blob: 941322be8f870bc06d50418e971c47f8d09d6531 [file] [log] [blame]
//===---------- ExprMutationAnalyzer.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/ExprMutationAnalyzer.h"
#include "clang/AST/Expr.h"
#include "clang/AST/OperationKinds.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "llvm/ADT/STLExtras.h"
namespace clang {
using namespace ast_matchers;
// Check if result of Source expression could be a Target expression.
// Checks:
// - Implicit Casts
// - Binary Operators
// - ConditionalOperator
// - BinaryConditionalOperator
static bool canExprResolveTo(const Expr *Source, const Expr *Target) {
const auto IgnoreDerivedToBase = [](const Expr *E, auto Matcher) {
if (Matcher(E))
return true;
if (const auto *Cast = dyn_cast<ImplicitCastExpr>(E)) {
if ((Cast->getCastKind() == CK_DerivedToBase ||
Cast->getCastKind() == CK_UncheckedDerivedToBase) &&
Matcher(Cast->getSubExpr()))
return true;
}
return false;
};
const auto EvalCommaExpr = [](const Expr *E, auto Matcher) {
const Expr *Result = E;
while (const auto *BOComma =
dyn_cast_or_null<BinaryOperator>(Result->IgnoreParens())) {
if (!BOComma->isCommaOp())
break;
Result = BOComma->getRHS();
}
return Result != E && Matcher(Result);
};
// The 'ConditionalOperatorM' matches on `<anything> ? <expr> : <expr>`.
// This matching must be recursive because `<expr>` can be anything resolving
// to the `InnerMatcher`, for example another conditional operator.
// The edge-case `BaseClass &b = <cond> ? DerivedVar1 : DerivedVar2;`
// is handled, too. The implicit cast happens outside of the conditional.
// This is matched by `IgnoreDerivedToBase(canResolveToExpr(InnerMatcher))`
// below.
const auto ConditionalOperatorM = [Target](const Expr *E) {
if (const auto *OP = dyn_cast<ConditionalOperator>(E)) {
if (const auto *TE = OP->getTrueExpr()->IgnoreParens())
if (canExprResolveTo(TE, Target))
return true;
if (const auto *FE = OP->getFalseExpr()->IgnoreParens())
if (canExprResolveTo(FE, Target))
return true;
}
return false;
};
const auto ElvisOperator = [Target](const Expr *E) {
if (const auto *OP = dyn_cast<BinaryConditionalOperator>(E)) {
if (const auto *TE = OP->getTrueExpr()->IgnoreParens())
if (canExprResolveTo(TE, Target))
return true;
if (const auto *FE = OP->getFalseExpr()->IgnoreParens())
if (canExprResolveTo(FE, Target))
return true;
}
return false;
};
const Expr *SourceExprP = Source->IgnoreParens();
return IgnoreDerivedToBase(SourceExprP,
[&](const Expr *E) {
return E == Target || ConditionalOperatorM(E) ||
ElvisOperator(E);
}) ||
EvalCommaExpr(SourceExprP, [&](const Expr *E) {
return IgnoreDerivedToBase(
E->IgnoreParens(), [&](const Expr *EE) { return EE == Target; });
});
}
namespace {
AST_MATCHER_P(LambdaExpr, hasCaptureInit, const Expr *, E) {
return llvm::is_contained(Node.capture_inits(), E);
}
AST_MATCHER_P(CXXForRangeStmt, hasRangeStmt,
ast_matchers::internal::Matcher<DeclStmt>, InnerMatcher) {
const DeclStmt *const Range = Node.getRangeStmt();
return InnerMatcher.matches(*Range, Finder, Builder);
}
AST_MATCHER_P(Stmt, canResolveToExpr, const Stmt *, Inner) {
auto *Exp = dyn_cast<Expr>(&Node);
if (!Exp)
return true;
auto *Target = dyn_cast<Expr>(Inner);
if (!Target)
return false;
return canExprResolveTo(Exp, Target);
}
// Similar to 'hasAnyArgument', but does not work because 'InitListExpr' does
// not have the 'arguments()' method.
AST_MATCHER_P(InitListExpr, hasAnyInit, ast_matchers::internal::Matcher<Expr>,
InnerMatcher) {
for (const Expr *Arg : Node.inits()) {
ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(*Arg, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
const ast_matchers::internal::VariadicDynCastAllOfMatcher<Stmt, CXXTypeidExpr>
cxxTypeidExpr;
AST_MATCHER(CXXTypeidExpr, isPotentiallyEvaluated) {
return Node.isPotentiallyEvaluated();
}
AST_MATCHER(CXXMemberCallExpr, isConstCallee) {
const Decl *CalleeDecl = Node.getCalleeDecl();
const auto *VD = dyn_cast_or_null<ValueDecl>(CalleeDecl);
if (!VD)
return false;
const QualType T = VD->getType().getCanonicalType();
const auto *MPT = dyn_cast<MemberPointerType>(T);
const auto *FPT = MPT ? cast<FunctionProtoType>(MPT->getPointeeType())
: dyn_cast<FunctionProtoType>(T);
if (!FPT)
return false;
return FPT->isConst();
}
AST_MATCHER_P(GenericSelectionExpr, hasControllingExpr,
ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
if (Node.isTypePredicate())
return false;
return InnerMatcher.matches(*Node.getControllingExpr(), Finder, Builder);
}
template <typename T>
ast_matchers::internal::Matcher<T>
findFirst(const ast_matchers::internal::Matcher<T> &Matcher) {
return anyOf(Matcher, hasDescendant(Matcher));
}
const auto nonConstReferenceType = [] {
return hasUnqualifiedDesugaredType(
referenceType(pointee(unless(isConstQualified()))));
};
const auto nonConstPointerType = [] {
return hasUnqualifiedDesugaredType(
pointerType(pointee(unless(isConstQualified()))));
};
const auto isMoveOnly = [] {
return cxxRecordDecl(
hasMethod(cxxConstructorDecl(isMoveConstructor(), unless(isDeleted()))),
hasMethod(cxxMethodDecl(isMoveAssignmentOperator(), unless(isDeleted()))),
unless(anyOf(hasMethod(cxxConstructorDecl(isCopyConstructor(),
unless(isDeleted()))),
hasMethod(cxxMethodDecl(isCopyAssignmentOperator(),
unless(isDeleted()))))));
};
template <class T> struct NodeID;
template <> struct NodeID<Expr> { static constexpr StringRef value = "expr"; };
template <> struct NodeID<Decl> { static constexpr StringRef value = "decl"; };
constexpr StringRef NodeID<Expr>::value;
constexpr StringRef NodeID<Decl>::value;
template <class T,
class F = const Stmt *(ExprMutationAnalyzer::Analyzer::*)(const T *)>
const Stmt *tryEachMatch(ArrayRef<ast_matchers::BoundNodes> Matches,
ExprMutationAnalyzer::Analyzer *Analyzer, F Finder) {
const StringRef ID = NodeID<T>::value;
for (const auto &Nodes : Matches) {
if (const Stmt *S = (Analyzer->*Finder)(Nodes.getNodeAs<T>(ID)))
return S;
}
return nullptr;
}
} // namespace
const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Expr *Exp) {
return findMutationMemoized(
Exp,
{&ExprMutationAnalyzer::Analyzer::findDirectMutation,
&ExprMutationAnalyzer::Analyzer::findMemberMutation,
&ExprMutationAnalyzer::Analyzer::findArrayElementMutation,
&ExprMutationAnalyzer::Analyzer::findCastMutation,
&ExprMutationAnalyzer::Analyzer::findRangeLoopMutation,
&ExprMutationAnalyzer::Analyzer::findReferenceMutation,
&ExprMutationAnalyzer::Analyzer::findFunctionArgMutation},
Memorized.Results);
}
const Stmt *ExprMutationAnalyzer::Analyzer::findMutation(const Decl *Dec) {
return tryEachDeclRef(Dec, &ExprMutationAnalyzer::Analyzer::findMutation);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Expr *Exp) {
return findMutationMemoized(Exp, {/*TODO*/}, Memorized.PointeeResults);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findPointeeMutation(const Decl *Dec) {
return tryEachDeclRef(Dec,
&ExprMutationAnalyzer::Analyzer::findPointeeMutation);
}
const Stmt *ExprMutationAnalyzer::Analyzer::findMutationMemoized(
const Expr *Exp, llvm::ArrayRef<MutationFinder> Finders,
Memoized::ResultMap &MemoizedResults) {
const auto Memoized = MemoizedResults.find(Exp);
if (Memoized != MemoizedResults.end())
return Memoized->second;
if (isUnevaluated(Exp))
return MemoizedResults[Exp] = nullptr;
for (const auto &Finder : Finders) {
if (const Stmt *S = (this->*Finder)(Exp))
return MemoizedResults[Exp] = S;
}
return MemoizedResults[Exp] = nullptr;
}
const Stmt *
ExprMutationAnalyzer::Analyzer::tryEachDeclRef(const Decl *Dec,
MutationFinder Finder) {
const auto Refs = match(
findAll(
declRefExpr(to(
// `Dec` or a binding if `Dec` is a decomposition.
anyOf(equalsNode(Dec),
bindingDecl(forDecomposition(equalsNode(Dec))))
//
))
.bind(NodeID<Expr>::value)),
Stm, Context);
for (const auto &RefNodes : Refs) {
const auto *E = RefNodes.getNodeAs<Expr>(NodeID<Expr>::value);
if ((this->*Finder)(E))
return E;
}
return nullptr;
}
bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Stmt *Exp,
const Stmt &Stm,
ASTContext &Context) {
return selectFirst<Stmt>(
NodeID<Expr>::value,
match(
findFirst(
stmt(canResolveToExpr(Exp),
anyOf(
// `Exp` is part of the underlying expression of
// decltype/typeof if it has an ancestor of
// typeLoc.
hasAncestor(typeLoc(unless(
hasAncestor(unaryExprOrTypeTraitExpr())))),
hasAncestor(expr(anyOf(
// `UnaryExprOrTypeTraitExpr` is unevaluated
// unless it's sizeof on VLA.
unaryExprOrTypeTraitExpr(unless(sizeOfExpr(
hasArgumentOfType(variableArrayType())))),
// `CXXTypeidExpr` is unevaluated unless it's
// applied to an expression of glvalue of
// polymorphic class type.
cxxTypeidExpr(
unless(isPotentiallyEvaluated())),
// The controlling expression of
// `GenericSelectionExpr` is unevaluated.
genericSelectionExpr(hasControllingExpr(
hasDescendant(equalsNode(Exp)))),
cxxNoexceptExpr())))))
.bind(NodeID<Expr>::value)),
Stm, Context)) != nullptr;
}
bool ExprMutationAnalyzer::Analyzer::isUnevaluated(const Expr *Exp) {
return isUnevaluated(Exp, Stm, Context);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findExprMutation(ArrayRef<BoundNodes> Matches) {
return tryEachMatch<Expr>(Matches, this,
&ExprMutationAnalyzer::Analyzer::findMutation);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findDeclMutation(ArrayRef<BoundNodes> Matches) {
return tryEachMatch<Decl>(Matches, this,
&ExprMutationAnalyzer::Analyzer::findMutation);
}
const Stmt *ExprMutationAnalyzer::Analyzer::findExprPointeeMutation(
ArrayRef<ast_matchers::BoundNodes> Matches) {
return tryEachMatch<Expr>(
Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
}
const Stmt *ExprMutationAnalyzer::Analyzer::findDeclPointeeMutation(
ArrayRef<ast_matchers::BoundNodes> Matches) {
return tryEachMatch<Decl>(
Matches, this, &ExprMutationAnalyzer::Analyzer::findPointeeMutation);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findDirectMutation(const Expr *Exp) {
// LHS of any assignment operators.
const auto AsAssignmentLhs =
binaryOperator(isAssignmentOperator(), hasLHS(canResolveToExpr(Exp)));
// Operand of increment/decrement operators.
const auto AsIncDecOperand =
unaryOperator(anyOf(hasOperatorName("++"), hasOperatorName("--")),
hasUnaryOperand(canResolveToExpr(Exp)));
// Invoking non-const member function.
// A member function is assumed to be non-const when it is unresolved.
const auto NonConstMethod = cxxMethodDecl(unless(isConst()));
const auto AsNonConstThis = expr(anyOf(
cxxMemberCallExpr(on(canResolveToExpr(Exp)), unless(isConstCallee())),
cxxOperatorCallExpr(callee(NonConstMethod),
hasArgument(0, canResolveToExpr(Exp))),
// In case of a templated type, calling overloaded operators is not
// resolved and modelled as `binaryOperator` on a dependent type.
// Such instances are considered a modification, because they can modify
// in different instantiations of the template.
binaryOperator(isTypeDependent(),
hasEitherOperand(ignoringImpCasts(canResolveToExpr(Exp)))),
// A fold expression may contain `Exp` as it's initializer.
// We don't know if the operator modifies `Exp` because the
// operator is type dependent due to the parameter pack.
cxxFoldExpr(hasFoldInit(ignoringImpCasts(canResolveToExpr(Exp)))),
// Within class templates and member functions the member expression might
// not be resolved. In that case, the `callExpr` is considered to be a
// modification.
callExpr(callee(expr(anyOf(
unresolvedMemberExpr(hasObjectExpression(canResolveToExpr(Exp))),
cxxDependentScopeMemberExpr(
hasObjectExpression(canResolveToExpr(Exp))))))),
// Match on a call to a known method, but the call itself is type
// dependent (e.g. `vector<T> v; v.push(T{});` in a templated function).
callExpr(allOf(
isTypeDependent(),
callee(memberExpr(hasDeclaration(NonConstMethod),
hasObjectExpression(canResolveToExpr(Exp))))))));
// Taking address of 'Exp'.
// We're assuming 'Exp' is mutated as soon as its address is taken, though in
// theory we can follow the pointer and see whether it escaped `Stm` or is
// dereferenced and then mutated. This is left for future improvements.
const auto AsAmpersandOperand =
unaryOperator(hasOperatorName("&"),
// A NoOp implicit cast is adding const.
unless(hasParent(implicitCastExpr(hasCastKind(CK_NoOp)))),
hasUnaryOperand(canResolveToExpr(Exp)));
const auto AsPointerFromArrayDecay = castExpr(
hasCastKind(CK_ArrayToPointerDecay),
unless(hasParent(arraySubscriptExpr())), has(canResolveToExpr(Exp)));
// Treat calling `operator->()` of move-only classes as taking address.
// These are typically smart pointers with unique ownership so we treat
// mutation of pointee as mutation of the smart pointer itself.
const auto AsOperatorArrowThis = cxxOperatorCallExpr(
hasOverloadedOperatorName("->"),
callee(
cxxMethodDecl(ofClass(isMoveOnly()), returns(nonConstPointerType()))),
argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)));
// Used as non-const-ref argument when calling a function.
// An argument is assumed to be non-const-ref when the function is unresolved.
// Instantiated template functions are not handled here but in
// findFunctionArgMutation which has additional smarts for handling forwarding
// references.
const auto NonConstRefParam = forEachArgumentWithParamType(
anyOf(canResolveToExpr(Exp),
memberExpr(hasObjectExpression(canResolveToExpr(Exp)))),
nonConstReferenceType());
const auto NotInstantiated = unless(hasDeclaration(isInstantiated()));
const auto TypeDependentCallee =
callee(expr(anyOf(unresolvedLookupExpr(), unresolvedMemberExpr(),
cxxDependentScopeMemberExpr(),
hasType(templateTypeParmType()), isTypeDependent())));
const auto AsNonConstRefArg = anyOf(
callExpr(NonConstRefParam, NotInstantiated),
cxxConstructExpr(NonConstRefParam, NotInstantiated),
callExpr(TypeDependentCallee, hasAnyArgument(canResolveToExpr(Exp))),
cxxUnresolvedConstructExpr(hasAnyArgument(canResolveToExpr(Exp))),
// Previous False Positive in the following Code:
// `template <typename T> void f() { int i = 42; new Type<T>(i); }`
// Where the constructor of `Type` takes its argument as reference.
// The AST does not resolve in a `cxxConstructExpr` because it is
// type-dependent.
parenListExpr(hasDescendant(expr(canResolveToExpr(Exp)))),
// If the initializer is for a reference type, there is no cast for
// the variable. Values are cast to RValue first.
initListExpr(hasAnyInit(expr(canResolveToExpr(Exp)))));
// Captured by a lambda by reference.
// If we're initializing a capture with 'Exp' directly then we're initializing
// a reference capture.
// For value captures there will be an ImplicitCastExpr <LValueToRValue>.
const auto AsLambdaRefCaptureInit = lambdaExpr(hasCaptureInit(Exp));
// Returned as non-const-ref.
// If we're returning 'Exp' directly then it's returned as non-const-ref.
// For returning by value there will be an ImplicitCastExpr <LValueToRValue>.
// For returning by const-ref there will be an ImplicitCastExpr <NoOp> (for
// adding const.)
const auto AsNonConstRefReturn =
returnStmt(hasReturnValue(canResolveToExpr(Exp)));
// It is used as a non-const-reference for initializing a range-for loop.
const auto AsNonConstRefRangeInit = cxxForRangeStmt(hasRangeInit(declRefExpr(
allOf(canResolveToExpr(Exp), hasType(nonConstReferenceType())))));
const auto Matches = match(
traverse(
TK_AsIs,
findFirst(stmt(anyOf(AsAssignmentLhs, AsIncDecOperand, AsNonConstThis,
AsAmpersandOperand, AsPointerFromArrayDecay,
AsOperatorArrowThis, AsNonConstRefArg,
AsLambdaRefCaptureInit, AsNonConstRefReturn,
AsNonConstRefRangeInit))
.bind("stmt"))),
Stm, Context);
return selectFirst<Stmt>("stmt", Matches);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findMemberMutation(const Expr *Exp) {
// Check whether any member of 'Exp' is mutated.
const auto MemberExprs = match(
findAll(expr(anyOf(memberExpr(hasObjectExpression(canResolveToExpr(Exp))),
cxxDependentScopeMemberExpr(
hasObjectExpression(canResolveToExpr(Exp))),
binaryOperator(hasOperatorName(".*"),
hasLHS(equalsNode(Exp)))))
.bind(NodeID<Expr>::value)),
Stm, Context);
return findExprMutation(MemberExprs);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findArrayElementMutation(const Expr *Exp) {
// Check whether any element of an array is mutated.
const auto SubscriptExprs = match(
findAll(arraySubscriptExpr(
anyOf(hasBase(canResolveToExpr(Exp)),
hasBase(implicitCastExpr(allOf(
hasCastKind(CK_ArrayToPointerDecay),
hasSourceExpression(canResolveToExpr(Exp)))))))
.bind(NodeID<Expr>::value)),
Stm, Context);
return findExprMutation(SubscriptExprs);
}
const Stmt *ExprMutationAnalyzer::Analyzer::findCastMutation(const Expr *Exp) {
// If the 'Exp' is explicitly casted to a non-const reference type the
// 'Exp' is considered to be modified.
const auto ExplicitCast =
match(findFirst(stmt(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
explicitCastExpr(hasDestinationType(
nonConstReferenceType()))))
.bind("stmt")),
Stm, Context);
if (const auto *CastStmt = selectFirst<Stmt>("stmt", ExplicitCast))
return CastStmt;
// If 'Exp' is casted to any non-const reference type, check the castExpr.
const auto Casts = match(
findAll(expr(castExpr(hasSourceExpression(canResolveToExpr(Exp)),
anyOf(explicitCastExpr(hasDestinationType(
nonConstReferenceType())),
implicitCastExpr(hasImplicitDestinationType(
nonConstReferenceType())))))
.bind(NodeID<Expr>::value)),
Stm, Context);
if (const Stmt *S = findExprMutation(Casts))
return S;
// Treat std::{move,forward} as cast.
const auto Calls =
match(findAll(callExpr(callee(namedDecl(
hasAnyName("::std::move", "::std::forward"))),
hasArgument(0, canResolveToExpr(Exp)))
.bind("expr")),
Stm, Context);
return findExprMutation(Calls);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findRangeLoopMutation(const Expr *Exp) {
// Keep the ordering for the specific initialization matches to happen first,
// because it is cheaper to match all potential modifications of the loop
// variable.
// The range variable is a reference to a builtin array. In that case the
// array is considered modified if the loop-variable is a non-const reference.
const auto DeclStmtToNonRefToArray = declStmt(hasSingleDecl(varDecl(hasType(
hasUnqualifiedDesugaredType(referenceType(pointee(arrayType())))))));
const auto RefToArrayRefToElements = match(
findFirst(stmt(cxxForRangeStmt(
hasLoopVariable(
varDecl(anyOf(hasType(nonConstReferenceType()),
hasType(nonConstPointerType())))
.bind(NodeID<Decl>::value)),
hasRangeStmt(DeclStmtToNonRefToArray),
hasRangeInit(canResolveToExpr(Exp))))
.bind("stmt")),
Stm, Context);
if (const auto *BadRangeInitFromArray =
selectFirst<Stmt>("stmt", RefToArrayRefToElements))
return BadRangeInitFromArray;
// Small helper to match special cases in range-for loops.
//
// It is possible that containers do not provide a const-overload for their
// iterator accessors. If this is the case, the variable is used non-const
// no matter what happens in the loop. This requires special detection as it
// is then faster to find all mutations of the loop variable.
// It aims at a different modification as well.
const auto HasAnyNonConstIterator =
anyOf(allOf(hasMethod(allOf(hasName("begin"), unless(isConst()))),
unless(hasMethod(allOf(hasName("begin"), isConst())))),
allOf(hasMethod(allOf(hasName("end"), unless(isConst()))),
unless(hasMethod(allOf(hasName("end"), isConst())))));
const auto DeclStmtToNonConstIteratorContainer = declStmt(
hasSingleDecl(varDecl(hasType(hasUnqualifiedDesugaredType(referenceType(
pointee(hasDeclaration(cxxRecordDecl(HasAnyNonConstIterator)))))))));
const auto RefToContainerBadIterators = match(
findFirst(stmt(cxxForRangeStmt(allOf(
hasRangeStmt(DeclStmtToNonConstIteratorContainer),
hasRangeInit(canResolveToExpr(Exp)))))
.bind("stmt")),
Stm, Context);
if (const auto *BadIteratorsContainer =
selectFirst<Stmt>("stmt", RefToContainerBadIterators))
return BadIteratorsContainer;
// If range for looping over 'Exp' with a non-const reference loop variable,
// check all declRefExpr of the loop variable.
const auto LoopVars =
match(findAll(cxxForRangeStmt(
hasLoopVariable(varDecl(hasType(nonConstReferenceType()))
.bind(NodeID<Decl>::value)),
hasRangeInit(canResolveToExpr(Exp)))),
Stm, Context);
return findDeclMutation(LoopVars);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findReferenceMutation(const Expr *Exp) {
// Follow non-const reference returned by `operator*()` of move-only classes.
// These are typically smart pointers with unique ownership so we treat
// mutation of pointee as mutation of the smart pointer itself.
const auto Ref = match(
findAll(cxxOperatorCallExpr(
hasOverloadedOperatorName("*"),
callee(cxxMethodDecl(ofClass(isMoveOnly()),
returns(nonConstReferenceType()))),
argumentCountIs(1), hasArgument(0, canResolveToExpr(Exp)))
.bind(NodeID<Expr>::value)),
Stm, Context);
if (const Stmt *S = findExprMutation(Ref))
return S;
// If 'Exp' is bound to a non-const reference, check all declRefExpr to that.
const auto Refs = match(
stmt(forEachDescendant(
varDecl(hasType(nonConstReferenceType()),
hasInitializer(anyOf(
canResolveToExpr(Exp),
memberExpr(hasObjectExpression(canResolveToExpr(Exp))))),
hasParent(declStmt().bind("stmt")),
// Don't follow the reference in range statement, we've
// handled that separately.
unless(hasParent(declStmt(hasParent(cxxForRangeStmt(
hasRangeStmt(equalsBoundNode("stmt"))))))))
.bind(NodeID<Decl>::value))),
Stm, Context);
return findDeclMutation(Refs);
}
const Stmt *
ExprMutationAnalyzer::Analyzer::findFunctionArgMutation(const Expr *Exp) {
const auto NonConstRefParam = forEachArgumentWithParam(
canResolveToExpr(Exp),
parmVarDecl(hasType(nonConstReferenceType())).bind("parm"));
const auto IsInstantiated = hasDeclaration(isInstantiated());
const auto FuncDecl = hasDeclaration(functionDecl().bind("func"));
const auto Matches = match(
traverse(
TK_AsIs,
findAll(
expr(anyOf(callExpr(NonConstRefParam, IsInstantiated, FuncDecl,
unless(callee(namedDecl(hasAnyName(
"::std::move", "::std::forward"))))),
cxxConstructExpr(NonConstRefParam, IsInstantiated,
FuncDecl)))
.bind(NodeID<Expr>::value))),
Stm, Context);
for (const auto &Nodes : Matches) {
const auto *Exp = Nodes.getNodeAs<Expr>(NodeID<Expr>::value);
const auto *Func = Nodes.getNodeAs<FunctionDecl>("func");
if (!Func->getBody() || !Func->getPrimaryTemplate())
return Exp;
const auto *Parm = Nodes.getNodeAs<ParmVarDecl>("parm");
const ArrayRef<ParmVarDecl *> AllParams =
Func->getPrimaryTemplate()->getTemplatedDecl()->parameters();
QualType ParmType =
AllParams[std::min<size_t>(Parm->getFunctionScopeIndex(),
AllParams.size() - 1)]
->getType();
if (const auto *T = ParmType->getAs<PackExpansionType>())
ParmType = T->getPattern();
// If param type is forwarding reference, follow into the function
// definition and see whether the param is mutated inside.
if (const auto *RefType = ParmType->getAs<RValueReferenceType>()) {
if (!RefType->getPointeeType().getQualifiers() &&
RefType->getPointeeType()->getAs<TemplateTypeParmType>()) {
FunctionParmMutationAnalyzer *Analyzer =
FunctionParmMutationAnalyzer::getFunctionParmMutationAnalyzer(
*Func, Context, Memorized);
if (Analyzer->findMutation(Parm))
return Exp;
continue;
}
}
// Not forwarding reference.
return Exp;
}
return nullptr;
}
FunctionParmMutationAnalyzer::FunctionParmMutationAnalyzer(
const FunctionDecl &Func, ASTContext &Context,
ExprMutationAnalyzer::Memoized &Memorized)
: BodyAnalyzer(*Func.getBody(), Context, Memorized) {
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(&Func)) {
// CXXCtorInitializer might also mutate Param but they're not part of
// function body, check them eagerly here since they're typically trivial.
for (const CXXCtorInitializer *Init : Ctor->inits()) {
ExprMutationAnalyzer::Analyzer InitAnalyzer(*Init->getInit(), Context,
Memorized);
for (const ParmVarDecl *Parm : Ctor->parameters()) {
if (Results.contains(Parm))
continue;
if (const Stmt *S = InitAnalyzer.findMutation(Parm))
Results[Parm] = S;
}
}
}
}
const Stmt *
FunctionParmMutationAnalyzer::findMutation(const ParmVarDecl *Parm) {
const auto Memoized = Results.find(Parm);
if (Memoized != Results.end())
return Memoized->second;
// To handle call A -> call B -> call A. Assume parameters of A is not mutated
// before analyzing parameters of A. Then when analyzing the second "call A",
// FunctionParmMutationAnalyzer can use this memoized value to avoid infinite
// recursion.
Results[Parm] = nullptr;
if (const Stmt *S = BodyAnalyzer.findMutation(Parm))
return Results[Parm] = S;
return Results[Parm];
}
} // namespace clang