blob: 1568b6e6275b9dee1c65a56f872f2897c24cba0f [file] [log] [blame]
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGOpenCLRuntime.h"
#include "CGRecordLayout.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
using namespace clang;
using namespace CodeGen;
CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
: CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
SkippedLayout = false;
LongDoubleReferenced = false;
}
CodeGenTypes::~CodeGenTypes() {
for (llvm::FoldingSet<CGFunctionInfo>::iterator
I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
delete &*I++;
}
const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
return CGM.getCodeGenOpts();
}
void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
llvm::StructType *Ty,
StringRef suffix) {
SmallString<256> TypeName;
llvm::raw_svector_ostream OS(TypeName);
OS << RD->getKindName() << '.';
// FIXME: We probably want to make more tweaks to the printing policy. For
// example, we should probably enable PrintCanonicalTypes and
// FullyQualifiedNames.
PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
Policy.SuppressInlineNamespace = false;
// Name the codegen type after the typedef name
// if there is no tag type name available
if (RD->getIdentifier()) {
// FIXME: We should not have to check for a null decl context here.
// Right now we do it because the implicit Obj-C decls don't have one.
if (RD->getDeclContext())
RD->printQualifiedName(OS, Policy);
else
RD->printName(OS, Policy);
} else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
// FIXME: We should not have to check for a null decl context here.
// Right now we do it because the implicit Obj-C decls don't have one.
if (TDD->getDeclContext())
TDD->printQualifiedName(OS, Policy);
else
TDD->printName(OS);
} else
OS << "anon";
if (!suffix.empty())
OS << suffix;
Ty->setName(OS.str());
}
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
if (T->isConstantMatrixType()) {
const Type *Ty = Context.getCanonicalType(T).getTypePtr();
const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
return llvm::ArrayType::get(ConvertType(MT->getElementType()),
MT->getNumRows() * MT->getNumColumns());
}
llvm::Type *R = ConvertType(T);
// Check for the boolean vector case.
if (T->isExtVectorBoolType()) {
auto *FixedVT = cast<llvm::FixedVectorType>(R);
// Pad to at least one byte.
uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8);
return llvm::IntegerType::get(FixedVT->getContext(), BytePadded);
}
// If this is a bool type, or a bit-precise integer type in a bitfield
// representation, map this integer to the target-specified size.
if ((ForBitField && T->isBitIntType()) ||
(!T->isBitIntType() && R->isIntegerTy(1)))
return llvm::IntegerType::get(getLLVMContext(),
(unsigned)Context.getTypeSize(T));
// Else, don't map it.
return R;
}
/// isRecordLayoutComplete - Return true if the specified type is already
/// completely laid out.
bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
RecordDeclTypes.find(Ty);
return I != RecordDeclTypes.end() && !I->second->isOpaque();
}
/// isFuncParamTypeConvertible - Return true if the specified type in a
/// function parameter or result position can be converted to an IR type at this
/// point. This boils down to being whether it is complete.
bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
// Some ABIs cannot have their member pointers represented in IR unless
// certain circumstances have been reached.
if (const auto *MPT = Ty->getAs<MemberPointerType>())
return getCXXABI().isMemberPointerConvertible(MPT);
// If this isn't a tagged type, we can convert it!
const TagType *TT = Ty->getAs<TagType>();
if (!TT) return true;
// Incomplete types cannot be converted.
return !TT->isIncompleteType();
}
/// Code to verify a given function type is complete, i.e. the return type
/// and all of the parameter types are complete. Also check to see if we are in
/// a RS_StructPointer context, and if so whether any struct types have been
/// pended. If so, we don't want to ask the ABI lowering code to handle a type
/// that cannot be converted to an IR type.
bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
if (!isFuncParamTypeConvertible(FT->getReturnType()))
return false;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
return false;
return true;
}
/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
// If this is an enum being completed, then we flush all non-struct types from
// the cache. This allows function types and other things that may be derived
// from the enum to be recomputed.
if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
// Only flush the cache if we've actually already converted this type.
if (TypeCache.count(ED->getTypeForDecl())) {
// Okay, we formed some types based on this. We speculated that the enum
// would be lowered to i32, so we only need to flush the cache if this
// didn't happen.
if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
TypeCache.clear();
}
// If necessary, provide the full definition of a type only used with a
// declaration so far.
if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
DI->completeType(ED);
return;
}
// If we completed a RecordDecl that we previously used and converted to an
// anonymous type, then go ahead and complete it now.
const RecordDecl *RD = cast<RecordDecl>(TD);
if (RD->isDependentType()) return;
// Only complete it if we converted it already. If we haven't converted it
// yet, we'll just do it lazily.
if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
ConvertRecordDeclType(RD);
// If necessary, provide the full definition of a type only used with a
// declaration so far.
if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
DI->completeType(RD);
}
void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
QualType T = Context.getRecordType(RD);
T = Context.getCanonicalType(T);
const Type *Ty = T.getTypePtr();
if (RecordsWithOpaqueMemberPointers.count(Ty)) {
TypeCache.clear();
RecordsWithOpaqueMemberPointers.clear();
}
}
static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
const llvm::fltSemantics &format,
bool UseNativeHalf = false) {
if (&format == &llvm::APFloat::IEEEhalf()) {
if (UseNativeHalf)
return llvm::Type::getHalfTy(VMContext);
else
return llvm::Type::getInt16Ty(VMContext);
}
if (&format == &llvm::APFloat::BFloat())
return llvm::Type::getBFloatTy(VMContext);
if (&format == &llvm::APFloat::IEEEsingle())
return llvm::Type::getFloatTy(VMContext);
if (&format == &llvm::APFloat::IEEEdouble())
return llvm::Type::getDoubleTy(VMContext);
if (&format == &llvm::APFloat::IEEEquad())
return llvm::Type::getFP128Ty(VMContext);
if (&format == &llvm::APFloat::PPCDoubleDouble())
return llvm::Type::getPPC_FP128Ty(VMContext);
if (&format == &llvm::APFloat::x87DoubleExtended())
return llvm::Type::getX86_FP80Ty(VMContext);
llvm_unreachable("Unknown float format!");
}
llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
assert(QFT.isCanonical());
const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
// First, check whether we can build the full function type. If the
// function type depends on an incomplete type (e.g. a struct or enum), we
// cannot lower the function type.
if (!isFuncTypeConvertible(FT)) {
// This function's type depends on an incomplete tag type.
// Force conversion of all the relevant record types, to make sure
// we re-convert the FunctionType when appropriate.
if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
ConvertRecordDeclType(RT->getDecl());
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
ConvertRecordDeclType(RT->getDecl());
SkippedLayout = true;
// Return a placeholder type.
return llvm::StructType::get(getLLVMContext());
}
// The function type can be built; call the appropriate routines to
// build it.
const CGFunctionInfo *FI;
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
FI = &arrangeFreeFunctionType(
CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
} else {
const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
FI = &arrangeFreeFunctionType(
CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
}
llvm::Type *ResultType = nullptr;
// If there is something higher level prodding our CGFunctionInfo, then
// don't recurse into it again.
if (FunctionsBeingProcessed.count(FI)) {
ResultType = llvm::StructType::get(getLLVMContext());
SkippedLayout = true;
} else {
// Otherwise, we're good to go, go ahead and convert it.
ResultType = GetFunctionType(*FI);
}
return ResultType;
}
/// ConvertType - Convert the specified type to its LLVM form.
llvm::Type *CodeGenTypes::ConvertType(QualType T) {
T = Context.getCanonicalType(T);
const Type *Ty = T.getTypePtr();
// For the device-side compilation, CUDA device builtin surface/texture types
// may be represented in different types.
if (Context.getLangOpts().CUDAIsDevice) {
if (T->isCUDADeviceBuiltinSurfaceType()) {
if (auto *Ty = CGM.getTargetCodeGenInfo()
.getCUDADeviceBuiltinSurfaceDeviceType())
return Ty;
} else if (T->isCUDADeviceBuiltinTextureType()) {
if (auto *Ty = CGM.getTargetCodeGenInfo()
.getCUDADeviceBuiltinTextureDeviceType())
return Ty;
}
}
// RecordTypes are cached and processed specially.
if (const RecordType *RT = dyn_cast<RecordType>(Ty))
return ConvertRecordDeclType(RT->getDecl());
llvm::Type *CachedType = nullptr;
auto TCI = TypeCache.find(Ty);
if (TCI != TypeCache.end())
CachedType = TCI->second;
// With expensive checks, check that the type we compute matches the
// cached type.
#ifndef EXPENSIVE_CHECKS
if (CachedType)
return CachedType;
#endif
// If we don't have it in the cache, convert it now.
llvm::Type *ResultType = nullptr;
switch (Ty->getTypeClass()) {
case Type::Record: // Handled above.
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("Non-canonical or dependent types aren't possible.");
case Type::Builtin: {
switch (cast<BuiltinType>(Ty)->getKind()) {
case BuiltinType::Void:
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
break;
case BuiltinType::Bool:
// Note that we always return bool as i1 for use as a scalar type.
ResultType = llvm::Type::getInt1Ty(getLLVMContext());
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char8:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
ResultType = llvm::IntegerType::get(getLLVMContext(),
static_cast<unsigned>(Context.getTypeSize(T)));
break;
case BuiltinType::Float16:
ResultType =
getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
/* UseNativeHalf = */ true);
break;
case BuiltinType::Half:
// Half FP can either be storage-only (lowered to i16) or native.
ResultType = getTypeForFormat(
getLLVMContext(), Context.getFloatTypeSemantics(T),
Context.getLangOpts().NativeHalfType ||
!Context.getTargetInfo().useFP16ConversionIntrinsics());
break;
case BuiltinType::LongDouble:
LongDoubleReferenced = true;
LLVM_FALLTHROUGH;
case BuiltinType::BFloat16:
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::Float128:
case BuiltinType::Ibm128:
ResultType = getTypeForFormat(getLLVMContext(),
Context.getFloatTypeSemantics(T),
/* UseNativeHalf = */ false);
break;
case BuiltinType::NullPtr:
// Model std::nullptr_t as i8*
ResultType = llvm::PointerType::getUnqual(getLLVMContext());
break;
case BuiltinType::UInt128:
case BuiltinType::Int128:
ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
break;
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
case BuiltinType::OCLSampler:
case BuiltinType::OCLEvent:
case BuiltinType::OCLClkEvent:
case BuiltinType::OCLQueue:
case BuiltinType::OCLReserveID:
ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
break;
case BuiltinType::SveInt8:
case BuiltinType::SveUint8:
case BuiltinType::SveInt8x2:
case BuiltinType::SveUint8x2:
case BuiltinType::SveInt8x3:
case BuiltinType::SveUint8x3:
case BuiltinType::SveInt8x4:
case BuiltinType::SveUint8x4:
case BuiltinType::SveInt16:
case BuiltinType::SveUint16:
case BuiltinType::SveInt16x2:
case BuiltinType::SveUint16x2:
case BuiltinType::SveInt16x3:
case BuiltinType::SveUint16x3:
case BuiltinType::SveInt16x4:
case BuiltinType::SveUint16x4:
case BuiltinType::SveInt32:
case BuiltinType::SveUint32:
case BuiltinType::SveInt32x2:
case BuiltinType::SveUint32x2:
case BuiltinType::SveInt32x3:
case BuiltinType::SveUint32x3:
case BuiltinType::SveInt32x4:
case BuiltinType::SveUint32x4:
case BuiltinType::SveInt64:
case BuiltinType::SveUint64:
case BuiltinType::SveInt64x2:
case BuiltinType::SveUint64x2:
case BuiltinType::SveInt64x3:
case BuiltinType::SveUint64x3:
case BuiltinType::SveInt64x4:
case BuiltinType::SveUint64x4:
case BuiltinType::SveBool:
case BuiltinType::SveBoolx2:
case BuiltinType::SveBoolx4:
case BuiltinType::SveFloat16:
case BuiltinType::SveFloat16x2:
case BuiltinType::SveFloat16x3:
case BuiltinType::SveFloat16x4:
case BuiltinType::SveFloat32:
case BuiltinType::SveFloat32x2:
case BuiltinType::SveFloat32x3:
case BuiltinType::SveFloat32x4:
case BuiltinType::SveFloat64:
case BuiltinType::SveFloat64x2:
case BuiltinType::SveFloat64x3:
case BuiltinType::SveFloat64x4:
case BuiltinType::SveBFloat16:
case BuiltinType::SveBFloat16x2:
case BuiltinType::SveBFloat16x3:
case BuiltinType::SveBFloat16x4: {
ASTContext::BuiltinVectorTypeInfo Info =
Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
Info.EC.getKnownMinValue() *
Info.NumVectors);
}
case BuiltinType::SveCount:
return llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
#define PPC_VECTOR_TYPE(Name, Id, Size) \
case BuiltinType::Id: \
ResultType = \
llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
break;
#include "clang/Basic/PPCTypes.def"
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/RISCVVTypes.def"
{
ASTContext::BuiltinVectorTypeInfo Info =
Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
// Tuple types are expressed as aggregregate types of the same scalable
// vector type (e.g. vint32m1x2_t is two vint32m1_t, which is {<vscale x
// 2 x i32>, <vscale x 2 x i32>}).
if (Info.NumVectors != 1) {
llvm::Type *EltTy = llvm::ScalableVectorType::get(
ConvertType(Info.ElementType), Info.EC.getKnownMinValue());
llvm::SmallVector<llvm::Type *, 4> EltTys(Info.NumVectors, EltTy);
return llvm::StructType::get(getLLVMContext(), EltTys);
}
return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
Info.EC.getKnownMinValue() *
Info.NumVectors);
}
#define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
case BuiltinType::Id: { \
if (BuiltinType::Id == BuiltinType::WasmExternRef) \
ResultType = CGM.getTargetCodeGenInfo().getWasmExternrefReferenceType(); \
else \
llvm_unreachable("Unexpected wasm reference builtin type!"); \
} break;
#include "clang/Basic/WebAssemblyReferenceTypes.def"
case BuiltinType::Dependent:
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
llvm_unreachable("Unexpected placeholder builtin type!");
}
break;
}
case Type::Auto:
case Type::DeducedTemplateSpecialization:
llvm_unreachable("Unexpected undeduced type!");
case Type::Complex: {
llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
ResultType = llvm::StructType::get(EltTy, EltTy);
break;
}
case Type::LValueReference:
case Type::RValueReference: {
const ReferenceType *RTy = cast<ReferenceType>(Ty);
QualType ETy = RTy->getPointeeType();
unsigned AS = getTargetAddressSpace(ETy);
ResultType = llvm::PointerType::get(getLLVMContext(), AS);
break;
}
case Type::Pointer: {
const PointerType *PTy = cast<PointerType>(Ty);
QualType ETy = PTy->getPointeeType();
unsigned AS = getTargetAddressSpace(ETy);
ResultType = llvm::PointerType::get(getLLVMContext(), AS);
break;
}
case Type::VariableArray: {
const VariableArrayType *A = cast<VariableArrayType>(Ty);
assert(A->getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// VLAs resolve to the innermost element type; this matches
// the return of alloca, and there isn't any obviously better choice.
ResultType = ConvertTypeForMem(A->getElementType());
break;
}
case Type::IncompleteArray: {
const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
assert(A->getIndexTypeCVRQualifiers() == 0 &&
"FIXME: We only handle trivial array types so far!");
// int X[] -> [0 x int], unless the element type is not sized. If it is
// unsized (e.g. an incomplete struct) just use [0 x i8].
ResultType = ConvertTypeForMem(A->getElementType());
if (!ResultType->isSized()) {
SkippedLayout = true;
ResultType = llvm::Type::getInt8Ty(getLLVMContext());
}
ResultType = llvm::ArrayType::get(ResultType, 0);
break;
}
case Type::ArrayParameter:
case Type::ConstantArray: {
const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
// Lower arrays of undefined struct type to arrays of i8 just to have a
// concrete type.
if (!EltTy->isSized()) {
SkippedLayout = true;
EltTy = llvm::Type::getInt8Ty(getLLVMContext());
}
ResultType = llvm::ArrayType::get(EltTy, A->getZExtSize());
break;
}
case Type::ExtVector:
case Type::Vector: {
const auto *VT = cast<VectorType>(Ty);
// An ext_vector_type of Bool is really a vector of bits.
llvm::Type *IRElemTy = VT->isExtVectorBoolType()
? llvm::Type::getInt1Ty(getLLVMContext())
: ConvertType(VT->getElementType());
ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements());
break;
}
case Type::ConstantMatrix: {
const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
ResultType =
llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
MT->getNumRows() * MT->getNumColumns());
break;
}
case Type::FunctionNoProto:
case Type::FunctionProto:
ResultType = ConvertFunctionTypeInternal(T);
break;
case Type::ObjCObject:
ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
break;
case Type::ObjCInterface: {
// Objective-C interfaces are always opaque (outside of the
// runtime, which can do whatever it likes); we never refine
// these.
llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
if (!T)
T = llvm::StructType::create(getLLVMContext());
ResultType = T;
break;
}
case Type::ObjCObjectPointer:
ResultType = llvm::PointerType::getUnqual(getLLVMContext());
break;
case Type::Enum: {
const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
if (ED->isCompleteDefinition() || ED->isFixed())
return ConvertType(ED->getIntegerType());
// Return a placeholder 'i32' type. This can be changed later when the
// type is defined (see UpdateCompletedType), but is likely to be the
// "right" answer.
ResultType = llvm::Type::getInt32Ty(getLLVMContext());
break;
}
case Type::BlockPointer: {
// Block pointers lower to function type. For function type,
// getTargetAddressSpace() returns default address space for
// function pointer i.e. program address space. Therefore, for block
// pointers, it is important to pass the pointee AST address space when
// calling getTargetAddressSpace(), to ensure that we get the LLVM IR
// address space for data pointers and not function pointers.
const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
unsigned AS = Context.getTargetAddressSpace(FTy.getAddressSpace());
ResultType = llvm::PointerType::get(getLLVMContext(), AS);
break;
}
case Type::MemberPointer: {
auto *MPTy = cast<MemberPointerType>(Ty);
if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
auto *C = MPTy->getClass();
auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr});
if (Insertion.second)
Insertion.first->second = llvm::StructType::create(getLLVMContext());
ResultType = Insertion.first->second;
} else {
ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
}
break;
}
case Type::Atomic: {
QualType valueType = cast<AtomicType>(Ty)->getValueType();
ResultType = ConvertTypeForMem(valueType);
// Pad out to the inflated size if necessary.
uint64_t valueSize = Context.getTypeSize(valueType);
uint64_t atomicSize = Context.getTypeSize(Ty);
if (valueSize != atomicSize) {
assert(valueSize < atomicSize);
llvm::Type *elts[] = {
ResultType,
llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
};
ResultType =
llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts));
}
break;
}
case Type::Pipe: {
ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
break;
}
case Type::BitInt: {
const auto &EIT = cast<BitIntType>(Ty);
ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
break;
}
}
assert(ResultType && "Didn't convert a type?");
assert((!CachedType || CachedType == ResultType) &&
"Cached type doesn't match computed type");
TypeCache[Ty] = ResultType;
return ResultType;
}
bool CodeGenModule::isPaddedAtomicType(QualType type) {
return isPaddedAtomicType(type->castAs<AtomicType>());
}
bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
}
/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
// TagDecl's are not necessarily unique, instead use the (clang)
// type connected to the decl.
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
llvm::StructType *&Entry = RecordDeclTypes[Key];
// If we don't have a StructType at all yet, create the forward declaration.
if (!Entry) {
Entry = llvm::StructType::create(getLLVMContext());
addRecordTypeName(RD, Entry, "");
}
llvm::StructType *Ty = Entry;
// If this is still a forward declaration, or the LLVM type is already
// complete, there's nothing more to do.
RD = RD->getDefinition();
if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
return Ty;
// Force conversion of non-virtual base classes recursively.
if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
for (const auto &I : CRD->bases()) {
if (I.isVirtual()) continue;
ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
}
}
// Layout fields.
std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
CGRecordLayouts[Key] = std::move(Layout);
// If this struct blocked a FunctionType conversion, then recompute whatever
// was derived from that.
// FIXME: This is hugely overconservative.
if (SkippedLayout)
TypeCache.clear();
return Ty;
}
/// getCGRecordLayout - Return record layout info for the given record decl.
const CGRecordLayout &
CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
const Type *Key = Context.getTagDeclType(RD).getTypePtr();
auto I = CGRecordLayouts.find(Key);
if (I != CGRecordLayouts.end())
return *I->second;
// Compute the type information.
ConvertRecordDeclType(RD);
// Now try again.
I = CGRecordLayouts.find(Key);
assert(I != CGRecordLayouts.end() &&
"Unable to find record layout information for type");
return *I->second;
}
bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
return isZeroInitializable(T);
}
bool CodeGenTypes::isZeroInitializable(QualType T) {
if (T->getAs<PointerType>())
return Context.getTargetNullPointerValue(T) == 0;
if (const auto *AT = Context.getAsArrayType(T)) {
if (isa<IncompleteArrayType>(AT))
return true;
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
if (Context.getConstantArrayElementCount(CAT) == 0)
return true;
T = Context.getBaseElementType(T);
}
// Records are non-zero-initializable if they contain any
// non-zero-initializable subobjects.
if (const RecordType *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
return isZeroInitializable(RD);
}
// We have to ask the ABI about member pointers.
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
return getCXXABI().isZeroInitializable(MPT);
// Everything else is okay.
return true;
}
bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
return getCGRecordLayout(RD).isZeroInitializable();
}
unsigned CodeGenTypes::getTargetAddressSpace(QualType T) const {
// Return the address space for the type. If the type is a
// function type without an address space qualifier, the
// program address space is used. Otherwise, the target picks
// the best address space based on the type information
return T->isFunctionType() && !T.hasAddressSpace()
? getDataLayout().getProgramAddressSpace()
: getContext().getTargetAddressSpace(T.getAddressSpace());
}