = LI.increment(EC)) {
StringRef DirName = llvm::sys::path::filename(LI->path());
StringRef DirNameSuffix = DirName;
if (DirNameSuffix.consume_front(TripleWithoutLevelStr)) {
if (DirNameSuffix.empty() && TripleDir.empty()) {
TripleDir = DirName;
UsingUnversionedDir = true;
} else {
unsigned Version;
if (!DirNameSuffix.getAsInteger(10, Version) && Version > BestVersion &&
Version < TripleVersion) {
BestVersion = Version;
TripleDir = DirName;
UsingUnversionedDir = false;
}
}
}
}
if (TripleDir.empty())
return {};
SmallString<128> P(BaseDir);
llvm::sys::path::append(P, TripleDir);
if (UsingUnversionedDir)
D.Diag(diag::warn_android_unversioned_fallback) << P << getTripleString();
return std::string(P);
}
std::optional<std::string>
ToolChain::getTargetSubDirPath(StringRef BaseDir) const {
auto getPathForTriple =
[&](const llvm::Triple &Triple) -> std::optional<std::string> {
SmallString<128> P(BaseDir);
llvm::sys::path::append(P, Triple.str());
if (getVFS().exists(P))
return std::string(P);
return {};
};
if (auto Path = getPathForTriple(getTriple()))
return *Path;
// When building with per target runtime directories, various ways of naming
// the Arm architecture may have been normalised to simply "arm".
// For example "armv8l" (Armv8 AArch32 little endian) is replaced with "arm".
// Since an armv8l system can use libraries built for earlier architecture
// versions assuming endian and float ABI match.
//
// Original triple: armv8l-unknown-linux-gnueabihf
// Runtime triple: arm-unknown-linux-gnueabihf
//
// We do not do this for armeb (big endian) because doing so could make us
// select little endian libraries. In addition, all known armeb triples only
// use the "armeb" architecture name.
//
// M profile Arm is bare metal and we know they will not be using the per
// target runtime directory layout.
if (getTriple().getArch() == Triple::arm && !getTriple().isArmMClass()) {
llvm::Triple ArmTriple = getTriple();
ArmTriple.setArch(Triple::arm);
if (auto Path = getPathForTriple(ArmTriple))
return *Path;
}
if (getTriple().isAndroid())
return getFallbackAndroidTargetPath(BaseDir);
return {};
}
std::optional<std::string> ToolChain::getRuntimePath() const {
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "lib");
if (auto Ret = getTargetSubDirPath(P))
return Ret;
// Darwin does not use per-target runtime directory.
if (Triple.isOSDarwin())
return {};
llvm::sys::path::append(P, Triple.str());
return std::string(P);
}
std::optional<std::string> ToolChain::getStdlibPath() const {
SmallString<128> P(D.Dir);
llvm::sys::path::append(P, "..", "lib");
return getTargetSubDirPath(P);
}
ToolChain::path_list ToolChain::getArchSpecificLibPaths() const {
path_list Paths;
auto AddPath = [&](const ArrayRef<StringRef> &SS) {
SmallString<128> Path(getDriver().ResourceDir);
llvm::sys::path::append(Path, "lib");
for (auto &S : SS)
llvm::sys::path::append(Path, S);
Paths.push_back(std::string(Path));
};
AddPath({getTriple().str()});
AddPath({getOSLibName(), llvm::Triple::getArchTypeName(getArch())});
return Paths;
}
bool ToolChain::needsProfileRT(const ArgList &Args) {
if (Args.hasArg(options::OPT_noprofilelib))
return false;
return Args.hasArg(options::OPT_fprofile_generate) ||
Args.hasArg(options::OPT_fprofile_generate_EQ) ||
Args.hasArg(options::OPT_fcs_profile_generate) ||
Args.hasArg(options::OPT_fcs_profile_generate_EQ) ||
Args.hasArg(options::OPT_fprofile_instr_generate) ||
Args.hasArg(options::OPT_fprofile_instr_generate_EQ) ||
Args.hasArg(options::OPT_fcreate_profile) ||
Args.hasArg(options::OPT_forder_file_instrumentation);
}
bool ToolChain::needsGCovInstrumentation(const llvm::opt::ArgList &Args) {
return Args.hasArg(options::OPT_coverage) ||
Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs,
false);
}
Tool *ToolChain::SelectTool(const JobAction &JA) const {
if (D.IsFlangMode() && getDriver().ShouldUseFlangCompiler(JA)) return getFlang();
if (getDriver().ShouldUseClangCompiler(JA)) return getClang();
Action::ActionClass AC = JA.getKind();
if (AC == Action::AssembleJobClass && useIntegratedAs() &&
!getTriple().isOSAIX())
return getClangAs();
return getTool(AC);
}
std::string ToolChain::GetFilePath(const char *Name) const {
return D.GetFilePath(Name, *this);
}
std::string ToolChain::GetProgramPath(const char *Name) const {
return D.GetProgramPath(Name, *this);
}
std::string ToolChain::GetLinkerPath(bool *LinkerIsLLD) const {
if (LinkerIsLLD)
*LinkerIsLLD = false;
// Get -fuse-ld= first to prevent -Wunused-command-line-argument. -fuse-ld= is
// considered as the linker flavor, e.g. "bfd", "gold", or "lld".
const Arg* A = Args.getLastArg(options::OPT_fuse_ld_EQ);
StringRef UseLinker = A ? A->getValue() : CLANG_DEFAULT_LINKER;
// --ld-path= takes precedence over -fuse-ld= and specifies the executable
// name. -B, COMPILER_PATH and PATH and consulted if the value does not
// contain a path component separator.
// -fuse-ld=lld can be used with --ld-path= to inform clang that the binary
// that --ld-path= points to is lld.
if (const Arg *A = Args.getLastArg(options::OPT_ld_path_EQ)) {
std::string Path(A->getValue());
if (!Path.empty()) {
if (llvm::sys::path::parent_path(Path).empty())
Path = GetProgramPath(A->getValue());
if (llvm::sys::fs::can_execute(Path)) {
if (LinkerIsLLD)
*LinkerIsLLD = UseLinker == "lld";
return std::string(Path);
}
}
getDriver().Diag(diag::err_drv_invalid_linker_name) << A->getAsString(Args);
return GetProgramPath(getDefaultLinker());
}
// If we're passed -fuse-ld= with no argument, or with the argument ld,
// then use whatever the default system linker is.
if (UseLinker.empty() || UseLinker == "ld") {
const char *DefaultLinker = getDefaultLinker();
if (llvm::sys::path::is_absolute(DefaultLinker))
return std::string(DefaultLinker);
else
return GetProgramPath(DefaultLinker);
}
// Extending -fuse-ld= to an absolute or relative path is unexpected. Checking
// for the linker flavor is brittle. In addition, prepending "ld." or "ld64."
// to a relative path is surprising. This is more complex due to priorities
// among -B, COMPILER_PATH and PATH. --ld-path= should be used instead.
if (UseLinker.contains('/'))
getDriver().Diag(diag::warn_drv_fuse_ld_path);
if (llvm::sys::path::is_absolute(UseLinker)) {
// If we're passed what looks like an absolute path, don't attempt to
// second-guess that.
if (llvm::sys::fs::can_execute(UseLinker))
return std::string(UseLinker);
} else {
llvm::SmallString<8> LinkerName;
if (Triple.isOSDarwin())
LinkerName.append("ld64.");
else
LinkerName.append("ld.");
LinkerName.append(UseLinker);
std::string LinkerPath(GetProgramPath(LinkerName.c_str()));
if (llvm::sys::fs::can_execute(LinkerPath)) {
if (LinkerIsLLD)
*LinkerIsLLD = UseLinker == "lld";
return LinkerPath;
}
}
if (A)
getDriver().Diag(diag::err_drv_invalid_linker_name) << A->getAsString(Args);
return GetProgramPath(getDefaultLinker());
}
std::string ToolChain::GetStaticLibToolPath() const {
// TODO: Add support for static lib archiving on Windows
if (Triple.isOSDarwin())
return GetProgramPath("libtool");
return GetProgramPath("llvm-ar");
}
types::ID ToolChain::LookupTypeForExtension(StringRef Ext) const {
types::ID id = types::lookupTypeForExtension(Ext);
// Flang always runs the preprocessor and has no notion of "preprocessed
// fortran". Here, TY_PP_Fortran is coerced to TY_Fortran to avoid treating
// them differently.
if (D.IsFlangMode() && id == types::TY_PP_Fortran)
id = types::TY_Fortran;
return id;
}
bool ToolChain::HasNativeLLVMSupport() const {
return false;
}
bool ToolChain::isCrossCompiling() const {
llvm::Triple HostTriple(LLVM_HOST_TRIPLE);
switch (HostTriple.getArch()) {
// The A32/T32/T16 instruction sets are not separate architectures in this
// context.
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return getArch() != llvm::Triple::arm && getArch() != llvm::Triple::thumb &&
getArch() != llvm::Triple::armeb && getArch() != llvm::Triple::thumbeb;
default:
return HostTriple.getArch() != getArch();
}
}
ObjCRuntime ToolChain::getDefaultObjCRuntime(bool isNonFragile) const {
return ObjCRuntime(isNonFragile ? ObjCRuntime::GNUstep : ObjCRuntime::GCC,
VersionTuple());
}
llvm::ExceptionHandling
ToolChain::GetExceptionModel(const llvm::opt::ArgList &Args) const {
return llvm::ExceptionHandling::None;
}
bool ToolChain::isThreadModelSupported(const StringRef Model) const {
if (Model == "single") {
// FIXME: 'single' is only supported on ARM and WebAssembly so far.
return Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::armeb ||
Triple.getArch() == llvm::Triple::thumb ||
Triple.getArch() == llvm::Triple::thumbeb || Triple.isWasm();
} else if (Model == "posix")
return true;
return false;
}
std::string ToolChain::ComputeLLVMTriple(const ArgList &Args,
types::ID InputType) const {
switch (getTriple().getArch()) {
default:
return getTripleString();
case llvm::Triple::x86_64: {
llvm::Triple Triple = getTriple();
if (!Triple.isOSBinFormatMachO())
return getTripleString();
if (Arg *A = Args.getLastArg(options::OPT_march_EQ)) {
// x86_64h goes in the triple. Other -march options just use the
// vanilla triple we already have.
StringRef MArch = A->getValue();
if (MArch == "x86_64h")
Triple.setArchName(MArch);
}
return Triple.getTriple();
}
case llvm::Triple::aarch64: {
llvm::Triple Triple = getTriple();
if (!Triple.isOSBinFormatMachO())
return getTripleString();
if (Triple.isArm64e())
return getTripleString();
// FIXME: older versions of ld64 expect the "arm64" component in the actual
// triple string and query it to determine whether an LTO file can be
// handled. Remove this when we don't care any more.
Triple.setArchName("arm64");
return Triple.getTriple();
}
case llvm::Triple::aarch64_32:
return getTripleString();
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb: {
llvm::Triple Triple = getTriple();
tools::arm::setArchNameInTriple(getDriver(), Args, InputType, Triple);
tools::arm::setFloatABIInTriple(getDriver(), Args, Triple);
return Triple.getTriple();
}
}
}
std::string ToolChain::ComputeEffectiveClangTriple(const ArgList &Args,
types::ID InputType) const {
return ComputeLLVMTriple(Args, InputType);
}
std::string ToolChain::computeSysRoot() const {
return D.SysRoot;
}
void ToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
// Each toolchain should provide the appropriate include flags.
}
void ToolChain::addClangTargetOptions(
const ArgList &DriverArgs, ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadKind) const {}
void ToolChain::addClangCC1ASTargetOptions(const ArgList &Args,
ArgStringList &CC1ASArgs) const {}
void ToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {}
void ToolChain::addProfileRTLibs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!needsProfileRT(Args) && !needsGCovInstrumentation(Args))
return;
CmdArgs.push_back(getCompilerRTArgString(Args, "profile"));
}
ToolChain::RuntimeLibType ToolChain::GetRuntimeLibType(
const ArgList &Args) const {
if (runtimeLibType)
return *runtimeLibType;
const Arg* A = Args.getLastArg(options::OPT_rtlib_EQ);
StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_RTLIB;
// Only use "platform" in tests to override CLANG_DEFAULT_RTLIB!
if (LibName == "compiler-rt")
runtimeLibType = ToolChain::RLT_CompilerRT;
else if (LibName == "libgcc")
runtimeLibType = ToolChain::RLT_Libgcc;
else if (LibName == "platform")
runtimeLibType = GetDefaultRuntimeLibType();
else {
if (A)
getDriver().Diag(diag::err_drv_invalid_rtlib_name)
<< A->getAsString(Args);
runtimeLibType = GetDefaultRuntimeLibType();
}
return *runtimeLibType;
}
ToolChain::UnwindLibType ToolChain::GetUnwindLibType(
const ArgList &Args) const {
if (unwindLibType)
return *unwindLibType;
const Arg *A = Args.getLastArg(options::OPT_unwindlib_EQ);
StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_UNWINDLIB;
if (LibName == "none")
unwindLibType = ToolChain::UNW_None;
else if (LibName == "platform" || LibName == "") {
ToolChain::RuntimeLibType RtLibType = GetRuntimeLibType(Args);
if (RtLibType == ToolChain::RLT_CompilerRT) {
if (getTriple().isAndroid() || getTriple().isOSAIX())
unwindLibType = ToolChain::UNW_CompilerRT;
else
unwindLibType = ToolChain::UNW_None;
} else if (RtLibType == ToolChain::RLT_Libgcc)
unwindLibType = ToolChain::UNW_Libgcc;
} else if (LibName == "libunwind") {
if (GetRuntimeLibType(Args) == RLT_Libgcc)
getDriver().Diag(diag::err_drv_incompatible_unwindlib);
unwindLibType = ToolChain::UNW_CompilerRT;
} else if (LibName == "libgcc")
unwindLibType = ToolChain::UNW_Libgcc;
else {
if (A)
getDriver().Diag(diag::err_drv_invalid_unwindlib_name)
<< A->getAsString(Args);
unwindLibType = GetDefaultUnwindLibType();
}
return *unwindLibType;
}
ToolChain::CXXStdlibType ToolChain::GetCXXStdlibType(const ArgList &Args) const{
if (cxxStdlibType)
return *cxxStdlibType;
const Arg *A = Args.getLastArg(options::OPT_stdlib_EQ);
StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_CXX_STDLIB;
// Only use "platform" in tests to override CLANG_DEFAULT_CXX_STDLIB!
if (LibName == "libc++")
cxxStdlibType = ToolChain::CST_Libcxx;
else if (LibName == "libstdc++")
cxxStdlibType = ToolChain::CST_Libstdcxx;
else if (LibName == "platform")
cxxStdlibType = GetDefaultCXXStdlibType();
else {
if (A)
getDriver().Diag(diag::err_drv_invalid_stdlib_name)
<< A->getAsString(Args);
cxxStdlibType = GetDefaultCXXStdlibType();
}
return *cxxStdlibType;
}
/// Utility function to add a system include directory to CC1 arguments.
/*static*/ void ToolChain::addSystemInclude(const ArgList &DriverArgs,
ArgStringList &CC1Args,
const Twine &Path) {
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(Path));
}
/// Utility function to add a system include directory with extern "C"
/// semantics to CC1 arguments.
///
/// Note that this should be used rarely, and only for directories that
/// historically and for legacy reasons are treated as having implicit extern
/// "C" semantics. These semantics are *ignored* by and large today, but its
/// important to preserve the preprocessor changes resulting from the
/// classification.
/*static*/ void ToolChain::addExternCSystemInclude(const ArgList &DriverArgs,
ArgStringList &CC1Args,
const Twine &Path) {
CC1Args.push_back("-internal-externc-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(Path));
}
void ToolChain::addExternCSystemIncludeIfExists(const ArgList &DriverArgs,
ArgStringList &CC1Args,
const Twine &Path) {
if (llvm::sys::fs::exists(Path))
addExternCSystemInclude(DriverArgs, CC1Args, Path);
}
/// Utility function to add a list of system include directories to CC1.
/*static*/ void ToolChain::addSystemIncludes(const ArgList &DriverArgs,
ArgStringList &CC1Args,
ArrayRef<StringRef> Paths) {
for (const auto &Path : Paths) {
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(Path));
}
}
/*static*/ std::string ToolChain::concat(StringRef Path, const Twine &A,
const Twine &B, const Twine &C,
const Twine &D) {
SmallString<128> Result(Path);
llvm::sys::path::append(Result, llvm::sys::path::Style::posix, A, B, C, D);
return std::string(Result);
}
std::string ToolChain::detectLibcxxVersion(StringRef IncludePath) const {
std::error_code EC;
int MaxVersion = 0;
std::string MaxVersionString;
SmallString<128> Path(IncludePath);
llvm::sys::path::append(Path, "c++");
for (llvm::vfs::directory_iterator LI = getVFS().dir_begin(Path, EC), LE;
!EC && LI != LE; LI = LI.increment(EC)) {
StringRef VersionText = llvm::sys::path::filename(LI->path());
int Version;
if (VersionText[0] == 'v' &&
!VersionText.slice(1, StringRef::npos).getAsInteger(10, Version)) {
if (Version > MaxVersion) {
MaxVersion = Version;
MaxVersionString = std::string(VersionText);
}
}
}
if (!MaxVersion)
return "";
return MaxVersionString;
}
void ToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
// Header search paths should be handled by each of the subclasses.
// Historically, they have not been, and instead have been handled inside of
// the CC1-layer frontend. As the logic is hoisted out, this generic function
// will slowly stop being called.
//
// While it is being called, replicate a bit of a hack to propagate the
// '-stdlib=' flag down to CC1 so that it can in turn customize the C++
// header search paths with it. Once all systems are overriding this
// function, the CC1 flag and this line can be removed.
DriverArgs.AddAllArgs(CC1Args, options::OPT_stdlib_EQ);
}
void ToolChain::AddClangCXXStdlibIsystemArgs(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const {
DriverArgs.ClaimAllArgs(options::OPT_stdlibxx_isystem);
// This intentionally only looks at -nostdinc++, and not -nostdinc or
// -nostdlibinc. The purpose of -stdlib++-isystem is to support toolchain
// setups with non-standard search logic for the C++ headers, while still
// allowing users of the toolchain to bring their own C++ headers. Such a
// toolchain likely also has non-standard search logic for the C headers and
// uses -nostdinc to suppress the default logic, but -stdlib++-isystem should
// still work in that case and only be suppressed by an explicit -nostdinc++
// in a project using the toolchain.
if (!DriverArgs.hasArg(options::OPT_nostdincxx))
for (const auto &P :
DriverArgs.getAllArgValues(options::OPT_stdlibxx_isystem))
addSystemInclude(DriverArgs, CC1Args, P);
}
bool ToolChain::ShouldLinkCXXStdlib(const llvm::opt::ArgList &Args) const {
return getDriver().CCCIsCXX() &&
!Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs,
options::OPT_nostdlibxx);
}
void ToolChain::AddCXXStdlibLibArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
assert(!Args.hasArg(options::OPT_nostdlibxx) &&
"should not have called this");
CXXStdlibType Type = GetCXXStdlibType(Args);
switch (Type) {
case ToolChain::CST_Libcxx:
CmdArgs.push_back("-lc++");
if (Args.hasArg(options::OPT_fexperimental_library))
CmdArgs.push_back("-lc++experimental");
break;
case ToolChain::CST_Libstdcxx:
CmdArgs.push_back("-lstdc++");
break;
}
}
void ToolChain::AddFilePathLibArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
for (const auto &LibPath : getFilePaths())
if(LibPath.length() > 0)
CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + LibPath));
}
void ToolChain::AddCCKextLibArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
CmdArgs.push_back("-lcc_kext");
}
bool ToolChain::isFastMathRuntimeAvailable(const ArgList &Args,
std::string &Path) const {
// Do not check for -fno-fast-math or -fno-unsafe-math when -Ofast passed
// (to keep the linker options consistent with gcc and clang itself).
if (!isOptimizationLevelFast(Args)) {
// Check if -ffast-math or -funsafe-math.
Arg *A =
Args.getLastArg(options::OPT_ffast_math, options::OPT_fno_fast_math,
options::OPT_funsafe_math_optimizations,
options::OPT_fno_unsafe_math_optimizations);
if (!A || A->getOption().getID() == options::OPT_fno_fast_math ||
A->getOption().getID() == options::OPT_fno_unsafe_math_optimizations)
return false;
}
// If crtfastmath.o exists add it to the arguments.
Path = GetFilePath("crtfastmath.o");
return (Path != "crtfastmath.o"); // Not found.
}
bool ToolChain::addFastMathRuntimeIfAvailable(const ArgList &Args,
ArgStringList &CmdArgs) const {
std::string Path;
if (isFastMathRuntimeAvailable(Args, Path)) {
CmdArgs.push_back(Args.MakeArgString(Path));
return true;
}
return false;
}
Expected<SmallVector<std::string>>
ToolChain::getSystemGPUArchs(const llvm::opt::ArgList &Args) const {
return SmallVector<std::string>();
}
SanitizerMask ToolChain::getSupportedSanitizers() const {
// Return sanitizers which don't require runtime support and are not
// platform dependent.
SanitizerMask Res =
(SanitizerKind::Undefined & ~SanitizerKind::Vptr) |
(SanitizerKind::CFI & ~SanitizerKind::CFIICall) |
SanitizerKind::CFICastStrict | SanitizerKind::FloatDivideByZero |
SanitizerKind::KCFI | SanitizerKind::UnsignedIntegerOverflow |
SanitizerKind::UnsignedShiftBase | SanitizerKind::ImplicitConversion |
SanitizerKind::Nullability | SanitizerKind::LocalBounds;
if (getTriple().getArch() == llvm::Triple::x86 ||
getTriple().getArch() == llvm::Triple::x86_64 ||
getTriple().getArch() == llvm::Triple::arm || getTriple().isWasm() ||
getTriple().isAArch64() || getTriple().isRISCV() ||
getTriple().isLoongArch64())
Res |= SanitizerKind::CFIICall;
if (getTriple().getArch() == llvm::Triple::x86_64 ||
getTriple().isAArch64(64) || getTriple().isRISCV())
Res |= SanitizerKind::ShadowCallStack;
if (getTriple().isAArch64(64))
Res |= SanitizerKind::MemTag;
return Res;
}
void ToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {}
void ToolChain::AddHIPIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {}
llvm::SmallVector<ToolChain::BitCodeLibraryInfo, 12>
ToolChain::getDeviceLibs(const ArgList &DriverArgs) const {
return {};
}
void ToolChain::AddIAMCUIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {}
static VersionTuple separateMSVCFullVersion(unsigned Version) {
if (Version < 100)
return VersionTuple(Version);
if (Version < 10000)
return VersionTuple(Version / 100, Version % 100);
unsigned Build = 0, Factor = 1;
for (; Version > 10000; Version = Version / 10, Factor = Factor * 10)
Build = Build + (Version % 10) * Factor;
return VersionTuple(Version / 100, Version % 100, Build);
}
VersionTuple
ToolChain::computeMSVCVersion(const Driver *D,
const llvm::opt::ArgList &Args) const {
const Arg *MSCVersion = Args.getLastArg(options::OPT_fmsc_version);
const Arg *MSCompatibilityVersion =
Args.getLastArg(options::OPT_fms_compatibility_version);
if (MSCVersion && MSCompatibilityVersion) {
if (D)
D->Diag(diag::err_drv_argument_not_allowed_with)
<< MSCVersion->getAsString(Args)
<< MSCompatibilityVersion->getAsString(Args);
return VersionTuple();
}
if (MSCompatibilityVersion) {
VersionTuple MSVT;
if (MSVT.tryParse(MSCompatibilityVersion->getValue())) {
if (D)
D->Diag(diag::err_drv_invalid_value)
<< MSCompatibilityVersion->getAsString(Args)
<< MSCompatibilityVersion->getValue();
} else {
return MSVT;
}
}
if (MSCVersion) {
unsigned Version = 0;
if (StringRef(MSCVersion->getValue()).getAsInteger(10, Version)) {
if (D)
D->Diag(diag::err_drv_invalid_value)
<< MSCVersion->getAsString(Args) << MSCVersion->getValue();
} else {
return separateMSVCFullVersion(Version);
}
}
return VersionTuple();
}
llvm::opt::DerivedArgList *ToolChain::TranslateOpenMPTargetArgs(
const llvm::opt::DerivedArgList &Args, bool SameTripleAsHost,
SmallVectorImpl<llvm::opt::Arg *> &AllocatedArgs) const {
DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
const OptTable &Opts = getDriver().getOpts();
bool Modified = false;
// Handle -Xopenmp-target flags
for (auto *A : Args) {
// Exclude flags which may only apply to the host toolchain.
// Do not exclude flags when the host triple (AuxTriple)
// matches the current toolchain triple. If it is not present
// at all, target and host share a toolchain.
if (A->getOption().matches(options::OPT_m_Group)) {
// Pass code object version to device toolchain
// to correctly set metadata in intermediate files.
if (SameTripleAsHost ||
A->getOption().matches(options::OPT_mcode_object_version_EQ))
DAL->append(A);
else
Modified = true;
continue;
}
unsigned Index;
unsigned Prev;
bool XOpenMPTargetNoTriple =
A->getOption().matches(options::OPT_Xopenmp_target);
if (A->getOption().matches(options::OPT_Xopenmp_target_EQ)) {
llvm::Triple TT(getOpenMPTriple(A->getValue(0)));
// Passing device args: -Xopenmp-target=<triple> -opt=val.
if (TT.getTriple() == getTripleString())
Index = Args.getBaseArgs().MakeIndex(A->getValue(1));
else
continue;
} else if (XOpenMPTargetNoTriple) {
// Passing device args: -Xopenmp-target -opt=val.
Index = Args.getBaseArgs().MakeIndex(A->getValue(0));
} else {
DAL->append(A);
continue;
}
// Parse the argument to -Xopenmp-target.
Prev = Index;
std::unique_ptr<Arg> XOpenMPTargetArg(Opts.ParseOneArg(Args, Index));
if (!XOpenMPTargetArg || Index > Prev + 1) {
getDriver().Diag(diag::err_drv_invalid_Xopenmp_target_with_args)
<< A->getAsString(Args);
continue;
}
if (XOpenMPTargetNoTriple && XOpenMPTargetArg &&
Args.getAllArgValues(options::OPT_fopenmp_targets_EQ).size() != 1) {
getDriver().Diag(diag::err_drv_Xopenmp_target_missing_triple);
continue;
}
XOpenMPTargetArg->setBaseArg(A);
A = XOpenMPTargetArg.release();
AllocatedArgs.push_back(A);
DAL->append(A);
Modified = true;
}
if (Modified)
return DAL;
delete DAL;
return nullptr;
}
// TODO: Currently argument values separated by space e.g.
// -Xclang -mframe-pointer=no cannot be passed by -Xarch_. This should be
// fixed.
void ToolChain::TranslateXarchArgs(
const llvm::opt::DerivedArgList &Args, llvm::opt::Arg *&A,
llvm::opt::DerivedArgList *DAL,
SmallVectorImpl<llvm::opt::Arg *> *AllocatedArgs) const {
const OptTable &Opts = getDriver().getOpts();
unsigned ValuePos = 1;
if (A->getOption().matches(options::OPT_Xarch_device) ||
A->getOption().matches(options::OPT_Xarch_host))
ValuePos = 0;
unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(ValuePos));
unsigned Prev = Index;
std::unique_ptr<llvm::opt::Arg> XarchArg(Opts.ParseOneArg(Args, Index));
// If the argument parsing failed or more than one argument was
// consumed, the -Xarch_ argument's parameter tried to consume
// extra arguments. Emit an error and ignore.
//
// We also want to disallow any options which would alter the
// driver behavior; that isn't going to work in our model. We
// use options::NoXarchOption to control this.
if (!XarchArg || Index > Prev + 1) {
getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args)
<< A->getAsString(Args);
return;
} else if (XarchArg->getOption().hasFlag(options::NoXarchOption)) {
auto &Diags = getDriver().getDiags();
unsigned DiagID =
Diags.getCustomDiagID(DiagnosticsEngine::Error,
"invalid Xarch argument: '%0', not all driver "
"options can be forwared via Xarch argument");
Diags.Report(DiagID) << A->getAsString(Args);
return;
}
XarchArg->setBaseArg(A);
A = XarchArg.release();
if (!AllocatedArgs)
DAL->AddSynthesizedArg(A);
else
AllocatedArgs->push_back(A);
}
llvm::opt::DerivedArgList *ToolChain::TranslateXarchArgs(
const llvm::opt::DerivedArgList &Args, StringRef BoundArch,
Action::OffloadKind OFK,
SmallVectorImpl<llvm::opt::Arg *> *AllocatedArgs) const {
DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
bool Modified = false;
bool IsDevice = OFK != Action::OFK_None && OFK != Action::OFK_Host;
for (Arg *A : Args) {
bool NeedTrans = false;
bool Skip = false;
if (A->getOption().matches(options::OPT_Xarch_device)) {
NeedTrans = IsDevice;
Skip = !IsDevice;
} else if (A->getOption().matches(options::OPT_Xarch_host)) {
NeedTrans = !IsDevice;
Skip = IsDevice;
} else if (A->getOption().matches(options::OPT_Xarch__) && IsDevice) {
// Do not translate -Xarch_ options for non CUDA/HIP toolchain since
// they may need special translation.
// Skip this argument unless the architecture matches BoundArch
if (BoundArch.empty() || A->getValue(0) != BoundArch)
Skip = true;
else
NeedTrans = true;
}
if (NeedTrans || Skip)
Modified = true;
if (NeedTrans)
TranslateXarchArgs(Args, A, DAL, AllocatedArgs);
if (!Skip)
DAL->append(A);
}
if (Modified)
return DAL;
delete DAL;
return nullptr;
}